to the Killion # Environmental Assessment of the Alaskan Continental Shelf Quarterly Reports of Principal Investigators April - June 1977 Volume II U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration U.S. DEPARTMENT OF INTERIOR Bereau of Land Management | ı | | |---|---| | 1 | · | # Environmental Assessment of the Alaskan Continental Shelf April-June quarterly reports from Principal Investigators participating in a multi-year program of environmental assessment related to petroleum development on the Alaskan Continental Shelf. The program is directed by the National Oceanic and Atmospheric Administration under the sponsorship of the Bureau of Land Management. **ENVIRONMENTAL RESEARCH LABORATORIES** Boulder, Colorado October 1977 | | | · | | |---|---|---|--| | | | | | | | | | | | | | | | | ; | | | | | | , | | | | | | - | | | | | | | | | | | | # VOLUME II # CONTENTS | | Page | |-----------------|------| | TRANSPORT | 1 | | HAZARDS | 325 | | DATA MANAGEMENT | 753 | | | • | | |--|---|--| # TRANSPORT . · # TRANSPORT | Research
<u>Unit</u> | Proposer | <u>Title</u> | Page | |-------------------------|--|---|------| | 48 | D. E. Barrick
WPL/NOAA | Development and Operation of HF Ocean Current
Mapping Radar Units | 5 | | 91 | K. Aagaard
Dept. of Ocean.
U. of Wash. | Current Measurements in Possible Dispersal
Regions of the Beaufort Sea | 8 | | 138 | S. P. Hayes
J. D. Schumacher
PMEL/NOAA | Gulf of Alaska Study of Mesoscale Oceano-
graphic Processes (GAS-MOP) | 19 | | 141 | J. D. Schumacher
R. L. Charnell
Dept. of Ocean.
U. of Wash. | Bristol Bay Oceanographic Processes (B-BOP) | 60 | | 151 | K. Aagaard
Dept. of Ocean.
U. of Wash. | STD Measurements in Possible Dispersal Regions of the Beaufort Sea | 91 | | 208 | W. R. Dupre
Dept. of Geol.
U. of Houston | Yukon Delta Coastal Processes Study | 99 | | 217 | D. V. Hansen
AOML/NOAA | Lagrangian Surface Current Observations for OCSEAP - Alaska | 110 | | 244 | R. G. Barry
U. of Colorado
INSTARR | Study of Climatic Effects on Fast Ice Extent
and its Seasonal Decay Along the Beaufort-
Chukchi Coasts | 112 | | 250 | L. H. Shapiro
et al.
Geophys. Inst.
U. of Alaska | Mechanics of Origin of Pressure Ridges, Shear
Ridges and Hummock Fields in Landfast Ice | 120 | | 258 | W. J. Stringer
Geophys. Inst.
U. of Alaska | Morphology of Beaufort, Chukchi and Bering
Seas Near Shore Ice Conditions by Means of
Satellite and Aerial Remote Sensing | 121 | | 259 | W. M. Sackinger
R. D. Nelson
U. of Alaska | Experimental Measurements of Sea Ice Failure | 224 | | 261 | W. R. Hunt
C. M. Naske | Beaufort Sea, Chukchi Sea, and Bering Strait
Baseline Ice Study | 227 | # TRANSPORT | Kesearch
Unit | Proposer | <u>Title</u> | Page | |------------------|---|---|------| | 265 | L. H. Shapiro
R. D. Nelson
U. of Alaska | In-Situ Measurements of the Mechanical
Properties of Sea Ice | 247 | | 267 | A. E. Belon
U. of Alaska | Operation of an Alaskan Facility for
Applications of Remote-Sensing Data to OCS
Studies | 248 | | 289 | T. C. Royer
U. of Alaska | Mesoscale Currents and Water Masses in the Gulf of Alaska | 256 | | 347 | J. L. Wise
U. of Alaska | Marine Climatology of the Gulf of Alaska
and the Bering and Beaufort Seas | 260 | | | J. L. Wise
W. A. Brower, Jr.
U. of Alaska | Marine Climatology of the Gulf of Alaska and
the Bering and Beaufort Seas Climatic Atlases
(3) | 263 | | 367 | R. M. Reynolds
PMEL/NOAA | Coastal Meteorology | 266 | | *399 | P. M. Kuhn
et al.
APCL/NOAA | Radiometric Spectral Response of Oil Films | 273 | | 499 | J. S. Mattson
EDS/NOAA
Wash., D.C. | Modeling Algorithms for the Weathering of Oil in the Marine Environment | 304 | | 519 | F. Carsey
U. of Wash. | Coastal Meteorology of the Alaskan Arctic
Coast | 309 | | 526 | J. B. Matthews
U. of Alaska | Characterization of the Nearshore Hydrodynamics of an Arctic Barrier Island-Lagoon System | 312 | | 529 | A. S. Naidu
U. of Alaska | Sediment Characteristics, Stability, and Origin of the Barrier Island-Lagoon Complex, North Arctic Alaska | 314 | | 530 | P. J. Cannon
U. of Alaska | The Environmental Geology and Geomorphology of
the Barrier Island-Lagoon System Along the
Beaufort Sea Coastal Plain from Prudhoe Bay to
the Coville River | 318 | | 531 | J. C. H. Mungall
Texas A&M U. | Oceanographic Processes in a Beaufort Sea
Barrier Island-Lagoon System: Numerical
Modeling and Current Measurements | 320 | # QUARTERLY REPORT Proj. No. RW0000 R7120856 Research Unit: No. 48 Reporting Period: Mar. 31, 1977 July 1, 1977 No. of Pages: 1 Development and Operation of HF Ocean Current Mapping Radar Units Principal Investigator: Donald E. Barrick Submitted: July 1, 1977 #### 1. ABSTRACT Since the last report, the current sensing radar system was taken to the Miami, Florida area in March 1977, and the surface current data obtained by it were compared with simultaneous drifter current estimates. Comparisons are shown in the back of the report as a function of distance from shore located on a line midway between the two radars. The comparisons show that the two agree favorably and any differences between the two cannot be attributed to either radar or drifter, since drifter measurements of surface currents with waves present is somewhat uncertain. Quantitative analysis shows a standard derivation between radar and drifter measurements in this plot of 25 cm/s (at least 10-15 cm/s of which has been found to be inconsistencies between consecutive drifter measurements). After the completion of the Miami tests, the radars were returned to Boulder, some hardware and software changes were made, and the units were then shipped to Cook Inlet. The two site locations were Seldovia and Anchor Point, Alaska. They were operational around June 15 and have successfully taken observations up through the date of this report. In addition, 4 days of simultaneous comparisons with drifters in the area of coverage was accomplished and the preliminary results show a favorable comparison. Since all personnel are in the field for this time period, and not available for a quarterly report, a special report will be submitted at a later date with more comprehensive results from the Alaska study. This will be in lieu of the regular quarterly report. ## QUARTERLY REPORT Contract No: 03-5-022-67, T.O. #3 Research Unit No.: 91 Reporting Period: 1 April - 30 June 1977 Number of Pages: 3 Current Measurements in Possible Dispersal Regions of the Beaufort Sea Knut Aagaard Department of Oceanography University of Washington Seattle, Washington 98195 6 July 1977 A77-11 #### Objectives To provide long-term Eulerian time series of currents at selected locations on the shelf and slope of the Beaufort Sea, so as to describe and understand the circulation and dynamics; and in conjunction with the STD program, to examine the possible spreading into the Canadian Basin of waters modified on the Beaufort shelf. #### II. Field Activities See attached Preliminary Report, Cruise W27, Ref. M77-42. #### III. Results, and IV. Preliminary Interpretation of Results The current meters recovered in the spring had leaked through the external signal terminal. The entering sea water shorted the clock circuit and gave an erratic tape advance, making it impossible to interpret the sensor signals. In the new instruments deployed in the spring, we therefore removed the external terminal and inserted a plug with 0-rings. We shall follow this procedure in future deployments also. The reason for the leak is probably the extreme changes in temperature that the instruments are subjected to during deployment, together with a mismatch of materials with different thermal expansion coefficients being used in the external terminal. We are continuing analysis of the current record from Oliktok recovered last fall, with special emphasis on the strong low-frequency signals (cf. Annual Report). These appear to be driven by atmospheric events, but a good deal more work is required to clarify the issue. #### V. Problems Encountered None beyond those mentioned in III. VI. Estimate of Funds Expended by Department of Oceanography, University of Washington to 31 May 1977. | тот | AL ALLOCATION (5/16/75-9/30/7 | 77): | | \$183,042 | |-----|--|---------------|----------|-----------| | A. | Salaries, faculty and staff | | \$20,926 | | | В. | Benefits | | 2,477 | | | C. | Expendable Supplies & Equipm
Floatation \$2,000 | ent | 23,764 | | | D. | Permanent Equipment Current meters \$17,75 | 0 | 65,430 | | | E. | Travel | | 4,089 | | | F. | Computer | | 542 | | | G. | Other Direct Costs | | 15,969 | | | н. | Indirect Costs | | 9,166 | | | | | TOTAL | | 142,363 | | | | REMAINING BAL | ANCE | 40.679 | University of Washington Department of Oceanography Seattle, Washington 98195 ## Preliminary Report University of Washington Participation in NOAA Recovery/Deployment Phase of Cruise W27 Current Measurements in Possible Dispersal Regions of the Beaufort Sea 13 March - 5 April 1977 by Clark Darnall NOAA Contract 03-5-022-67, TA 3 Approved by: Knut Aagaard, Research Associate Professor Principal Investigator Francis A. Richards, Professor Associate Chairman for Research REF: M77-42 #### CURRENT STUDIES ON BEAUFORT SEA SHELF #### 1. Objectives To look at the time-dependent circulation and dynamics of the outer shelf and slope of the Beaufort Sea, by means
of long-term Eulerian time-series current studies at selected locations, where the ice cover is not seasonally removed. Cruise W27 was a recovery/deployment phase of current meter studies. #### 2. Narrative #### Mooring recovery phase One mooring (deployed in Oct. 1976 and consisting of two current meters) was recovered. This was accomplished by: - (1) General area relocation (within 5 km) by use of the helicopter's GNS very low frequency navigational equipment. - (2) Precise mooring relocation by ranging and bearing on the mooring's acoustic transponding release. Upon satisfactory relocation, mooring was released, allowing flotation to lie against the underside of the ice cover. - (3) After further pinpointing of the mooring (within 100 m) a diving hole was cut through the ice, and divers secured a retrieval line to the mooring. The mooring was then recovered through the same hole. ## Mooring deployment phase Two moorings were deployed in the same general area (40-50 nm north of Lonely). The inshore mooring was deployed in 192 m with current meters at 78 m and 152 m. The mooring was equipped with a model 322 AMF acoustic transponder/release. The offshore mooring was in 1012 m with current meters at 92 m and 167 m. This mooring also was equipped with an acoustic transponder/release. A prototype subsurface data retrieval, storage and telemetry system, developed by the Applied Physics Laboratory, University of Washington, was installed in the offshore mooring. This system will receive (via a 16 kHz acoustic telemetry link) current meter and temperature data, store this data, and upon interrogation commands from the surface, acoustically transmit (via a 50 kHz link) the data to a surface receiving unit. The storage capacity of the system would be greater than 1 year, thus allowing for data retrieval at various opportune times, without the necessity of recovering the entire mooring. A physical description and location of the moorings is in Appendix A. The report of events is as follows: March 4, 1977 C. H. Darnall arrived Barrow to participate in the CTD phase of cruise W27 and to prepare for mooring recovery and deployment. - March 11, 1977 Anchors, flotation, and mooring lines (on reels) were transported to Lonely by NARL twin otter N127RL - March 12, 1977 Fred Karig and John Cushing arrived. We set up diving equipment. Due to last minute changes we had to order a diving air compressor from Seattle. - March 13, 1977 Weather: clear, temperature -28°C, winds calm. We had heater problems on N56RF. - 1218 AST Karig, Cushing and Darnall departed Barrow in helicopter N56RF (Barnhill and DeHart). - 1340 Landed 200 m mooring site, 71°28.7'N, 152°08.9'W. Picked up transponder reply on first interrogation, 7.30 km-152°M. Bow/stern indicator on bearing receiver malfunctioning; we therefore had an 180° bearing ambiguity. After 5 interrogations/landings, we narrowed the range down to 1.80 km. Returned to Lonely for fuel, return to Barrow. - 1940 Arrived Barrow. 3 hr. 15 min. total flight time. - The helicopter was down for progressive inspection. Air com-March 14, 1977 pressor had not arrived yet. - March 15, 1977 Weather: clear, temperature -28°C, wind 9 kt NE. - 0815 AST Karig, Cushing and Darnall departed Barrow in N56RF (Barnhill). - 0916 updated GNS at Lonely. - 0955 Arrived GNS position 71°30.1'N, 152°09.7'W. After 5 interrogation/landings we were able to fix mooring site to 500 m. We marked ice with dye, hopeful for recovery the rext day. - 1250 Departed for Lonely/return to Barrow. - 1440 Arrived Barrow. 3 hr. 24 min. flight time. We picked up air compressor at Wien and filled diving tanks. - March 16-22,1977 Weather: clear or high overcast, temperature -25°C to -30°C, chill factor -80°C to -95°C, wind 25-30 kt NE, no flying. - March 21, 1977 Weather: clear, temperature -25°C, wind 10 kt NE. - 0933 AST Karig, Cushing, Hunter (NARL expediter) and Darnall departed Barrow in N56RF (Barnhill, Neild). We had removed extra fuel bladder and loaded all recovery and diving gear (refueled at Lonely). - 1232 Arrived GNS position 71°30.2'N, 152°09.6'W, initial transponder range 1.57 km. After 5 interrogation/landings, we were within a range of 670 m. We set up the ADF beacon and returned to Lonely for fuel. - 1244 We released mooring. - 1650 Arrived at ADF beacon (we were able to pick up beacon at 13 nm out). GNS position 71°31.7'N, 152°10.0'W. We found that fixing and moving short distances was not as easy as anticipated. After 5 interrogation/landings we got the range down to 190 m. This was still out of the divers' range. Returned to Lonely. - 1925 Arrived Lonely. 3 hr. 59 min. flight time. We stayed the night at the Husky/PET-4 camp. - Weather: clear, temperature -24°C, winds calm. We encountered March 22, 1977 delays in borrowing Herman Nelson heater and getting fuel. - 1038 AST Karig, Cushing, Hunter, and Darnall departed Lonely in N56RF (Barnhill, Neild). - March 22 (cont'd) - 1117 Arrived ADF beacon. GNS position 71°30.9'N, 152°08.0'W. After 4 interrogation/landings, we had 3 holes (in a 40 m triangle) all ranging 110 m. This was the final position. - 1450 N56RF returned to Lonely for fuel leaving Karig, Cushing and Darnall to begin digging diving hole. The ice (as in almost all previous holes) was approximately 6 ft thick. - 1645 N56RF arrived. GNS position 71°31.7'N, 152°10.8'W. ADF beacon was still operating, but much weaker. We completed the diving hole to within 18 in. of bottom, hole size was 5 ft x 4 ft x 6 ft deep. As it was too late (and we were too tired) to begin diving/recovery, we returned to Lonely for fuel/return to Barrow. - 2104 Arrived Barrow. 3 hr. 35 min. flight time. - March 23, 1977 Weather: clear, temperature -28°C, winds 4 kt NE. N56RF required short progressive inspection. - 1020 AST Karig, Cushing, Sharp (NARL expediter) and Darnall departed Barrow in N56RF (Barnhill). Refueled at Lonely. - 1230 Arrived GNS position 71°31.1'N, 152°10.9'W. ADF beacon was down. Transponder reply 100 m range. We completed the diving hole. - 1400 Cushing and Darnall began dive. The floats were sighted at approximately 10 m from dive hole. We secured retrieval line and took some photos of mooring. Approximate diving time 15 min. - 1530 Began recovery. - 1625 Upper current meter s.n. 1309 was brought out of water. - 1700 Lower current meter s.n. 1310 was brought out of water. - 1715 Recovery completed. We changed the batteries on the ADF beacon. We hoped to use the same hole for the deployment of the Lonely 200 m spring 1977 mooring. Returned to Lonely for fuel/return to Barrow. - 1934 Arrived Barrow. 3 hr. 25 min. flight time. - 2020 We opened the current meters and found a small amount of water in each meter. In each case, the meters had operated for only part of the mooring duration. The tapes were removed for shipment to Seattle. - March 24, 1977 N56RF was down for rotor head change. - March 25, 1977 The temperature was -36°C at Barrow, and -37°C at Lonely. This was below the NOAA helicopter flight cut-off temperature (-35°C). Don Uhrich and Bill Youngstrom arrived from Seattle. The APL data system was in route. In the afternoon the temperature was up to -32°C, clear, calm. - 1410 AST Cushing, Darnall departed Barrow in N56RF (Barnhill, DeHart). Refueled at Lonely. - 1626 Arrived GNS position 71°31.5'N, 152°09.4'W. ADF beacon was down. The retrieval hole had about 6 in. of ice in it. The depth was 194 m. This would be OK for shallow mooring deployment. We replaced batteries on the ADF beacon. On the return to Lonely we flew north to the approximate deep mooring site. There were no open or newly refrozen leads. Ice appeared to be 4-6 ft. thick. Refueled at Lonely/returned to Barrow - 1956 Arrived Barrow. 3 hr. 12 min. flight time. - March 26, 1977 Temperature -37°C; no flying. The APL equipment arrived and Uhrich began checking it out. - March 27, 1977 Temperature Barrow -36°C, Lonely -39°C; no flying. - March 28, 1977 Temperature Barrow -39°C, Lonely -38°C; by noon temperature was up to -30°C, weather clear, winds 10 kt. NE. - 1312 AST Karig, Cushing, Youngstrom and Darnall departed Barrow in N56RF (Barnhill). Refueled at Lonely. - 1509 Arrived GNS position 71°31.1'N, 152°11.3'W, depth 192 m. We began deployment of Lonely 200 m mooring spring 1977. - 1840 AMF release s.n. 602390, rec. no. 10 was in the water. - 1900 Current meter s.n. 1315 was in water. - 1907 Current meter s.n. 1014 was in water. - 1915 The mooring was cut loose. We picked up ADF beacon and returned to Lonely for fuel/returned to Barrow. - 2155 Arrived at Barrow. 4 hr. 25 min. flight time. - March 29, 1977 The APL electronics were not yet checking out OK. No flying. - March 30, 1977 The APL electronics still not ready. We will fly to deep mooring site to check ice condition and depth. Bill Moran of the NOAA flight operations will fly with us. Weather: high, thin overcast, temperature -30°C, wind 18 kt. NE. - 0959 AST Karig, Cushing, Youngstrom and Darnall departed in N56RF (Barnhill, Moran). Refueled at Lonely. - 1400 Arrived GNS position 71°33.1'N, 152°11.3'W. There were several refrozen leads (4-5 in. ice thickness) in the area. The depth was too shallow here (566 m). We followed a north running lead out to GNS position 71°37.1'N, 152°11.7'W, depth 957 m. This was close enough for now, as the ice might move some before we would be ready to deploy. Returned to Lonely for fuel/return to Barrow. - 1450 Arrived Barrow. 3 hr. 28 min. flight time. - March 31, 1977 The APL electronics were not ready; no flying. - April 1, 1977 APL electronics appear to be ready. We would pinpoint depth and mark site, for deployment the following day. - 1350 AST Weather: clear, temperature -28°C, winds 06 kt. NE. Cushing, Youngstrom and Darnall departed Barrow in N56RF (Barnhill, DeHart). Refueled at Lonely. - 1706 After several soundings, we pinpointed depth at 1000 m and marked the ice with dye. Returned to Lonely for fuel/returned to Barrow. - 1920 Arrived Barrow.
3 hr. 11 min. flight time. - April 2, 1977 APL electronics were ready. N56RF was loaded to capacity, and there was room for only 4 passengers plus pilot. Cushing returned to Seattle as he had other commitments. Weather: high, thin overcast, temperature -29°C, winds 07 kt. NE. - 1013 AST Karig, Youngstrom, Uhrich and Darnall departed Barrow in N56RF (Barnhill). - 1236 Arrived CNS position 71°40.5'N, 152°10.4'W, depth 1000 m. Before setting up deployment equipment, we lowered the APL unit to approximately 15 m. We were not able to receive any intelligent data. After trying various hydrophone depths, we decided to return to Barrow. Returned to Lonely for fuel/returned to Barrow. - 1704 Arrived Barrow. 3 hr. 30 min. flight time. - 1900 Upon close inspection, we found that the cable between the pressure hull and the 50 kHz transducer was cracked and had flooded the transducer. We were able to repair this, and planned for a test off Pt. Barrow the following day. - April 3, 1977 Weather: clear, temperature -28°C, winds 03 kt. NE. We checked out APL unit in the morning. Youngstrom had to return to Seattle. - 1239 AST Karig, Uhrich and Darnall departed Barrow in N56RF (Barnhill). - 1246 Arrived position 3 nm NW of NARL. APL unit appeared to work. Surface receiving unit had to be kept warm. Returned to Barrow. - 1511 Arrived Barrow. 15 min. flight time. - April 4, 1977 Weather: clear, temperature -25°C, winds 03 kt. SE. - 0945 AST Karig, Uhrich, Stewart (NARL expediter) and Darnall departed in N56RF (Barnhill). Refueled at Lonely. - 1154 Arrived GNS position 71°40.0'N, 152°10.1'W, depth 552 m. We checked APL unit; it appeared to work OK. We began to set up deployment equipment. Darnall and Stewart stayed at mooring site to dig hole, while Uhrich and Karig returned to Lonely in N56RF to pick up remaining equipment. - 1530 Deployment began. - 1605 AMF release s.n. 603063, rec. no. 9 in the water. - 1705 Current meter s.n. 1313 in the water. - 1740 APL unit in the water. - 1755 Current meter s.n. 1924 in the water. - 1824 Mooring cut loose. We checked APL unit and received data back. Returned to Lonely for fuel/returned to Barrow. - 2115 Arrived Barrow. 4 hr. 27 min. flight time. - April 5, 1977 Weather: clear, temperature -25°C, winds 05 kt. SE. Karig returned to Seattle. - 0937 AST Uhrich and Darnall departed Barrow in N56RF (Barnhill). Refueled at Lonely. - 1136 Arrived GNS position 71°40.3'N, 152°10.6'W. We interrogated APL unit. We received data; some was good, but the last of the transmission was garbled. This may be deciphered later in the lab. We also interrogated the AMF release. It responded fine. We returned to Lonely for fuel/returned to Barrow. - 1719 Arrived Barrow. 3 hrs. 7 min. flight time. - April 6, 1977 Uhrich and Darnall packed up and returned to Seattle. Ice conditions encountered in the recovery/deployment area were as follows: March 13 - March 26, 1977 In Lonely area, the ice was solid, 5-6 ft. thick and heavily rafted/ridged. On March 27, the winds were out of the south, and some new leads open both at Barrow and at approximately 50 nm north of Lonely. During the rest of the cruise the winds were out of the NE and there was no new lead activity. #### 3. Methods #### Deployment phase The current meter moorings were designed and constructed at the Department of Oceanography, University of Washington, Seattle. The flotation was a combination of 28 in. O.R.E. steel spheres and 16 in. Viny plastic spheres distributed along the mooring. The current meters were Aanderaa model RCM-4. The acoustic releases were AMF model 322. The mooring line was 1/2 in. diameter Nolaro using polyester fibers; it was premeasured, cut and loaded on aluminum reels with connecting links at all instrument and flotation points. The deployment equipment consisted of a 10 ft. high A-frame, which holds the mooring line reel, and is used for an anchor first, vertical deployment mode. Mechanical brakes and a stopper controlled the descent speed, and allowed the insertion of instruments. All components of the deployment system are of light-weight materials and can be broken down for helicopter-borne operations. # Recovery phase An AMF model 301 ranging and bearing command system was used for precise relocation of the AMF model 322 releases. The divers used Unisuits, double 80 cu. ft. aluminum tanks with independent Poseidon regulators on each tank. Each diver was connected to a common tether line, and used U.S. Navy Diving Procedures and line signals. #### 4. Personnel | C. H. Darnall F. Karig J. Cushing B. Youngstrom | Oceanographer Mechanical engineer Diver Engineer | University of Washington
APL
APL
APL | |---|--|---| | D. Uhrich | Electronics engineer | APL | | Lt. M. Barnhill
R. DeHart
B. Neild | Pilot
Mechanic
Mechanic | NOAA
NOAA
NOAA | ## Acknowledgments Mr. DeHart and Lt. Barnhill's assistance in getting our operations on the ice were greatly appreciated. The expediters and personnel of the NARL and flight operations were very helpful in the completion of our task. ## APPENDIX A # Mooring locations: Lonely 200 m mooring Fall 1976 71°30.1'N, 152°09.7'W Lonely 200 m mooring Spring 1977 71°31.1'N, 152°11.0'W Lonely 1000 m mooring Spring 1977 71°40.4'N, 152°10.4'W # QUARTERLY REPORT Contract R7120846 R7120847 Research Unit #138 Reporting Period: 1 April - 30 June 1977 Number of Pages : 1 GULF OF ALASKA STUDY OF MESOSCALE OCEANOGRAPHIC PROCESSES (GAS-MOP) Dr. S. P. Hayes Dr. J. D. Schumacher Pacific Marine Environmental Laboratory National Oceanic and Atmospheric Administration 3711 - 15th Avenue N. E. Seattle, Washington 98105 July 1, 1977 # I. TASK OBJECTIVES - Eulerian measurements of the velocity field at several positions and levels - Measurements of the along- and cross-shelf sea surface slope - Process study to understand the interrelations among the velocity field, the bottom pressure gradient, the density field, and the wind field in order to determine the dynamics of the circulation on the continental shelf. # II. FIELD OR LABORATORY ACTIVITIES - A. Cruises: See attached Cruise Reports (3). - B. Laboratory Activities: Alderbrook (Union, WA) physical oceanography and meteorological workshop, 17-19 May 1977. During this workshop results from this year's work was discussed. Additionally, plans for FY 78 were coordinated. # III. RESULTS The new data sets are being processed and analyzed. * * A scientific paper by Charnell, Muench and Mofjeld discussing circulation in Lower Cook Inlet is in preparation. Date: 31 March 1977 To: Commanding Officer NOAA Ship DISCOVERER From: James Haslett Chief Scientist Pacific Marine Environmental Laboratory Subj: Cruise Report RP4-DI-77A, Leg III ## I. Introduction Four projects were represented on this Leg. Since the weather was good for all portions of the Leg involving operations, all parties concerned at least had the opportunity to achieve outlined objectives. These objectives are generally stated on page 2 of the project instructions. This report consists of the Chief Scientist's brief report with attachments from the other scientists reporting on their work constituting the narrative portion. Additional attachments serve to summarize statistics and present sketches of the moored arrays. # II. Scientific Personnel | Name | Affiliation | |---|--| | Arthur Cooper Dick Feely Jane Fisher Jack Hampson Mona Janopaul Rick Miller | PMEL/PMC PMEL PMEL USGS PMEL PMEL PMEL PMEL PMEL | | James Haslett | LITE - CITIES SCIENCISC | # III.Cruise Report - Chief Scientist As stated in the introduction four groups including the Chief Scientist's were represented. The cruise reports presented by Feely, Miller and Hampson describe quite well what they hoped to accomplish and the degree of success they achieved. Respectively, they were studying suspended matter, sea level changes in response to atmospheric changes and changes in the water column, and possible "slumps" or "slumping" on the sea bottom. The portions of the cruise I was concerned with, in addition to partitioning time for all, were the continuation of the continental shelf studies in the northeastern Gulf of Alaska, represented now by the newly deployed mooring 62K and the Kodiak Island Shelf Studies. The general objectives of these studies are to measure the currents at the mooring sites, identify possible responses to dynamic changes in the ocean or atmosphere, and generally describe the physical behavior of the water in these regions. The former ties in closely with the programs represented by Miller and Feely since they are in the general area off Icy Bay. Both moorings and CTD stations are utilized in the studies in this area. The moorings except for 62 and the CTD stations are discussed in the reports by Miller and Feely. Six current meter arrays were scheduled to be recovered during the Kodiak Island operation with one being re-deployed (WGC-2) One array (k-4) was not recovered. Only the bottom meter on K-3 was recovered. Note that the station designation used in this report agrees with the tabular designation given in the Project Instructions, not those shown on the chartlett; namely, K-3 and K-4 are reversed. Detailes such as location, meter depths and tabulated in an attachment. The CTD stations occupied on this portion of the Leg were closely spaced (5 Km) to allow the defining of possible fronts between different water masses or to identify structures along the line. These lines are summarized in a statistical attachment but briefly they are: - (1) Two lines through the old and new WGC-2 locations to identify a possible front between two different water masses; - (2) Lines across the upper and lower entrances to Shelikof Strait; - (3) Lines across
Kennedy and Stevens Entrances at the Barren Islands; - (4) and, finally a line across the mouth of Cook Inlet All of these stations were occupied. Counting these, the work in the north eastern Gulf of Alaska, and those to yet be taken in the KISS grid approximately 140 CTD stations will have been accupied. The analog data obtained indicate that the equipment functioned correctly; however, no conclusion can really be reached until the tapes are analyzed. #### IV. Attachments - 1. Cruise Report Feely - Cruise Report Miller - 3. Cruise Report Hampson - 4. Moorings categorized as recovery or deployment regardless of outcome. - 5. CTD summary #### V. Figures Figures for WIST I and WIST II are included to ssist anyone who is attempting to recover them since they are "non-standard" compared to the mooring configuration usually used in these waters by PMEL. Suspended Mater Studies - RP4-DI-77A-III - Dick Feely # I. Introduction The primary objective of the suspended matter program during Leg III was to study the processes controlling resuspension and redistribution of bottom sediments in the study the processes controlling resuspension and redistribution of bottom sediments in the area southeast of Icy Bay. The data from this cruise, when completed, will provide baseline information for the Outer Continental Shelf Assessment Program. # II. Methods Water samples were collected in 10 liter Top-Drop Niskin Bottles using the ship's Rosstte-CTD system. Nominal sampling depths included: surface, 10m, 20m, 40m, 60m, 80m, 100m, 150m, and 5m above the bottom. The water samples were filtered under vacuum through preweighted 0.4um Nuclepore filters for the determination of particulate carbon and nitrogen. Litht scattering measurements were obtained using a PMEL nephelometer which is a replicate of the University of Washington nephelometer modified to provide real time measurement of forward light scattering. The nephelometer was interfaced into the ship's CTD system using the sound velocity channel (14-16KHz). Continous vertical profiles of forward light scattering were obtained in analog form on a Hewlet-Packard 7044A X-Y recorder. The signals from the CTD-Rosett system and the nephelometer were also simultaneously interfaced into the ship's data acquisition system. This resulted in computer listings of conductivity, temperature, depth, salinity, sigma T and light scattering for all of the stations. # III. Accomplishments A preselected transect of eight stations was presented to the ship's officers at the beginning of the cruise which established the basic plan for the duration of the cruise. All of the stations were successfully occupied. Approximately 150 water samples provided 250 filters for subsequent laboratory analysis. At two stations, WIST I and WIST II, single arrays consisting of nephelometer mounted in the weight, two and four Aanderaa current meters, respectively, and one and three sediment traps, respectively, were deployed on 17 March 1977. The water depths at the locations of the arrays were 54 and 108 meters, respectively. In addition, within 500 meters of each array a 36 hour time series study of the variabitity of temperature, salinity and light scattering was conducted. # VI. Acknowledgements I can only add my appreciation to that already expressed in the other component reports for the support received by all personnel on board ship to make this a successful operation. I do wish to echo Rick Miller in thanking Chief Sherrill and his crew, not only for the competent manner in which they handled the moorings, but for the CTD winch operation under uncomfortable conditions. Sea Level Slope Study RP4-DI-77A, Leg III Rick Miller ## Objectives A continuing series of pressure gages, current meters and CTD measurements in two lines across the continental shelf in the vicinity of Icy Bay to detect changes in the sea level topography in response to atmospheric events and dynamic changes in the water column. # II. Accomplishments A total of five moorings were recovered from two lines running off-shore. Each mooring consisted of a pressure temperature gage (PTG) mounted in parallel with a type 322 AMF acoustic release and a railroad wheel anchor. Two Aanderaa current meters on each mooring recorded current velocity and direction, as well as temperature and conductivity. A sixth mooring consisting of an AMF release and a PTG failed to surface after the release had been fired. Recovery coordinates indicated that the buoy had been moved approximately one mile, probably by a trawling ship. Three moorings were deployed in the same positions as those recovered on line one. Each consisted of an acoustic release and a PTG. The mooing at 250 meters freefalled when the lowering device pretripped due to immoderate sea conditions. When interrogated the acoustic release did not reply. All three moorings deployed used a 28" alumunum sphere for subsurface flotation. #### III. Summary of Moorings | Mooring | Action | Time | Day | <u>Latitude</u> | Longitude | <u>Depth</u> | Current
Meters | <u>PTG</u> | |--|---|--|--|---|--|--|-----------------------|--------------------------------| | SLS 16
SLS 17 | Recovered
Recovered | 1705Z | | 60 ⁰ 01.3'
59 ⁰ 50.7' | 142 ⁰ 25.5'
142 ⁰ 33.3' | 50m
98.5m | 2
2 | Yes
Yes | | SLS 18
SLS 19
SLS 20
SLS 21
SLS 22
SLS 23
SLS 24 * | Not Recovered Recovered Recovered Deployed Deployed Deployed Did not re | 1812Z
0150Z
0119Z
0014Z
0240Z
0258Z | 17 Mar
16 Mar
17 Mar
18 Mar
17 Mar | 59°46.5'
59°40.7'
59°20.3'
59°47.4'
59°40.6'
59°21.9'
rrogation | 141033.9'
141041.8'
142006.6'
141039.5'
141041.2'
142009.7' | 51m
102m
251m
53m
103m
251m | 2
2
2
0
0 | No
Yes
Yes
Yes
Yes | IV. <u>CTDs</u> As part of the Sea Level Slope experiment, two lines of CTD casts were made in the Icy Bay area. Thise lines were approximately defined by the sixty recovered moorings, beginning at about the 50 meter contour and extending to the 1800 meter contour. Nine stations were taken on ine one with end points at 59°46.8'N, 141°32.7'W; 59°10.1'N, 142°23.9'W; and seven stations on line two with end points at 60°01.3'N, 142°28.9'W; 59°20.2'N, 143°06.8'W. I wish to give a special thanks to Chief Sherril and his crew. Bottom Sampling Project - RP4-DI-77A, Leg III Jack Hampson # I. <u>Introduction</u> This bottom sampling project is part of an ongoing study of geologic hazards to oil and gas development, and accumulation of baseline data to describe surficial geology of the continental shelf, Eastern Gulf of Alaska. This ongoing research is being conducted by the Eastern Gulf of Alaska Environmental Assesment Project, Marine Branch, Geological Survey. U.S. Dept. of Interior. The work is jointly funded by the Geological Survey and a contract with NOAA SCSEAP. ## II. Primary Objectives The primary objectives for bottom sampling on this cruise are: - 1. To get a series of grab samples and cores traversing a region of apparent downhill sediment slumping south of Icy Bay, Alaska. These mud slides constitute a significant geologic hazard to any structures resting on the sea floor, such as drilling platforms or pipelines. The objective is to get samples both inside and outside the slump area in order to compare the structure, texture and any other identifying features between "slumped" and "unslumped" sediment masses. The samples will be used for: - a. shipboard analysis of shear strength - b. peparation of special samples for determining percentage of water content. - c. lab analysis including X-Radiography, grain size determination and mineralology The ultimate goal of these analysis is both to define existing slumps and to delineate regions of potential slumping. 2. The second objective is to collect sediment samples at any stations where time allows, in order to supplement baseline data on surficial geology of the area. # III. Accomplishments Overall evaluation: Excellent. Data Collected: 28 Shipek grab samples 17 Benthos gravity cores 26 stations occupied The original hope was for one set of cores transecting the slump area. We were able to get two transects, which greatly increases the statistical significance of comparisons between slumped and unslumped sediments. In addition to the new transect stations Q, R, S, T, the first transect of the slump was made more complete by the addition of station DD. Initial inspection indicates distinguishable differences between slumped and unslumped sediments. Further analysis-will be conducted to bear this out. ## Bottom Sampling Project continued Several areas where baseline data was sparse have been filled in by sampling on this cruise. Samples were obtained at all but two of the originally scheduled ship's stations. Areas of sparse sampling in the 300-k800 meter depth range south of Icy Bay were filled in. Additional samples (stations U, V, W, X) were obtained at the mouth of Yakutat Sea Valley. This is an area of particular interest relative to sediment distribution due to it's role as a glacial valley during Pleistocene glaciation. It is another area where sample coverage had previously been sparse: This cruise marks the successful initiation of shipboard engineering properties analysis in the Eastern Gulf of Alaska Project. It will serve to supply experience in suggestions for obtaining accurate shipboard measurements in the future. ## <u>Acknowledgements</u> I would like to commend the Survey Department and the uncomplaining winch
operators. All watches were helpfull and they were there when I needed them. I would like to extend special thanks to LCDR Stewart McGee for his obliging assistance and determination that I be able to get done all the science I came to get done. Thanks to the Chief Scientist, Jim Hazlett, for his willingness to allow me the time I requested and to all the scientific personnel for their friendly support. Finally, I extend my gratitude and appreciation to Captain Miller, the officers and crew of DISCOVERER from whom I have cheerfully received all the assistance and support for which I asked. | Samples | Summary | |---------|---------| |---------|---------| | Station Station | Shipek | Grav.
Core | Vane
Shear
Anal. | Station | <u>Shipek</u> | Grav.
Core | Vane
Shear
Anal. | |-----------------|--------|---------------|------------------------|---------|---------------|---------------|------------------------| | Α | 1 | 0 | | L | 1 | 0 | | | В | 1 | 0 | | M | ì | Ō | | | WIST B | 1 | 0 | | N | 1 | 1 | Υ | | С | 1 | 1 | N+ | 0 | - | - | | | C-Return | 1 | 0 | N | P | - | - | | | D | 1 | 2 | Y | Q | 1 | 3 | N | | D-Return | 2 | 2 | Y | Ŕ | 1 | 1 | N | | Ε | 1 | 2 | Υ | S | 1 | 1 | N | | F | 1 | 0 | | T | 7 | 1 | | | G | 1 | * | | U | 1 | 0 | | | Н | 2 | 0 | | V | 1 | 0 | | | I | 1 | 0 | | W | 1 | 0 | | | J | 1 | 0 | | Х | 1 | 0 | | | K | 1 | 1 | Y | | | | | ⁺Core too soft ^{*2&}quot; of mud in barrel extruded into plastic sack. | ∞ | | |----------|--| | | | | Mooring I.D. | Position | Depth
(meters) | Instrument | Instr. Depth
(meters or
location) | Comments | |--------------|-----------------------|-------------------|--|---|--| | 62J | 59°38.1'
142°06.1' | 185 | RCM-4
RCM-4
RCM-4
RCM-4
A.R. | 22
52
102
175
Anchor | Lost - retaining band broken, althouth visible when recovery started Lost - wire possibly cut by bow-thruster Lost - wire possibly cut by bow-thruster, vinys lost also | | WGC-2E | 57°33.8'
150°49.3' | 90 | RCM-4
RCM-4
T.G.
A.R. | 19
79
89
Anchor | Leaked - rotor missing on recovery | | K-1 - | 57°44.8'
154°43.7' | 228 | RCM-4
RCM-4
A.R. | 28
108
Anchor | Leaked Vinys destroyed, probably imploded | | K-2 | 58°37.2
153°05.0' | 164 | RCM-4
RCM-4
A.R. | 32
112
Anchor | | | } >3 | 58°45.3'
152°10.6' | 120 | RCM-4
RCM-4
A.R. | 21
101
Anchor | Lost S.S. float and upper meter, time unknown
No Rotor | | K−4 | 59°01.9'
151°56.1' | 198 | RCM-4
RCM-4
A.R. | 20
100
Anchor | Release responded; firing indicated. Rapid interrogation gave erratic results. Constant position of response suggests mooring not moving Release possibly fouled or flotation destroyed. | | K-5
z | 56°33.2'
152°39.5' | 95 | RCM-4
RCM-4
A.R. | 23
83
Anchor | | # Attachment 4A - Mooring Recovery (continued) | Mooring
I.D. | Position | Depth | Instrument | Instr: Depth
(meters or
location) | Comments | |-----------------|-----------------------|-------|-----------------------------------|---|---| | SLS-16 | 60°01.3'
142°25.5' | 50 | RCM-4
RCM-4
T.G.
Release | Not
Accessable
Anchor
Anchor | Not Accessible (N.A.) means at the time of writing this report on board. Severe corrosion on upper meter and all small parts. | | SLS-17 | 59°50.7'
142°33.3' | 98.5 | RCM-4
RCM-4
T.G.
A.R. | NA
NA
Anchor
Anchor | Tape used up
Tape used up - case corrosion | | SLS-18 | N.A. | N.A. | T.G.
A.R. | N.A. | Not recovered. Ranging showed mooring to be about 1 mile from original position | | SLS-19 | 54°46.5'
141°33.9' | 51 | RCM-4
RCM-4
A.R. | N.A.
N.A.
Anchor | Broken rotor All vinys lost due to wire corrosion | | SLS-20 | 59°40.7'
141°41.8' | 102 | RCM-4
RCM-4
T.G.
A.R. | N.A.
N.A.
Anchor
Anchor | Slight corrosion next to 0-ring | | SLS-2 | 59°20.3'
142°06.6' | 251 | RCM-4
RCM-4
T.G.
A.R. | N.A.
N.A.
Anchor
Anchor | Rotor missing; band broken, no tie-wrap
Rotor missing; tape drive stopped
Vinys inploded apparently | | Mooring I.D. | Position | Depth | Instrument | Instr. Depth
(meters or
location) | Comments | |--------------|-----------------------|-------|-----------------------------------|---|---| | SLS-16 | 60°01.3'
142°25.5' | 50 | RCM-4
RCM-4
T.G.
Release | Not
Accessable
Anchor
Anchor | Not Accessible (N.A.) means at the time of writing this report on board. Severe corrosion on upper meter and all small parts. | | SLS-17 | 59°50.7'
142°33.3' | 98.5 | RCM-4
RCM-4
T.G.
A.R. | NA
NA
Anchor
Anchor | Tape used up - case corrosion | | SLS-18 | N.A. | N.A. | T.G.
A.R. | N.A. | Not recovered. Ranging showed mooring to be about 1 mile from original position | | SLS-19 | 54°46.5'
141°33.9' | 51 | RCM-4
RCM-4
A.R. | N.A.
N.A.
Anchor | Broken rotor All vinys lost due to wire corrosion | | SLS-20 | 59°40.7'
141°41.8' | 102 | RCM-4
RCM-4
T.G.
A.R. | N.A.
N.A.
Anchor
Anchor | Slight corrosion next to 0-ring | | SLS-2 | 59°20.3'
142°06.6' | 251 | RCM-4
RCM-4
T.G.
A.R. | N.A.
N.A.
Anchor
Anchor | Rotor missing; band broken, no tie-wrap
Rotor missing; tape drive stopped
Vinys inploded apparently | # Attachment 5 - CTD Summary # A. <u>Icy Bay Region</u> WIST Line - also included nephelometers and 2 - 36 hour time series at WIST I and WIST II. | WIST LINE | | <u>POSITION</u> | | |--|--|-----------------|---| | A B (WIST I) C D (WIST II) E F G H (SLS-24) I | 59°48.7' 59°46.0' 59°42.9' 59°39.6' 59°33.2' 59°26.7' 59°23.4' 59°20.2' 59°11.2' | | 141°31.5'
141°34.8'
141°38.3'
141°42.0'
141°50.7'
141°59.5'
142°04.0'
142°08.1'
142°20.6' | | 62K | 59°38.1' | | 142°06.1' | | SLS (16-18) Line
J (SLS 16)
K
L (SLS-17)
M
N (SLS-18)
O
P | 60°01.2'
59°55.2'
59°49.5'
59°45.9'
59°42.1'
59°33.2'
59°22.9' | | 142°25.2'
142°27.8'
142°31.3'
142°36.4'
142°41.9'
142°50.2'
142°59.9' | # B. Kodiak Lines - 5 Km spacing | IDENTIFICATION | | No. of | | | | |--|--------------------------------|---------------------------|-----------------------------|---------------------------|---------------------| | WGC-2 (line l)
WGC-2 (line 2) | Beginnin
57°24.8'
57°45' | g
150°20.2'
151°17' | Endin
52°36.8'
57°22' | g
150°59.0'
152°12' | Stations
9
17 | | Lower Shelikof
Upper Shelikof | 57°39.2'
58°33.2' | 154°29.5'
152°49.1' | 57°50.6'
58°41.2' | 154°52.5'
153°20.5' | 7 | | Stevenson Entrance
Kennedy Entrance | 58°40.0'
58°59.5' | 152°16.7'
151°04.5' | 58°50.6'
59°04.5' | 152°04.5'
151°53.1' | 5
3 | | Lower Cook Inlet | 58°56.7' | 153°09.7' | 59°14.2' | 152°04.4' | 15 | Figure 1 WIST I - Design Depth 50 Meters Figure 2 WIST II - Design Depth 100M ### NOAA Ship MILLER FREEMAN Cruise Report RP-4-MF-77B Leg VII 5/23 - 6/11//7 ## Introduction This cruise was made in support of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) designed to study the circulation of water on the continental shelf areas of Alaska. Because it covered two diverse areas, Bristol Bay and the Icy Bay region, Leg VII was divided into two segments denoted as VIIA and VIIB in the following discussion. The objectives of each of these segments were: #### Leg VIIA: - (1) Deploy satellite-tracked free-drifting buoys to asses surface circulation in the Southern portion of Bristol Bay known as St. Georges Basin. - (2) Collect CTD and XBT data sufficient to delineate the frontal boundary between the well mixed coastal water of Bristol Bay and the two layered water typical of Bristol Bay Mid Shelf. - (3) Collect CTD data in nearshore areas to investigate the behavior of local river discharge and phenomena such as the high salinity anomoly in Kuskokwim Bay. - (4) Attempt to locate and, if possible recover, the current meter station BC-15B lost on a recovery attempt by the NOAA Ship DISCOVERER two weeks earlier. ## Leg VIIB: - (1) Recover three current meter moorings and deploy one current meter mooring in the Icy Bay region. - (2) Collect CTD and Water samples for filtering of Suspended Sediments in the general area of the WIST arrays. ### Personnel The following scientific personnel were aboard to carry out the proposed program: ### Leg VIIA. - (1) R. L. Charnell, Chief Scientist - (2) J. D. Schumacher - (3) D. J. Pashinski ### Leg VIIB. - (1) D. J. Pashinski, Chief Scientist - (2) J. Fisher - (3) M. Pizzello ### **Accomplishments** Attachment A is a summary of stations occupied during the Bristol Bay portion of the cruise. The field program for the NOAA Ship MILLER FREEMAN was dependent upon the accomplishments of the NOAA Ship DISCOVERER during her cruise 26 April - 16 May, 1977. Because of the very profitable DISCOVERER cruise the scope of the MILLER FREEMAN CTD program was reduced from the original proposal so that more ship time could be directed to the effort in the Icy Bay region. Because of near ideal weather
conditions over Bristol Bay at the time of the Leg VIIA effort the Bristol Bay portion of the project was highly successful. Six free-drifting buoys were deployed in St. Georges Basin. These buoys, tracked by the Nimbus-6 satellite, were of the Richardson design produced by Polar Research Labs, drogued with a 2m x 10m window shade at a central depth of 15 meters below the surface. They were deployed buoy first, using the small waist crane and a release hook, followed by simply dropping the weighted drogue. At the time of release confirmation of their correct operation had been received. Special recognition in the successful deployment of these buoys is due for George Lapiene (OCSEAP, Juneau) for his herculean effort to ensure the delivery of the buoys to the NOAA Ship MILLER FREEMAN, dockside in Kodiak, AK. in spite of last minute delays in shipping schedules and a commercial air carrier strike. Five XBT sections were made to delineate the character of the coastal/shelf water front in Bristol Bay. For each section shallow water XBTs were dropped at one nautical mile intervals. As expected the structure front was found in the proximity of the 50 meter isobath in all cases, and was extremely narrow; a transition from a two layer shelf water. structure to a well mixed coastal water occurred in less than 10 nautical miles. This marks the first time for such a detailed investigation of this prominant feature of Bristol Bay. These difficulties were overcome and the station was maintained. Again one current meter failed due to a battery problem without a large loss in data. The full scale station grid was occuppied with CTD stations. The Icy Bay stations were occuppied twice, and the Cape Yakataga line was occuppied once. The full coverage of the area station grid allows the excellent data set to be maintained over another quarter. During the fall of 1976 through out discussions on direction to take in OCSEAP near shore work the question of studying the fjords of the Alaskan coast continually arose. At that time other projects were receiving higher priority and the investigation of the fjords was shelved. This cruise provided a unique opportunity to obtain some exploratory CTD data in both Icy Bay and Yakutat Bay. These exploratory stations should reveal if the fjords have classical circulation patterns or an unknown dynamic control. A line of 5 CTD stations were occuppied up the axis of Icy Bay to the limit of safe penatration. This line observed water column profiles across the entrance sill and in the first basin. The line occuppied a station on the sill separating the inner and outer basins and the last station was just into the inner basin. Preliminary view of the data suggests a classic esturine circulation with warm saline water coming in from offshore to replenish the basin bottom waters. Within Yakutat Bay a line of 8 CTD stations were occupied in the same plan as those in Icy Bay. Yakutat Bay is a two basin system similar to Icy Bay though the inner sill is not as shallow as the Icy Bay sill. The principal differences between the two bays is the volume of drifting ice. This leads to the question of surface water temperature and the possibility of a more intense circulation within Yakutat Bay. ### **Acknowledgments** This cruise was successful for a variety of conditions, including some we had no control over. In large measure the success was due to the ship and the professionalism of her entire complement. It has been a pleasure to work aboard the MILLER FREEMAN because she is so well appointed and has cooperative and enthusiastic personnel. Most important the officers show great adaptability in the face of ever changing scientific requirements. Thanks go to the entire ship for her part in making this a very successfull effort. Nearshore excursions were made into Etolin Strait, Kuskokwim Bay, and Kulukak Bay to further examine the transition from open bay conditions to nearshore regimes. This included special investigations around the previously observed high salinity anomoly region of outer Kuskokwim Bay and a CTD section across the mouth of Kvichak Bay. This data when properly analysed should be valuable in quantifying the behavior of fresh water inputs to Bristol Bay. Following the loss of current meter station BC-15B during the DISCOVERER cruise a listening schedule was established as each CTD station was occupied by the MILLER FREEMAN. It is known that the mean circulation in Bristol Bay is low so that should BC-15B be adrift, it probably would not have exited the area at the time of the MILLER FREEMAN cruise. There was no positive response to this effort, so the ship reoccupied the old site of BC-15B on the chance that it had not properly released. Again there was no response to the interogation, although the new station, BC-15C, could clearly be heard. It is clear that BC-15B has been lost after having been set adrift on the attempted recovery. Attachment B is a summary of stations occuppied during the NEGOA, Icy Bay, portion of the cruise. This portion of the cruise was intended to primarily service three instrumented moorings in the near shore region off Icy Bay with a CTD program to fill periods when mooring work could not be scheduled. A generous allotment of cruise time was dedicated to this effort in the light of the highly variable weather in the Gulf of Alaska. With the excellent weather conditions of the Bristol Bay portion of the cruise carrying on into the Icy Bay effort all goals established were achieved with a considerable added benefit in extending our knowledge of the area into the esturine reaches of the coast. Two moorings, WIST-1-and WIST-11 were successfully recovered in the shallow water near the coast culminating a prototype experiment into Wave Induced Sediment Transport processes. Each mooring carried newly developed sediment traps, standard current meters, and nephelometers. Two of the four sediment traps operated correctly, a reasonable success figure for this stage in the development. One current meter failed due to a battery failure, however, indications are the failure occurred recently and little data loss was incurred. The nephelometer of WIST-11 failed to return with the mooring due to failure of the securing lanyard. Evidence indicates that the lanyard chaffed on the accoustic release to the point that the strength was reduced to less than that sufficient to lift the nephelometer. The long term current monitoring station 62 was maintained with the successful recovery of 62K and subsequent deployment of 62L. The intitial location of the station was complicated by uncertainty in the geographic position due to discrepencies in the position data at the time of the previous deployment. # ATTACHMENT A # STATION SUMMARY # MILLER FREEMAN CRUISE RP-4-MF-77B LEG VII A 23 MAY - 5 JUNE , 1977 | STATION | GRID | DATE/TIME | LATITUDE | LONGITUDE | CAST DEPTH | WATER DEPTH | |---------|----------|---------------|--------------|------------------|--------------|-------------| | NUMBER | NUMBER | GMT | N. | W. | · · M | M | | 1* | 36.0 | 146/0414 | 54-51.4 | 165-44.5 | N.B. 0027 | 154 | | 1 | 36.0 | 0426 | 54-51.4 | 165-44 .5 | 148 | 154 | | 2 | 36.1 | 0547 | 54-47.0 | 165-57.2 | 196 | 203 | | 2
3 | 26.0 | 0722 | 54-42.0 | 166-10.3 | 280 | 298 | | 3* | 26.0 | 0752 | 54-42.1 | 166-09.8 | N.B. 0056 | 298 | | 4* | 16.0 | 0937 | 54-37.0 | 166-42.3 | N.B. 0544 | 411 | | . 4 | 16.0 | 0951 | 54-37.0 | 166-42.7 | 406 | 411 | | 5 | 26.1 | 1125 | 54-38.8 | 166-27.3 | 350 | 353 | | 6 | 27.0 | 1344 | 54-57.2 | 166-38.9 | 154 | 157 | | 7 | 38.0 | 1556 | 55-17.0 | 166-28.9 | 138 | 141 | | 8 | 38.1 | 1713 | 55-13.9 | 166-45.0 | 135 | 146 | | 9* | 28.0 | 1830 | 55-10.9 | 167-03.1 | N.B. 0011 | 152 | | 9 | 28.0 | 1836 | 55-10.8 | 167-03.1 | 146 | 152 | | 10 | 28.1 | 1948 | 55-09.4 | 167-17.8 | 156 | 161 | | 11* | 18.0 | 2058 | 55-06.0 | 167-33.4 | N.B. 0535 | 269 | | 11 | 18.0 | 2108 | 55-06.0 | 167-33.7 | 260 | 269 | | 12 | 18.1 | 2242 | 55-00.3 | 167-54.4 | 740 | 1372 | | 13* | 10.0 | 147/0038 | 54-53.3 | 168-15.6 | N.B. 0503 | 2205 | | 13 | 10.0 | 0050 | 54-53.2 | 168-15.8 | 751 | 2203 | | 14 | 20.0 | 0517 | 55-29.8 | 168-19.4 | 294 | 294 | | 15 | 31.0 | 0720 | 55-45.6 | 168-19.0 | 135 | 144 | | 16 | 42.0 | 0925 | 56-07.9 | 168-12.9 | 157 | 157 | | 17 | 53.0 | 1140 | 56-29.2 | 168-10.3 | 128 | 128 | | 18 | 54.0 | 1330 | 56-38.7 | 168-36.0 | 106 | 113 | | 19 | 55.0 | 1535 | 56-50.7 | 169-07.0 | 80 | 86 | | 20 | 56.0 | 1742 | 57-10.9 | 169-18.1 | 70 | 75 | | 21 | 57.0 | 1957 | 57-28.0 | 169-50.2 | 65 | 70 | | 22 | 69.0 | 2245 | 57-40.0 | 169-17.9 | 60 | 68 | | *** | XBT LINE | 21 DRO | PS AT 1 NAUT | ICAL MILE INTER | | | | 23 | 79.0 | 148/0125 | 58-17.0 | 168-45.3 | 65 | 69 | | | XBT LINE | 19 DRO | PS AT 1 NAUT | ICAL MILE INTER | VALS | | | 24 | 89.0 | 0350 | 58-39.1 | 168-20.7 | 50 | 55 | | | XBT LINE | 8 DRO | PS AT 1 NAUT | ICAL MILE INTER | VALS | | | 25 | 99.1 | 0509 | 58-48.8 | 168-08.4 | 38 | 38 . | | 26 | 99.0 | 0630 | 58-58.8 | 167-55.9 | 40 | 44 | | 27 | 109.1 | 0747 | 59-07.8 | 167-42.0 | 37 | 42 | | 28 | 109.0 | 0914 | 59-18.0 | 167-29.0 | 33 | 38 | | 29 | 124.1 | 1042 | 59-27.3 | 167-13.1 | 29 | 32 | | 30 | 124.0 | 1201 | 59-35.6 | 167-02.9 | 29 | 32 | | | | | | | | | | 31 | 133.6 | 148/2027 | 60-20.1 | 165-29.8 | 25 | 30 | |----------|--------|-------------|-----------------|----------------|--------------|------------| | 32 | 133.5 | 2328 | 60-09.9 | 165-24.5 | 18 | 22 | | 33 | 133.4 | 149/0051 | 59-59.9 | 165-19.8 | 23 | 29 | | 34 | 133.3 | 0246 | 59-50.3 | 165-30.8 | 25 | 31 | | 35 | 133.2 | 0430 | 59-43.5 | 165-41.8 | 20 | 24 | | 36 | 133.1 | 0924 | 59-35.6 | 165-57.2 | 24 | 27 | | 37 | 133.0 | 1039 | 59-31.1 | 166-13.4 | 26 | 28 | | 37
38 | 132.0 | 1303 | 59-22.4 | 165-27.0 | 16 | 20 | | 39 | 132.1 | 1421 | 59-12.0 | 165-37.1 | 22 | 26 | | 40 | 122.0 | 1534 | 59-03.0 | 165-49.3 | 27 | 31 | | 41 | 122.1 | 1650 | 58-52.9 | 166-04.0
| 28 | 33 | | 42 | 107.0 | 1817 | 58-42.8 | 166-19.4 | 36 | 40 | | 42
43 | 107.1 | 1939 | 58-31.2 | 166-35.1 | 42 | 45 | | | XBT | | AT 1 NAUTICAL | | - , - | | | | 97.0 | 2115 | 58-19.0 | 166-51.6 | 46 | 52 | | 44 | | | | MILE INTERVALS | 40 | 22 | | | XBT | 2308 | 58-05.1 | 167-06.7 | 60 | 64 | | 45 | 97.1 | | 57-55.5 | 166-07.7 | 59 | 63 | | 46 | 96.1 | 150/0217 | | MILE INTERVALS | 3) | 0,5 | | | XBT | | | 165-55.8 | 46 | 50 | | 47 | 96.0 | 0354 | 58-10.0 | MILE INTERVALS | 40 | 30 | | | XBT | | | 165-39.7 | 41 | 48 | | 48 | 106.1 | 0515 | 58-20.0 | | | 4 4 | | 49 | 106.0 | 0642 | 58-29.8 | 165-23.1 | 40 | 44
40 | | 50 | 121.1 | 0813 | 58-40.0 | 165-05.1 | 38 | | | 51 | 121.0 | 0959 | 58-51.1 | 164-47.7 | 26 | 33 | | 52 | 131.4 | 1153 | 59-06.3 | 164-51.0 | 24 | 27 | | 53 | 131.3 | 1333 | 59-18.1 | 164-50.2 | 20 | 24 | | 54 | 131.5 | 1530 | 59-23.9 | 164-19.8 | 19 | 23 | | 55 | 131.1 | 1807 | 59-05.5 | 164-07.9 | 23 | 30 | | 56 | 131.0 | 1941 | 59-02.1 | 163-48.1 | 22 | 27 | | 57 | 120.2 | 2120 | 58-50.2 | 163-45.0 | 27 | 30 | | 58 | 120.4 | 2306 | 58-47.5 | 163-16.6 | 25 | 27 | | 59 | 120.5 | 151/0137 | 58-34.0 | 162-39.1 | 25 | 29 | | 60 | 120.6 | 0300 | 58-44 .7 | 162-35.7 | 34 | 38 | | 61 | 120.7 | 0415 | 58-55.0 | 162-27.7 | 36 | 40 | | 62 | 130.1 | 0515 | 58-46.7 | 162-16.1 | 26 | 31 | | 63 | 130.2 | 0621 | 58-38.9 | 162-25.8 | 44 | 50 | | 64 | 130.3 | 0712 | 58-30.1 | 162-22.8 | 40 | 46 | | 65 | 119.0 | 0928 | 58-12.3 | 162-39.0 | 35 | 38 | | 66 | 104.1 | 1132 | 58-02.2 | 162-56.0 | 40 | 42 | | 67 | 104.0 | 1330 | 57-52.7 | 163-11.7 | 43 | 47 | | 68 | 94.1 | 1540 | 57-37.5 | 163-30.9 | 45 | 49 | | 69 | BC-15 | 1841 | 57-38.0 | 162-44.9 | 43 | 48 | | 70 | 118.0 | 2234 | 58-01.4 | 162-02.3 | 39 | 43 | | 71 | 118.1 | 152/0023 | 58-00.9 | 161-36.3 | 52 | 56 | | 72 | 129.0 | 0152 | 58-00.8 | 161-13.6 | 38 | 42 | | 73 | 129.1 | 0318 | 58-01.9 | 160-47.9 | 38 | 42 | | 74 | 128.0 | 0439 | 58-03.0 | 160-22.6 | 43 | 47 | | 75 | 128.1 | 0602 | 58-05.2 | 159-56.6 | 41 | 48 | | 76 | 128.2 | 0905 | 58-38.8 | 159-53.7 | 27 | 31 | | 77 | 128.3 | 1032 | 58-29.6 | 159-44.8 | 28 | 32 | | 78 | 128.4 | 1153 | 58-20.1 | 159-36.2 | 25 | 28 | | 79 | 136.0 | 1327 | 58-05.8 | 159-31.4 | 43 | 47 | | 80 | 136.1 | 1513 | 57-56.3 | 159-17.0 | 45 | 49 | | 00 | 2.00.2 | | | • | | | | 81 | 135.0 | 152/1646 | 57-44,9 | 158-58.9 | 41 | 48 | |-----|-------|----------|-----------------|------------------|-----|-----| | 82 | 135.1 | 1758 | 57-37.1 | 158-47.6 | 40 | 48 | | 83 | 134.0 | 1906 | 57-30.1 | 158-37.5 | 38 | 46 | | 84 | 134.4 | 2006 | 57-24.9 | 158-29.4 | 29 | 37 | | 85 | 134.5 | 2310 | 57-03.6 | 159-08.8 | 33 | 36 | | 86 | 125.0 | 153/0018 | 57-08.8 | 159-21.6 | 49 | 53 | | 87 | 114.0 | 0252 | 56-55.2 | 159-56.9 | 53 | 57 | | 88 | 114.1 | 0425 | 56-46.5 | 159-47.0 | 43 | 47 | | 89 | 114.2 | 0949 | 56-26.2 | 160-31.1 | 43 | 47 | | 90 | 110.0 | 1118 | 56-33.9 | 160-43.6 | 56 | 64 | | 91 | 110.1 | 1314 | 56-44.9 | 160-57.4 | 62 | 70 | | 92 | 101.1 | 1643 | 56-27.1 | 161-39.7 | 64 | 68 | | | XBT | 9 DROP | S AT 1 NAUTICA | AL MILE INTERVAL | S | | | 93 | 101.2 | 1813 | 56-15.0 | 161-26.2 | 53 | 59 | | | XBT | 4 DROPS | S AT 1 NAUTICA | AL MILE INTERVAL | S | | | 94 | 101.3 | 1940 | 56-03.9 | 161-12.5 | 24 | 30 | | 95 | 90.0 | 2234 | 56-58.5 | 162-10.0 | 51 | 60 | | 96 | 80.0 | 154/0209 | 55-41.8 | 162-53.2 | 54 | 57 | | | XBT | 10 DROP | S AT 1 NAUTICA | AL MILE INTERVAL | S | | | 97 | 80.1 | 0337 | 55-30.0 | 162-40.4 | 31 | 35 | | 98 | 70.0 | 0648 | 55-26.1 | 163-32.0 | 69 | 73 | | 99 | 70.1 | 0812 | 55-36.0 | 163-42.8 | 80 | 88 | | 100 | 59.0 | 1112 | 55-22 .7 | 164-31.4 | 92 | 102 | | 101 | 58.0 | 1257 | 55-10.3 | 164-13.2 | 60 | 64 | | 102 | 46.0 | 1532 | 54-56.4 | 164-50.1 | 75 | 79 | | 103 | 37.0 | 1646 | 55-03.2 | 165-04.9 | 104 | 115 | | 104 | 35.0 | 1918 | 54-42.3 | 165-21.9 | 166 | 176 | | · | XBT | 5 DROP | S AT 6 NAUTICA | AL MILE INTERVAL | S | | ^{*} Indicates the grid station at which a Nimbus Drift Buoy was deployed # BRISTOL BAY TOTALS | CTD CASTS | 104 | |-----------------------------|-----| | XBT DROPS | 116 | | DISCRETE SURFACE SALINITIES | 216 | | DRIFT BUOY DEPLOYMENTS | 6 | Attachment B Station Summary - Leg VII B | | | • | | | Cast | Water | |-------------|------------------|-----------------|----------------------|--------------|---------------------|-------------| | Sequen | ce Grid | Date/time | Latitude | Longitude | Depth | Depth | | | | | | | | | | 1 | I | <i>159/0653</i> | 59 - 11.1 | 142-20.3 | 700 | 1682 | | 2 | H | 0855 | 59-20.2 | 142-08.5 | <i>2</i> 7 <i>5</i> | 291 | | 3 | G | 0951 | <i>59-23.3</i> | 142-04.3 | 195 | 209 | | 4 | \boldsymbol{F} | 1046 | <i>59-26.8</i> | 141-59.6 | 175 | 187 | | 5 | \boldsymbol{E} | 1152 | <i>59-33.3</i> | 141-50.5 | 160 | 165 | | 6 | D | 1257 | <i>59-39.4</i> | 141-42.2 | 108 | 112 | | 7 | C | 1340 | 59-42.7 | 141-38.4 | 76 | 80 | | 8 | B | 1417 | 59-45.9 | 141-34.6 | 50 | <i>55</i> | | 9 | A | 1452 | 59-48 . 9 | 141-30.9 | 24 | 29 | | 10 | 62L | 160/0216 | <i>59-38.5</i> | 142-07.0 | 181 | 185 | | 11 | P | 0514 | 59-23.3 | 142-59.6 | 700 | <i>1573</i> | | 12 | 0 | 0700 | <i>59-33.5</i> | 142-50.0 | 650 | 677 | | 13 | N | 0836 | 59-40.7 | 142-42.6 | 320 | 329 | | 14 | M | 0938 | 59-46.0 | 142-36.3 | <i>175</i> | 186 | | 15 | L | 1025 | 59-49.6 | 142-31.0 | 125 | 137 | | 16 | K | 1117 | 59÷55.3 | 142-28.1 | 99 | 90 | | 17 | J | 1212 | 60-01.4 | 142-25.5 | 53 | 45 | | 18 | IC-1 | 1505 | 59-47.9 | 141-39.3 | 40 | 446 | | 19 | IC-2 | 1544 | 59-51.5 | 141-36.4 | 29 | <i>32</i> | | 20 | IC-3 | 1627 | 59-55.7 | 141-32.9 | 64 | 7 0 | | 21 | IC-4 | 1840 | 59-58.0 | 141-25.3 | 16 | 20 | | 22 | IC-5 | 2042 | 59-59.2 | 141-22.5 | 42 | 46 | | 23 | ·A | 161/0155 | 59-48.6 | 141-30.7 | 22 | 26 | | 24 | В | 0234 | 59-45.8 | 141-34.1 | 51 | 60 | | 25 | Ċ | 0313 | 59-43.0 | 141-38.7 | 82 | 86 | | 26 | D | 0359 | 59-39.6 | 141-42.2 | 117 | 121 | | 27 | Ē | 0504 | 59-33.1 | 141-51.0 | 168 | 172 | | 28 | F | 0604 | 59-27.1 | 141-59.6 | 189 | 193 | | 29 | G | 0653 | 59-23.5 | 141-04.5 | 216 | 220 | | 30 | H | 0750 | 59-19.9 | 142-09.2 | 450 | 464 | | 31 | I | 0918 | 59-11.3 | 142-19.6 | 700 | 1829 | | 32 | YT-1 | 1600 | 59-34.9 | 140-09.8 | 21 | 25 | | 33 | YT-2 | 1645 | 59-39.3 | 140-04.8 | 149 | 153 | | 34 | YT-3 | 1731 | 59-42.6 | 139-57.4 | 113 | 117 | | 35 | YT-4 | 1818 | 59-45.6 | 139-49.9 | 64 | 68 | | 36 | YT-5 | 1910 | 59-48.0 | 139-42.5 | 38 | 42 | | <i>37</i> | YT-6 | 2009 | 59-53.3 | 139-40.8 | 22 | 26 | | 38 | YT-7 | 2151 | 59-56.4 | 139-35.1 | 245 | 252 | | 39 | YT-8 | 2252 | 59-58.7 | 139-33.5 | 70 | 87 | | | 0 | # | | - | | | # Mooring Summary | WIST-I | recovered | 159/1530 | 59-45.6 | 141-36.9 | |---------|--|---------------|---------|----------| | | 2 - RMC-4 cui
1 - Sediment
1 - Nephelome | trap | | | | WIST-II | recovered | 159/1710 | 59-39.2 | 141-41.6 | | | 4 - RCM-4 cui
3 - Sediment | | | | | 62K | recovered | 160/0003 | 59-38.7 | 142-07.2 | | | 4 - RCM-4 cui | rrent meters | | | | 62L | deployed | 160/0307 | 59-38.5 | 142-07.2 | | | 4 - RCM-4 cui | rrent meters. | | | UNIVERSITY OF WASHINGTON DEPARTMENT OF OCEANOGRAPHY SEATTLE, WASHINGTON 98195 ## Preliminary Report University of Washington Participation in NOAA Ship Discoverer Cruise RP-4-DI-77A, Leg V Bristol Bay Oceanographic Processes 26 April - 16 May 1977 Ъу Richard B. Tripp NOAA Contract 03-5-022-67, TA 4 Approved by: L. K. Goachman, Professor Principal Investigator Ref: 77-64 Francis Richards, Professor & Associate Chairman for Research #### BRISTOL BAY OCEANOGRAPHIC PROCESSES ## 1. Objectives This study is a joint program with the Pacific Marine Environmental Laboratory (PMEL), ERL, NOAA to provide water mass circulation information over the eastern Bering Sea Shelf region for the Outer Continental Shelf Environmental Assessment Program (OCSEAP). The Leg V portion of Cruise RP-4-DI-77A on the NOAA ship Discoverer was the seventh phase in the program directed towards accomplishing this research. The objectives of this cruise were: - 1) The recovery of current meter and pressure gauge moorings in the Eastern Bering Sea, that were deployed in September 1976. - 2) The deployment of nine current meter and pressure gauge moorings at selected sites in the Eastern Bering Sea to monitor the seasonal changes in the system. The recovery of those moorings is planned for September 1977. - 3) The recovery and deployment of two current meter moorings between Kodiak and Unimak Pass for the NEGOA project - 4) A series of C-T-D stations selected from the Bristol Bay Oceanographic Processes (B-BOP) program master grid with closer spaced stations normal to the coastline from Cape Sarechef to Port Moller. - 5) A series of C-T-D stations to examine the features and reality of water density inversions revealed in data obtained from previous cruises. This information is necessary in order to fully examine the mixing processes. - 6) Marine mammal observations as per project instructions. - 7) Micro-nutrient sampling: i) to examine the nutrient concentration in the three distinct water types of the Bering Sea area and the possible variations across their boundaries; ii) to examine the feasibility of using nutrient concentration as a tracer for bottom currents in the Bering Sea area. ### 2. Cruise Track and Narrative The NOAA ship Discoverer departed Kodiak, Alaska at 1800 GMT, 27 April 1977 and proceeded to the survey area (Figure 1). C-T-D stations were occupied enroute and at the mooring retrieval and/or deployment sites. A summary of C-T-D stations accomplished can be found in attachment A. - 1) Station WGC-3C Latitude 55°12.0'N, longitude 156°56.7'W. Released at 1716 GMT and recovered at 1756 GMT, 28 April 1977. This mooring consisted of current meters at 22 meters and 100 meters water depth. - Station WGC-3D Deployed at 1840 GMT, 28 April 1977 in
112.4 meters water depth. This mooring consists of current meters at 22 meters and 100 meters water depth. Other pertinent mooring deployment information can be found in attachment B. - 2) Station WGC-1E Latitude 54°03.0'N, longitude 163°06.1'W. Released at 1809 GMT and recovered at 1856 GMT, 29 April 1977. This mooring consists of current meters at 19 meters and 77 meters water depth. - Station WGC-1F Deployed at 1930 GMT, 29 April 1977 in 88.3 meters water depth. This mooring consisted of current meters at 17 meters and 76 meters water depth. - 3) Station BC-13C Latitude 55°47.2'N, longitude 165°23.8'W. Released at 0015 GMT and recovered at 0104 GMT, 1 May 1977. This mooring consisted of current meters at 22 meters and 96 meters and a pressure gauge at 107 meters water depth. - Station BC-13D Deployed at 0146 GMT, 1 May in 108 meters water depth. This mooring consists of current meters at 20 meters and 96 meters and a pressure gauge at 107 meters water depth. - 4) Station BC-17A Latitude 56°34.0'N, longitude 167°33.3'W. Released at 1917 GMT and recovered at 2312 GMT, 1 May 1977. This mooring had been trawled and moved from the original deployment site. Hence, the three-hour search before finding the mooring. Instrumentation recovered showed some damage. There were deep gouge marks along the acoustic release support rod and lower current meter. The mooring was also minus viny floats, lower current meter rotor, and most of the upper current meter. - Station BC-17B Deployed at 2353 GMT, 1 May 1977 in 109 meters water depth. This mooring consists of current meters at 21 meters and 97 meters water depth. - 5) Station BC-16A Deployed at 2029, 2 May 1977 in 50 meters water depth. This mooring consists of current meters at 20 meters and 38 meters water depth. - 6) Station BC-2D Latitude 57°02.3'N, longitude 163°25.7'W. Released at 1858 GMT and recovered at 1935 GMT, 3 May 1977. This mooring consisted of current meters at 21 meters and 54 meters and a pressure gauge at 65 meters water depth. Station BC-2E Deployed at 2002 GMT, 3 May 1977 in 65 meters water depth. This mooring consists of current meters at 19 meters and 53 meters and a pressure gauge at 64 meters water depth. 7) Station BC-15B Latitude 57°37.7'N, longitude 162°44.9'W. Released 0129 GMT, 4 May 1977 but not recovered. At the time of release there were 1-2 oktas of very broken first year ice (less than 10 meters across) in one quadrant. The signal strength of the acoustic release on interrogation indicated that the mooring should surface in open water. However, after firing, the mooring was not located. There are two possibilities. The mooring either had lost its buoyancy package and did not surface, or it had surfaced in or under the ice pack. If both floatation packages were still attached to the mooring, I think that the probability of the mooring being completely under one of the pieces of ice encountered quite low. After four hours of unsuccessful searching through the broken ice we arrived at a point where the signal strength received from the release was strongest. This position was 0.2 nm away from the original release site. The ice had been drifting at a rate of approximately 1 knot which suggests: 1) that the mooring was not drifting with the ice; or 2) that the mooring did not surface. Under the assumption that the mooring had surfaced, and was drifting with, or under the ice, we established contact with the mooring and positioned the ship near the ice pack. We drifted with a section of the ice pack until dawn. The net drift was approximately 10 nm (east and then northwest). No contact was made with the mooring which suggests that if the mooring was adrift, it was with a different section of the pack ice. We then proceeded to run a search pattern back towards the site where the signal strength was strongest and to the original release site. No contact was established at any point. During the latter part of leg V, when the ship was northwest of this area, we attempted to make contact with the mooring. However, no contact was ever established. Station BC-15C Deployed at 0624 GMT, 4 May 1977 in 44.6 meters water depth. This mooring consists of current meters at 18 meters and 33 meters and a pressure gauge at 44 meters water depth. The ship then proceeded to run the hydrographic sections normal to the Alaska Peninsula. At 0755 GMT, 10 May 1977, we left the survey area and proceeded to Unalaska, Alaska to evacuate an injured engineer. At 2041 GMT, 10 May 1977 the evacuation was completed and we proceeded back to the survey area. - 8) Station BC-19A Deployed at 0322 GMT, 12 May 1977 in 33.5 meters water depth. This mooring consists of a current meter at 22 meters water depth. - 9) Station BC-18A Deployed at 1647 GMT, 12 May 1977 in 31.5 meters water depth. This mooring consists of a current meter at 20 meters water depth. - 10) Station BC-9B Latitude 59°13.0'N, longitude 167°42.0'W. Released at 2014 GMT and recovered at 2038 GMT, 12 May 1977. This mooring consisted of current meters at 23 meters and 33 meters and a pressure gauge at 39 meters water depth. - Station BC-9C Deployed at 2122 GMT, 12 May 1977 in 40.5 meters water depth. This mooring consists of current meters at 23 meters and 33 meters and a pressure gauge at 39 meters water depth. - 11) Station BC-4D Latitude 58°36.6'N, longitude 168°21.7'W. Released at 0119 GMT and recovered at 0143 GMT, 13 May 1977. This mooring consisted of current meters at 20 meters and 48 meters and a pressure gauge at 54 meters water depth. - Station BC-4E Deployed at 0208 GMT, 13 May 1977 in 55.1 meters water depth. This mooring consists of current meters at 20 meters and 48 meters water depth. We continued with the C-T-D program, working our way towards Unimak Pass. At 1915 GMT, 14 May 1977, the NOAA ship Discoverer changed course for Unimak Pass, departed the survey area and proceeded to Kodiak, Alaska. At 1710 GMT, 16 May 1977, the ship was alongside the marginal pier, U.S. Coast Guard Base, Kodiak, Alaska. A total of 4135 nautical miles were logged on Leg V of this cruise. #### Methods Amnderaa RCM-4 current meters were employed on each mooring, set to record data (current speed and direction, temperature, conductivity and pressure) at a sampling interval of 30 minutes (PMEL) or 20 minutes (UW). The meters on BC-4E, BC-9C, BC-18A and BC-19A do not have a conductivity or pressure sensor. An Aanderaa TG-2A or TG-3A pressure gauge was housed in an anchor well on moorings BC-2E, BC-4E, BC-9C, BC-13D and BC-15C. The sampling interval on the pressure gauges was either 15 or 30 minutes. C-T-D casts were taken on each hydrographic station utilizing a Plessy Model 9040 Profiling System (S/N 6219 Casts 1-76; S/N 6201 Casts 77-235). Data were stored on 7-track magnetic tape for reduction ashore. In order to determine field correction factors for the conductivity and temperature sensors, a niston bottle was mounted on the rosette sampler 1 meter above the sensors. The salinity samples collected were analyzed aboard ship on a Beckman Instruments Model RS-7B Portable Salinometer S/N 22486. C-T-D casts were also taken in certain areas in an attempt to examine the features of any small density inversions which might be present in the water column. Previous data have shown the presence of small density inversions (vertical scale of 1-10 meters) on certain grid stations. Three lowering rates were selected to examine the possible density inversions, and also to examine sensor response. These rates were 20 m/m, 30 m/m, and 40 m/m. One down-cast and one up-cast, at each of these rates, were recorded and plotted. The up-casts were taken solely to help establish the reality of any density inversions present in the data. Preliminary results indicate that: 1) some of the inversions are real; 2) there is considerable noise in the data at the 20 m/m lowering rate; and 3) a lowering rate of 30 m/m is quite acceptable for these shallow stations. A total of 149 stations were occupied; 234 C-T-D casts (177 down, 57 up) were accomplished. ## Micro-Nutrient Sampling Program Water samples for micro-nutrient analysis were obtained on 103 stations on the C-T-D grid. The two primary objectives of the water sampling are as follows: 1) to examine the nutrient concentration in all three water types and the possible variations across their boundaries, 2) to examine the feasibility of using nutrient concentration as a tracer for bottom currents in the Bering Sea bay area. For the location of stations on which a micro-nutrient sample was obtained see attachment A. The micro-nutrient stations are labeled with an asterisk. Note, both a bottom, minus five, and a 20 meter sample were collected at most of the 103 stations. However, if the depth of the water was less than 40 meters then only a bottom minus five sample was taken. The nutrient samples were frozen and stored aboard NOAA ship Discoverer. Analysis of these samples will be undertaken by ENS Friend on the ship's return to Seattle. ## 4. Personnel Richard B. Tripp Principal Oceanographer University of Washington, C/S Steve Harding Research Aide University of Washington LTJG Don Dreves NOAA Corps PMEL/ERL/NOAA David Burch PMEL/ERL/NOAA Pat McGuire NOAA Corps NOAA Ship Discoverer Attachment A C-T-D Station Summary | Cast
No. | Grid
No. | Time
GMT | Date
GMT
1977 | Latitude
North | Longitude
West | CTD
Depth
M | Water
Depth
<u>M</u> | |-------------|-------------|-------------|---------------------|-------------------|-------------------|-------------------|----------------------------| | 1* | WGC-3D | 1918 | 28/4 | 55-11.9 | 156-57.2 | 107 | 114 | | 2 | WGC-1E | 1642 | 29/4 | 54-02.6 | 163-06.2 | 79 | 89 | | 3* | | 2203 | 29/4 | 53-46.9 | 162-58.3 | 1500 | 1719 | | 4 | | 0005 | 30/4 | 53-51.1 | 163-02.5 | 70 | 1520 | | . 5 | | 0100 | 30/4 | 53-51.1 | 163-02.5 | 1507 | 1520 | | 6* | | 0322 | 30/4 | 53-55.7 | 163-07.0 | 1020 | | | 7 | | 0451 | 30/4 | 54-00.2 |
163-11.8 | 78 | 86 | | 8 | | 0542 | 30/4 | 54-04.9 | 163-16.9 | 72 | 78 | | 9* | | 0633 | 30/4 | 54-09.7 | 163-21.9 | 69 | 78 | | 10* | 25 | 1349 | 30/4 | 54-29.0 | 165-47.0 | 393 | 402 | | 11* | 26 | 1553 | 30/4 | 54-41.7 | 166-10.7 | 273 | 285 | | 12* | 27 | 1807 | 30/4 | 54-56.7 | 166-38.3 | 144 | 151 | | 13* | 38 | 2015 | 30/4 | 55-17.0 | 166-28.4 | 127 | 135 | | 14* | BC-13D | 0217 | 1/5 | 55-47.2 | 165-23.3 | 100 | 107 | | 15* | 49 | 0504 | 1/5 | 55-39.1 | 166-12.6 | 115 | 124 | | 16* | 50 | 0704 | 1/5 | 55-52.8 | 166-41.3 | 125 | 131 | | 17* | 40 | 0912 | 1/5 | 55-45.0 | 167-17.8 | 125 | 134 | | 18* | 30 | 1126 | 1/5 | 55-36.8 | 167-54.2 | 128 | 1.35 | | 19* | 31 | 1318 | 1/5 | 55-48.9 | 168-19.0 | 132 | 141 | | 20* | 42 | 1514 | 1/5 | 56-08.3 | 168-17.7 | 154 | 163 | | 21* | 52 | 1716 | 1/5 | 56-20.2 | 167-45.1 | 125 | 132 | | 22* | BC-17A | 1854 | 1/5 | 56-33.9 | 167-34.0 | 100 | 108 | | 23* | 53 | 0202 | 2/5 | 56-29.4 | 168-10.4 | 117 | 122 | | 24* | 54 | 0342 | 2/5 | 56-38.9 | 168-35.5 | 102 | 109 | | 25* | 66 | 0602 | 2/5 | 56-55.0 | 168-58.3 | 79 | 86 | | 26* | 66.1 | 0745 | 2/5 | 57-08.2 | 167-37.9 | 67 | 73 | | 27* | 76 | 0936 | 2/5 | 57-21.0 | 167-16.1 | 65 | 70 | | 28* | 76.1 | 1156 | 2/5 | 57-30.2 | 166-47.0 | 62 | 68 | | 29* | 86 | 1354 | 2/5 | 57-39.2 | 166-18.4 | 59 | 66 | | 30* | 86.1 | 1542 | 2/5 | 57-49.0 | 165-46.8 | 52 | 61 | | Cast
No. | Grid
No. | Time
GMT | Date
GMT
1977 | Latitude
North | Longitude
West | CTD
Depth
M | Water
Depth
M | |-------------|-------------|-------------|---------------------|-------------------|-------------------|-------------------|---------------------| | 31* | 96 | 1740 | 2/5 | 58-09.7 | 165-55.5 | 40 | 49 | | 32* | BC-16A | 1951 | 2/5 | 57-59.9 | 165-16.0 | 45 | 50 | | 33* | 105.1 | 2219 | 2/5 | 58-09.2 | 164-57.6 | 35 | 39 | | 34* | 105.2 | 2359 | 2/5 | 58-04.2 | 164-36.5 | 36 | 44 | | 35* | 95.1 | 0144 | 3/5 | 57-55.5 | 164-25.8 | 34 | 39 | | 36* | 95 | 0314 | 3/5 | 57-45.0 | 164-42.4 | 43 | 51. | | 37* | 95.2 | 0448 | 3/5 | 57-33.0 | 165-00.4 | 55 | 62 | | 38* | 85 | 0623 | 3/5 | 57-20.9 | 165-18.7 | 58 | 67 | | 39* | 84.1 | 0756 | 3/5 | 57-07.9 | 164-58.2 | 60 | 67 | | 40* | 84.2 | 0939 | 3/5 | 57-21.1 | 164-38.0 | 55 | 63 | | 41* | 94.1 | 1130 | 3/5 | 57-34.0 | 164-16.2 | 49 | 54 | | 42* | 94.2 | 1325 | 3/5 | 57-43.5 | 163-44.3 | 44 | 48 | | 43* | 94 | 1524 | 3/5 | 57-24.2 | 163-49.4 | 46 | 56 | | 44* | 93.1 | 1713 | 3/5 | 57-08.0 | 163-31.0 | 55 | 64 | | 45* | BC-2D | 1841 | 3/5 | 57-02.2 | 163-25.0 | 58 | 65 | | 46* | 103.1 | 2200 | 3/5 | 57-19.2 | 163-05.1 | 48 | 53 | | 47 | BC-15B | 0112 | 4/5 | 57-37.6 | 162-44.9 | 37 | 46 | | 48* | 118 | 2154 | 4/5 | 58-00.8 | 161-59.8 | 38 | 42 | | 49* | 129 | 0016 | 5/5 | 58-00.9 | 161-12.8 | 37 | 49 | | 50* | 128 | 0251 | 5/5 | 58-02.5 | 160-24.7 | 30 | 39 | | 51* | 136 | 0543 | 5/5 | 58-06.1 | 159-29.8 | 20 | 31 | | 52* | 135 | 0811 | 5/5 | 57-45.1 | 158-57.6 | 33 | 45 | | 53* | 134 | 1007 | 5/5 | 57-29.7 | 158-36.5 | 39 | 44 | | 54* | 125 | 1316 | 5/5 | 57-08.5 | 159-21.3 | 48 | 53 | | 55* | 126 | 1521 | 5/5 | 57-28.5 | 159-42.2 | 45 | 53 | | 56* | 127 | 1711 | 5/5 | 57-45.9 | 160-05.1 | 42 | 50 | | 57* | 117 | 2020 | 5/5 | 57-40.9 | 161-08.8 | 43 | 53 | | 58 | 116 | 2221 | 5/5 | 57-28.0 | 160-40.0 | 55 | 60 | | 59* | 115 | 0023 | 6/5 | 57-11.1 | 160-20.8 | 58 | 62 | | : 60 | 114 | 0229 | 6/5 | 56-54.5 | 159-58.6 | 52 | 57 | | 61 | 114.1 | 0356 | 6/5 | 56-38.3 | 160-00.9 | 35 | 42 | | 62 | 114.2 | 1555 | 6/5 | 56-25.8 | 160-30.9 | 26 | 38 | | 63 | 114.20 | 0558 | 6/5 | 56-26.6 | 160-31.3 | 26 | 38 | | 64 | 110 | 0718 | 6/5 | 56-34.1 | 160-42.8 | 50 | 60 | | 65 | 110.1 | 0840 | 6/5 | 56-46.3 | 160-56.0 | 15 | 65 | | Cast
No. | Grid
No. | Time
GMT | Date
GMT
1977 | Latitude
North | Longitude
West | CTD
Depth
M | Water
Depth
M | |-------------|-------------|-------------|---------------------|-------------------|-------------------|-------------------|---------------------| | 66 | 110.1 | 0918 | 6/5 | 56-47.2 | 160-54.5 | 56 | 65 | | 67* | 111 | 1040 | 6/5 | 56-56.7 | 161-10.8 | 66 | 68 | | 68 | 111.1 | 1159 | 6/5 | 57-05.2 | 161-20.6 | 61 | 70 | | 69 | 112 | 1311 | 6/5 | 57-14.1 | 161-32.3 | 46 | 56 | | 70 | 112.1 | 1435 | 6/5 | 57-25.0 | 161-45.9 | 41 | 47 | | 71 | 103 | 1706 | 6/5 | 57-13.6 | 162-31.7 | 43 | 53 | | 72 | 102.1 | 1901 | 6/5 | 57-04.6 | 162-20.3 | 47 | 58 | | 73 | 102 | 2036 | 6/5 | 56-57.3 | 161-59.3 | 42 | 53 | | 74 | 101.1 | 21.53 | .6/5 | 56-46.8 | 161-59.7 | 63 | 67 | | 75* | 101 | 2350 | 6/5 | 56-37.4 | 161-31.3 | 66 | 71 | | 76 | 101υ | 0004 | 7/5 | 56-37.3 | 161-31.9 | 66 | 71 | | 77 | 100.1 | 0128 | 7/5 | 56-26.1 | 161-39.4 | 51 | 58 | | 78 | 100 | 0245 | 7/5 | 56-14.3 | 161-45.5 | 50 | 60 | | 79 | 100.2 | 0440 | 7/5 | 56-03.5 | 161-40.9 | 35 | 44 | | 80 | 90 | 0651 | 7/5 | 55-59.7 | 162-08.5 | 52 | 60 | | 81 | 90.1 | 0812 | 7/5 | 56-09.6 | 162-18.7 | 68 | 76 | | 82* | 91 | 0930 | 7/5 | 56-18.0 | 162-27.3 | 64 | 74 | | 83 | 91.1 | 1050 | 7/5 | 56-26.2 | 162-39.0 | 69 | 7 5 | | 84 | 92 | 1212 | 7/5 | 56-34.9 | 162-50.6 | 70 | 76 | | 85 | 92.1 | 1323 | 7/5 | 56-43.0 | 163-02.0 | 64 | 70 | | 86 | 93 | 1511 | 7/5 | 56-53.5 | 163-12.2 | 60 | 66 | | 87 | 93.2 | 1724 | 7/5 | 56-53.8 | 163-52.8 | 64 | 70 | | 88 | 84 | 1947 | 7/5 | 56-54.7 | 164-36.3 | 61 | 69 | | 89 | 83.1 | 2117 | 7/5 | 56-41.9 | 164-21.4 | 66 | 73 | | 90 | 83 | 2244 | 7/5 | 56-29.3 | 164-08.1 | 75 | 79 | | 91 | 82.1 | 0003 | 8/5 | 56-23.5 | 163-50.3 | 77 | 82 | | 92 | 82 | 0120 | 8/5 | 56-19.7 | 163-32.5 | 78 | 82 | | 93 | 81.1 | 0230 | 8/5 | 56-10.7 | 163-23.7 | 81 | 86 | | 94 | 81 | 0333 | 8/5 | 56-03.1 | 163-14.8 | 78 | 85 | | 95 | 80.1 | 0451 | 8/5 | 55-52.3 | 163-02.5 | 77 | 84 | | 96 | 80 | 0608 | 8/5 | 55-42.5 | 162-52.0 | 47 | 57 | | 97 | 80.2 | 0706 | 8/5 | 55-35.5 | 162-52.6 | 34 | 45 | | 98* | 70 | 0954 | 8/5 | 55-25.4 | 163-31.9 | 65 | 67 | | 99* | 70.1 | 1119 | 8/5 | 55-35.6 | 163-40.7 | 79 | 83 | | 100* | 71 | 1300 | 8/5 | 55-45.9 | 163-54.6 | 90 | 93 | | Cast
No. | Grid
No. | Time
GMT | Date
GMT
1977 | Latitude
North | Longitude
West | CTD
Depth
M | Water
Depth
M | |-------------|-------------|-------------|---------------------|-------------------|-------------------|-------------------|---------------------| | 101* | 71.1 | 1425 | 8/5 | 55-54.8 | 164-04.1 | 85 | 92 | | 102* | 72 | 1534 | 8/5 | 56-03.9 | 164-13.9 | 83 | 90 | | 103* | 72.1 | 1705 | 8/5 | 56-14.0 | 164-35.0 | 83 | 90 | | 104* | 73 | 1840 | 8/5 | 56-24.3 | 164-56.2 | 76 | 84 | | 105 | 61.1 | 2155 | 8/5 | 56-03.8 | 165-39.9 | 91 | 98 | | 106 | 61.1V | 2203 | 8/5 | 56-03.7 | 165-40.0 | 91 | 98 | | 107 | 61.1 | 2210 | 8/5 | 56-03.7 | 165-40.1 | 91 | 98 | | 108 | 61.10 | 2216 | 8/5 | 56-03.7 | 165-40.2 | 91 | 98 | | 109* | 61.1 | 2221 | 8/5 | 56-03.6 | 165-40.3 | 91 | 98 | | 110 | 61.10 | 2233 | 8/5 | 56-03.5 | 165-40.5 | 91 | 98 | | 111 | 61 | 0006 | 9/5 | 55-54.6 | 165-24.1 | 93 | 99 | | 112 | 61U | 0014 | 9/5 | 55-54.5 | 165-24.3 | 93 | 99 | | 113 | 61 | 0020 | 9/5 | 55-54.4 | 165-24.4 | 93 | 99 | | 114 | 61U | 0027 | 9/5 | 55-54.4 | 165-24.4 | 93 | 99 | | 115 | 61 | 0033 | 9/5 | 55-54.3 | 165-24.8 | 93 | 99 | | 116* | 61U | 0045 | 9/5 | 55-54.1 | 165-25.0 | 93 | 99 | | 117 | 60.1 | 0211 | 9/5 | 55-46.7 | 165-07.5 | 93 | 100 | | 118 | 60.1U | 0220 | 9/5 | 55-46.7 | 165-07.6 | 93 | 100 | | 119 | 60.1 | 0227 | 9/5 | 55-46.6 | 165-07.8 | 93 | 100 | | 120 | 60.1U | 0235 | 9/5 | 55-46.6 | 165-07.9 | 93 | 100 | | 121* | 60.1 | 0239 | 9/5 | 55-46.5 | 165-08.0 | 93 | 100 | | 122 | 60.1T | 0249 | 9/5 | 55-46.5 | 165-08.1 | 93 | 100 | | 123 | 60 | 0413 | 9/5 | 55-40.3 | 164-50.0 | 92 | 99 | | 124* | 59.1 | 0531 | 9/5 | 55-30.9 | 164-42.0 | 93 | 101 | | 125 | 59 | 0647 | 9/5 | 55-23.2 | 164-30-4 | 95 | 100 | | 126* | 58.1 | 0752 | 9/5 | 55-15.9 | 164-20.7 | 89 | 95 | | 128 | 58 | 1713 | 9/5 | 55-09.9 | 164-12.9 | 52 | 59 | | 129 | 58.2 | 1847 | 9/5 | 55-02.0 | 164-28.8 | 45 | 55 | | 130* | 46 | 2032 | 9/5 | 54-56.5 | 164-52.1 | 70 | 78 | | 131 | 46.1 | 2143 | 9/5 | 55-02.5 | 165-04.8 | 102 | 109 | | 132 | 47 | 2253 | 9/5 | 55-07.5 | 165-16.2 | 106 | 114 | | 133* | 48 | 0108 | 10/5 | 55-24.2 | 165-44.8 | 110 | 117 | | 134 | 62 | 0501 | 10/5 | 56-10.0 | 165-53.9 | 94 | 101 | | 135* | 62U | 0510 | 10/5 | 56-10.0 | 165-53.9 | 94 | 101 | | Cast
No. | Grid
No | Time
GMT | Date
GMT
1977 | Latitude
North_ | Longitude
West | CTD
Depth
M | Water
Depth
M | |-------------|---------------|-------------|---------------------|----------------------|-------------------|-------------------|---------------------| | 136 | 62 | 0517 | 10/5 | 56-10.1 | 165-53.9 | 94 | 101 | | 137 | 62U | 0523 | 10/5 | 56-10.1 | 165-53.9 | 94 | 101 | | 138* | 62 | 0528 | 10/5 | 56-10.0 | 165-54.0 | 94 | 101 | | 139 | 62U | 0539 | 10/5 | 56-10.1 | 165-54.0 | 94 | 101 | | 140 | 62.1 | 0702 | 10/5 | 56-16.1 | 166-09.6 | 92 | 101 | | 141 | 62.1U | 0713 | 10/5 | 56-16.0 | 166-09.5 | 92 | 101 | | 142 | 62.1 | 0721 | 10/5 | 56-16.0 | 166-09.4 | 90 | 101 | | 143 | 62.1U | 0730 | 10/5 | 56-16.0 | 166-09.4 | 90 | 101 | | 144 | 62.1 | 0737 | 10/5 | 56-16.0 | 166-09.3 | 93 | 101 | | 145* | 62.10 | 0748 | 10/5 | 56-16.0 | 166-09.2 | 93 | 101 | | 146 | 63 | 0804 | 11/5 | 56-24.4 | 166-27.4 | 94 | 100 | | 147 | 63U | 0814 | 11/5 | 5 6- 24.6 | 166-27.4 | 94 | 100 | | 148 | 63 | 0826 | 11/5 | 56-24.9 | 166-27.4 | 94 | 100 | | 149 | 63U | 0834 | 11/5 | 56-25.2 | 166-27.5 | 94 | 100 | | 150* | 63 | 0843 | 11/5 | 56-25.3 | 166-27.4 | 92 | 100 | | 151 | 63U | 0853 | 11/5 | 56-25.6 | 166-27.6 | 92 | 100 | | 152 | 63.1 | 0958 | 11/5 | 56-29.3 | 166-42.3 | 93 | 102 | | 153 | 63.10 | 1005 | 11/5 | 56-29.4 | 166-42.3 | 93 | 102 | | 154 | 63.1 | 1010 | 11/5 | 56-29.5 | 166-42.3 | 93 | 102 | | 155 | 63.1U | 1015 | 11/5 | 56-29.6 | 166-42.3 | 93 | 102 | | 156* | 63.1 | 1020 | 11/5 | 56-29.6 | 166-42.3 | 93 | 102 | | 157 | 63.1U | 1030 | 11/5 | 56-29.8 | 166-42.2 | 93 |
102 | | 158 | 74.1 | 1319 | 11/5 | 56-57.6 | 166-02.9 | 65 | 70 | | 159 | 74.1U | 1326 | 11/5 | 56-57.6 | 166-02.8 | 65 | 70 | | 160 | 74.1 | 1333 | 11/5 | 56-57.6 | 166-02.6 | 65 | 70 | | 161 | 74.1U | 1339 | 11/5 | 56-57.6 | 166-02.5 | 65 | 70 | | 162* | 74.1 | 1345 | 11/5 | 56-57.5 | 166-02.5 | 65 | 70 | | 163 | 74.1U | 1355 | 11/5 | 56-57.5 | 166-02.3 | 65 | 70 | | 164* | 74 | 1517 | 11/5 | 56-49.5 | 165-39.7 | 69 | 74 | | 165 | 74U | 1527 | 11/5 | 56-49.5 | 165-39.6 | 69 | 74 | | 166* | 73.1 | 1659 | 11/5 | 56-36.8 | 165-16.6 | 68 | 76 | | 167 | 73.1 0 | 1709 | 11/5 | 56-36.8 | 165-16.7 | 68 | 76 | | 168* | BC-19A | 0344 | 12/5 | 58-42.2 | 163-53.0 | 23 | 33.5 | | 169* | 106.1 | 0646 | 12/5 | 58-42.2 | 165-04.9 | 25 | .34 | | 170* | 107 | 1002 | 12/5 | 58-43,1 | 166-19.1 | 29 | 38 | | Cast | Grid | Time | Date
GMT | Latitude | Longitude | CTD
Depth | Water
Depth | |------|-------------|------|-------------|----------------------|-----------|--------------|----------------| | No. | No. | GMT | <u>1977</u> | North | West | М | <u>M</u> | | 171* | 123 | 1319 | 12/5 | 59-14.3 | 166-38.5 | 21 | 29 | | 172* | BC-18A | 1702 | 12/5 | 59-39.8 | 167-07.4 | 20 | 31.5 | | 173* | 140-1 | 1816 | 12/5 | 59-28.9 | 167-22.8 | 20 | 31 | | 174* | вс-9в | 1953 | 12/5 | 59-13.1 | 167-42.1 | 32 | 39 | | 175* | 139.1 | 2259 | 12/5 | 58-57.4 | 167-59.5 | 33 | 42 | | 176* | BC-4E | 0229 | 13/5 | 58-36.5 | 168-21.7 | 46 | 55.1 | | 177* | 138.1 | 0413 | 13/5 | 58-22.2 | 168-40.3 | 60 | 66 | | 178* | 137 | 0553 | _13/5 | 58-08.0 | 169-00.9 | 62 | 69 | | 179 | 1370 | 0605 | 13/5 | 58-08.0 | 169-01.1 | 62 | 69 . | | 180* | 69 | 0733 | 13/5 | 57-54.0 | 169-19.2 | 57 | 65 | | 181 | 69T | 0745 | 13/5 | 57-53.9 | 169-19.3 | 57 | 65 | | 182* | 69.1 | 0907 | 13/5 | 57-41.2 | 169-35.9 | 59 | 69 | | 183 | 69.1U | 0917 | 13/5 | 57-41.2 | 169-35.9 | 59 | 69 | | 184* | 57 | 1042 | 13/5 | 57-28.1 | 169-49.5 | 57 | 67 | | 185 | 57U | 1053 | 13/5 | 57-28.2 | 169-49.3 | 57 | 67 | | 186 | 68 | 1301 | 13/5 | 57-31.4 | 169-01.6 | 60 | 70 | | 187 | 68U | 1308 | 13/5 | 57-31.4 | 169-01.4 | 60 | 70 | | 188* | - 77 | 1531 | 13/5 | 57-28.8 | 168-05.5 | 65 | 71 | | 189 | 7 70 | 1541 | 13/5 | 57-28.8 | 168-05.4 | 65 | 71 | | 190 | 76 | 1810 | 13/5 | 57-20.9 | 167-15.8 | 60 | 69 | | 191 | 76U | 1817 | 13/5 | 57-20.9 | 167-15.8 | 60 | 69 | | 192 | 76 | 1825 | 13/5 | 57-20.8 | 167-15.9 | 60 | 69 | | 193 | 76 T | 1832 | 13/5 | 57-20.7 | 167-15.9 | 60 | 69 | | 194* | 76 | 1837 | 13/5 | 57-20.7 | 167-16.0 | 60 | 69 | | 195 | 76 U | 1846 | 13/5 | 57-20.7 | 167-16.1 | 60 | 69 | | 196* | 75.1 | 2031 | 13/5 | 57-13.7 | 166-51.9 | 61 | 65 | | 197 | 75.10 | 2042 | 13/5 | 57-13.7 | 166-52.1 | 61 | 65 | | 198* | 75 | 2213 | 13/5 | 57-07.3 | 166-26.2 | 61 | 63 | | 199 | 75 0 | 2223 | 13/5 | 57-07.3 | 166-26.3 | 61 | 63 | | 200 | 65.1 | 0014 | 14/5 | 56-56.2 ⁻ | 166-57.6 | 68 | 75 | | 201 | 65.10 | 0022 | 14/5 | 56-56.3 | 166-57.7 | 68 | 75 | | 202 | 65.1 | 0028 | 14/5 | 56-56.4 | 166-57.7 | 69 | 75 | | 203 | 65.1U | 0032 | 14/5 | 56-56.5 | 166-57.7 | 69 | 75 | | 204* | 65.1 | 0038 | 14/5 | .56-56.5 | 166-57.7 | 69 | 75 | | 205 | 65.1U | 0048 | 14/5 | 56-56.6 | 166-57.7 | 69 | 7 5 | S Attachment B Mooring Deployment Summary | Mooring
No. | Time
GMT | Date
GMT
1977 | Latitude
North | Longitude
West | Depth
Meters | X Rate | Loran-C
Y Rate | Z Rate | Receiver
Channel
No. | |----------------|-------------|---------------------|-------------------|-------------------|-----------------|----------|-------------------|----------|----------------------------| | WGC-3D PMEL | 1840 | 28/4 | 55-12.0 | 156-57.3 | 112.4 | 18574.41 | 33376.40 | 45005.93 | 10 | | WGC-1F PMEL | 1930 | 29/4 | 54-03.8 | 163-05.8 | 88.3 | 18241.08 | 34394.46 | 47270.35 | 8 | | BC-13D PMEL | 0146 | 1/5 | 55-47.1 | 165-23.1 | 108 | 18517.89 | 34474.73 | 48202.50 | 6 | | BC-17B PMEL | 2353 | 1/5 | 56-36.2 | 167-41.2 | 109 | 18644.86 | 34727.53 | 49145.30 | 4 | | BC-16A PMEL | 2029 | 2/5 | 57-59.2 | 165-15.8 | 50 | 18750.13 | 33742.03 | 48118.34 | 1. | | BC-2E PMEL | 2002 | 3/5 | 57-02.5 | 163-26.0 | 65 | 18708.92 | 33803.54 | 47444.26 | 5 | | BC-15C PMEL | 0624 | 4/5 | 57-39.0 | 162-41.4 | 45 | 18741.32 | 33463.16 | 47126.00 | 9 | | BC-19A UW | 0322 | 12/5 | 58-42.6 | 163-52.8 | 33.5 | 18735.41 | 33171.08 | 47518.59 | 1 | | BC-18A UW | 1647 | 12/5 | 59-40.1 | 167-07.5 | 31.5 | 18536.43 | 33028.70 | 48452.71 | 6 | | BC-9C UW | 2122 | 12/5 | 59-12.0 | 167-43.2 | 40.5 | 18571.89 | 33414.47 | 48748.63 | 2 | | BC-4E UW | 0208 | 13/5 | 58-36.6 | 168-21.7 | 55.1 | 18626.15 | 33893.57 | 49109.98 | 10 | | Cast
No. | Grid
No. | Time
GMT | Date
GMT
1977 | Latitude
North | Longitude
West | CTD
Depth
M | Water
Depth
M | |-------------|-------------|-------------|---------------------|-------------------|-------------------|-------------------|---------------------| | 206 | 65 | 0240 | 14/5 | 56-45.9 | 167-29.5 | 84 | 91 | | 207 | 65U | 0246 | 14/5 | 56-45.9 | 167-29.3 | 84 | 91 | | 208 | 65 | 0252 | 14/5 | 56-45.9 | 167-29.1 | 84 | 91 | | 209 | 65 U | 0256 | 14/5 | 56-45.8 | 167-29.0 | 84 | 91 | | 210* | 65 | 0300 | 14/5 | 56-45.8 | 167-28.9 | 84 | 91 | | 211 | 6 50 | 0310 | 14/5 | 56-45.6 | 167-28.4 | 84 | 91 | | 212 | 64.1 | 0409 | 14/5 | 56-39.9 | 167-13.7 | 93 | 100 | | 213 | 64.1U | 0417 | 14/5 | 56-39.8 | 167-13.6 | 93 | 100 | | 214 | 64.1 | 0422 | 14/5 | 56-39.8 | 167-13.5 | 93 | 100 | | 215 | 64.1U | 0427 | 14/5 | 56-39.7 | 167-13.4 | 93 | 100 | | 216* | 64.1 | 0432 | 14/5 | 56-39.7 | 167-13.3 | 93 | 100 | | 217 | 64.1U | 0441 | 14/5 | 56-39.5 | 167-13.2 | 93 | 100 | | 218 | 64 | 0538 | 14/5 | 56-35.0 | 166-58.3 | 95 | 100 | | 219 | 64U | 0544 | 14/5 | 56-34.9 | 166-58.3 | 95 | 100 | | 220 | 64 | 0552 | 14/5 | 56-34.8 | 166-58.3 | 94 | 1.00 | | 221 | 64ਧ | 0600 | 14/5 | 56-34.8 | 166-58.4 | 94 | 100 | | 222* | 64 | 0607 | 14/5 | 56-34.7 | 166-58.4 | 94 | 100 | | 223 | 64U | 0618 | 14/5 | 56-34.6 | 166-58.6 | 94 | 100 | | 224* | 51 | 0843 | 14/5 | 56-05.5 | 167-11.6 | 127 | 1.33 | | 225 | 510 | 0856 | 14/5 | 56-05.4 | 167-11.8 | 127 | 133 | | 226 | 40 | 1050 | 14/5 | 55-43.8 | 167-18.2 | 130 | 135 | | 227 | 400 | 1100 | 14/5 | 55-43.9 | 167-18.3 | 130 | 13,5 | | 228* | 39 | 1247 | 14/5 | 55-30.3 | 166-52.0 | 129 | 136 | | 229 | . 39T | 1259 | 14/5 | 55-30.4 | 166-52.0 | 129 | 136 | | 230 | 38 | 1500 | 14/5 | 55-17.4 | 166-28.2 | 129 | 136 | | 231 | 38 0 | 1510 | 14/5 | 55-17.3 | 166-28.3 | 129 | 136 | | 232* | 37 | 1647 | 14/5 | 55-03.3 | 166-04.8 | 128 | 135 | | 233 | 37 0 | 1659 | 14/5 | 55-03.2 | 166-04.9 | 128 | 135 | | 234* | 36 | 1831 | 14/5 | 54-52.0 | 165-43.3 | 138 | 144 | | 235 | 36U | 1834 | 14/5 | 54-52.0 | 165-43.4 | 138 | 144 | R.U. #140 not received # QUARTERLY REPORT Contract No.: R7120849 Research Unit No 141 Reporting Period: 1 April 1977 - 30 June 1977 Number of Pages: 1 Bristol Bay Oceanographic Processes (B-BOP) - J. D. Schumacher - R. L. Charnell Pacific Marine Environmental Laboratory L. K. Coachman Department of Oceanography University of Washington 5 July 1977 Task Title: BRISTOL BAY OCEANOGRAPHIC PROCESSES (B-BOP) PI: Dr. James D. Schumacher Mr. R. L. Charnell NOAA/PMEL 3711 15th Avenue N. E. Seattle, WA 98105 > Dr. L. K. Coachman Department of Oceanography University of Washington Seattle, WA 98195 > > Reporting Period 1 April 1977 - 30 June 1977 # I. <u>Task Objectives</u>: - Determine spatial and temporal variability in the velocity-field and obtain indications of spatial coherence at various length scales across Bristol Bay. - 2) Determination of sea level perturbation time and length scales. - 3) Examination of meteorological factors related to observed pulses in mean flow. - 4) Characterization of temporal and spatial variability of hydrographic properties. # II. Field and Laboratory Activities: - A. Cruises: See attached cruise reports - B. Laboratory Activities: Meetings among PI's were held at Union, Washington on 17-19 May to coordinate plans for FY 77 and to discuss this year's work. # III. Results Data from the winter 76-77 moorings are now being processed. CTD data from cruises RP-4-DI-77A, LEG V and RP-4-MF-77B, LEG VII of the OCSEAP Bering Sea Project are being processed. The following scientific papers are in preparation: - Current Meter Observations in Bristol Bay, Alaska. Charnell, Mofjeld, Schumacher and Pearson. - 2) "Observations and Formation of a Front in Bristol Bay, Alaska." Schumacher, Kinder, Pashinski and Charnell. - 3) "Tidal Observations in Bristol Bay, Alaska". Pearson. UNIVERSITY OF WASHINGTON DEPARTMENT OF OCEANOGRAPHY SEATTLE, WASHINGTON 98195 # Preliminary Report University of Washington Participation in NOAA Ship Discoverer Cruise RP-4-DI-77A, Leg V > Bristol Bay Oceanographic Processes 26 April - 16 May 1977 > > Ъу Richard B. Tripp NOAA Contract 03-5-022-67, TA 4 Approved by: L. K. Coachman, Professor Principal Investigator Ref: 77-64 Francis Richards, Professor & Associate Chairman for Research #### BRISTOL BAY OCEANOGRAPHIC PROCESSES # 1. Objectives This study is a joint program with the Pacific Marine Environmental Laboratory (PMEL), ERL, NOAA to provide water mass circulation information over the eastern Bering Sea Shelf region for the Outer Continental Shelf Environmental Assessment Program (OCSEAP). The Leg V portion of Cruise RP-4-DI-77A on the NOAA ship Discoverer was the seventh phase in the program directed towards accomplishing this research. The objectives of this cruise were: - 1) The recovery of current meter and pressure gauge moorings in the Eastern Bering Sea, that were deployed in September 1976. - 2) The deployment of nine current meter and pressure gauge moorings at selected sites in the Eastern Bering Sea to monitor the seasonal changes in the system. The recovery of those moorings is planned for September 1977. - 3) The recovery and deployment of two current meter moorings
between Kodiak and Unimak Pass for the NEGOA project - 4) A series of C-T-D stations selected from the Bristol Bay Oceanographic Processes (B-BOP) program master grid with closer spaced stations normal to the coastline from Cape Sarechef to Port Moller. - 5) A series of C-T-D stations to examine the features and reality of water density inversions revealed in data obtained from previous cruises. This information is necessary in order to fully examine the mixing processes. - 6) Marine mammal observations as per project instructions. - 7) Micro-nutrient sampling: i) to examine the nutrient concentration in the three distinct water types of the Bering Sea area and the possible variations across their boundaries; ii) to examine the feasibility of using nutrient concentration as a tracer for bottom currents in the Bering Sea area. #### 2. Cruise Track and Narrative The NOAA ship Discoverer departed Kodiak, Alaska at 1800 GMT, 27 April 1977 and proceeded to the survey area (Figure 1). C-T-D stations were occupied enroute and at the mooring retrieval and/or deployment sites. A summary of C-T-D stations accomplished can be found in attachment A. - Latitude 55°12.0'N, longitude 156°56.7'W. Released at 1716 GMT and recovered at 1756 GMT, 28 April 1977. This mooring consisted of current meters at 22 meters and 100 meters water depth. - Station WGC-3D Deployed at 1840 GMT, 28 April 1977 in 112.4 meters water depth. This mooring consists of current meters at 22 meters and 100 meters water depth. Other pertinent mooring deployment information can be found in attachment B. - 2) Station WGC-1E Latitude 54°03.0'N, longitude 163°06.1'W. Released at 1809 GMT and recovered at 1856 GMT, 29 April 1977. This mooring consists of current meters at 19 meters and 77 meters water depth. - Station WGC-IF Deployed at 1930 GMT, 29 April 1977 in 88.3 meters water depth. This mooring consisted of current meters at 17 meters and 76 meters water depth. - 3) Station BC-13C Latitude 55°47.2'N, longitude 165°23.8'W. Released at 0015 GMT and recovered at 0104 GMT, 1 May 1977. This mooring consisted of current meters at 22 meters and 96 meters and a pressure gauge at 107 meters water depth. - Station BC-13D Deployed at 0146 GMT, 1 May in 108 meters water depth. This mooring consists of current meters at 20 meters and 96 meters and a pressure gauge at 107 meters water depth. - 4) Station BC-17A Latitude 56°34.0'N, longitude 167°33.3'W. Released at 1917 GMT and recovered at 2312 GMT, 1 May 1977. This mooring had been trawled and moved from the original deployment site. Hence, the three-hour search before finding the mooring. Instrumentation recovered showed some damage. There were deep gouge marks along the acoustic release support rod and lower current meter. The mooring was also minus viny floats, lower current meter rotor, and most of the upper current meter. - Station BC-17B Deployed at 2353 GMT, 1 May 1977 in 109 meters water depth. This mooring consists of current meters at 21 meters and 97 meters water depth. - 5) Station BC-16A Deployed at 2029, 2 May 1977 in 50 meters water depth. This mooring consists of current meters at 20 meters and 38 meters water depth. - 6) Station BC-2D Latitude 57°02.3'N, longitude 163°25.7'W. Released at 1858 GMT and recovered at 1935 GMT, 3 May 1977. This mooring consisted of current meters at 21 meters and 54 meters and a pressure gauge at 65 meters water depth. Station BC-2E Deployed at 2002 GMT, 3 May 1977 in 65 meters water depth. This mooring consists of current meters at 19 meters and 53 meters and a pressure gauge at 64 meters water depth. 7) Station BC-15B Latitude 57°37.7'N, longitude 162°44.9'W. Released 0129 GMT, 4 May 1977 but not recovered. At the time of release there were 1-2 oktas of very broken first year ice (less than 10 meters across) in one quadrant. The signal strength of the acoustic release on interrogation indicated that the mooring should surface in open water. However, after firing, the mooring was not located. There are two possibilities. The mooring either had lost its buoyancy package and did not surface, or it had surfaced in or under the ice pack. If both floatation packages were still attached to the mooring, I think that the probability of the mooring being completely under one of the pieces of ice encountered quite low. After four hours of unsuccessful searching through the broken ice we arrived at a point where the signal strength received from the release was strongest. This position was 0.2 nm away from the original release site. The ice had been drifting at a rate of approximately 1 knot which suggests: 1) that the mooring was not drifting with the ice; or 2) that the mooring did not surface. Under the assumption that the mooring had surfaced, and was drifting with, or under the ice, we established contact with the mooring and positioned the ship near the ice pack. We drifted with a section of the ice pack until dawn. The net drift was approximately 10 nm (east and then northwest). No contact was made with the mooring which suggests that if the mooring was adrift, it was with a different section of the pack ice. We then proceeded to run a search pattern back towards the site where the signal strength was strongest and to the original release site. No contact was established at any point. During the latter part of leg V, when the ship was northwest of this area, we attempted to make contact with the mooring. However, no contact was ever established. Station BC-15C Deployed at 0624 GMT, 4 May 1977 in 44.6 meters water depth. This mooring consists of current meters at 18 meters and 33 meters and a pressure gauge at 44 meters water depth. The ship then proceeded to run the hydrographic sections normal to the Alaska Peninsula. At 0755 GMT, 10 May 1977, we left the survey area and proceeded to Unalaska, Alaska to evacuate an injured engineer. At 2041 GMT, 10 May 1977 the evacuation was completed and we proceeded back to the survey area. - 8) Station BC-19A Deployed at 0322 GMT, 12 May 1977 in 33.5 meters water depth. This mooring consists of a current meter at 22 meters water depth. - 9) Station BC-18A Deployed at 1647 GMT, 12 May 1977 in 31.5 meters water depth. This mooring consists of a current meter at 20 meters water depth. - 10) Station BC-9B Latitude 59°13.0'N, longitude 167°42.0'W. Released at 2014 GMT and recovered at 2038 GMT, 12 May 1977. This mooring consisted of current meters at 23 meters and 33 meters and a pressure gauge at 39 meters water depth. - Station BC-9C Deployed at 2122 GMT, 12 May 1977 in 40.5 meters water depth. This mooring consists of current meters at 23 meters and 33 meters and a pressure gauge at 39 meters water depth. - 11) Station BC-4D Latitude 58°36.6'N, longitude 168°21.7'W. Released at 0119 GMT and recovered at 0143 GMT, 13 May 1977. This mooring consisted of current meters at 20 meters and 48 meters and a pressure gauge at 54 meters water depth. - Station BC-4E Deployed at 0208 GMT, 13 May 1977 in 55.1 meters water depth. This mooring consists of current meters at 20 meters and 48 meters water depth. We continued with the C-T-D program, working our way towards Unimak Pass. At 1915 GMT, 14 May 1977, the NOAA ship Discoverer changed course for Unimak Pass, departed the survey area and proceeded to Kodiak, Alaska. At 1710 GMT, 16 May 1977, the ship was alongside the marginal pier, U.S. Coast Guard Base, Kodiak, Alaska. A total of 4135 nautical miles were logged on Leg V of this cruise. ### 3. Methods Asnderaa RCM-4 current meters were employed on each mooring, set to record data (current speed and direction, temperature, conductivity and pressure) at a sampling interval of 30 minutes (PMEL) or 20 minutes (UW). The meters on BC-4E, BC-9C, BC-18A and BC-19A do not have a conductivity or pressure sensor. An Aanderaa TG-2A or TG-3A pressure gauge was housed in an anchor well on moorings BC-2E, BC-4E, BC-9C, BC-13D and BC-15C. The sampling interval on the pressure gauges was either 15 or 30 minutes. C-T-D casts were taken on each hydrographic station utilizing a Plessy Model 9040 Profiling System (S/N 6219 Casts 1-76; S/N 6201 Casts 77-235). Data were stored on 7-track magnetic tape for reduction ashore. In order to determine field correction factors for the conductivity and temperature sensors, a niston bottle was mounted on the rosette sampler 1 meter above the sensors. The salinity samples collected were analyzed aboard ship on a Beckman Instruments Model RS-7B Portable Salinometer S/N 22486. C-T-D casts were also taken in certain areas in an attempt to examine the features of any small density inversions which might be present in the water column. Previous data have shown the presence of small density inversions (vertical scale of 1-10 meters) on certain grid stations. Three lowering rates were selected to examine the possible density inversions, and also to examine sensor response. These rates were 20 m/m, 30 m/m, and 40 m/m. One down-cast and one up-cast, at each of these rates, were recorded and plotted. The up-casts were taken solely to help establish the reality of any density inversions present in the data. Preliminary results indicate that: 1) some of the inversions are real; 2) there is considerable noise in the data at the 20 m/m lowering rate; and 3) a lowering rate of 30 m/m is quite acceptable for these shallow stations. A total of 149 stations were occupied; 234 C-T-D casts (177 down, 57 up) were accomplished. ## Micro-Nutrient Sampling Program Water samples for micro-nutrient analysis were obtained on 103 stations on the C-T-D grid. The two primary objectives of the water sampling are as follows: 1) to examine the nutrient concentration in all three water types and the possible variations across their boundaries, 2) to examine the feasibility of using nutrient concentration as a tracer for bottom currents in the Bering Sea bay area. For the location of stations on which a micro-nutrient sample was obtained see attachment A. The
micro-nutrient stations are labeled with an asterisk. Note, both a bottom, minus five, and a 20 meter sample were collected at most of the 103 stations. However, if the depth of the water was less than 40 meters then only a bottom minus five sample was taken. The nutrient samples were frozen and stored aboard NOAA ship Discoverer. Analysis of these samples will be undertaken by ENS Friend on the ship's return to Seattle. #### 4. Personnel Richard B. Tripp Principal Oceanographer University of Washington, C/S Steve Harding Research Aide University of Washington LTJG Don Dreves NOAA Corps PMEL/ERL/NOAA David Burch PMEL/ERL/NOAA Pat McGuire NOAA Corps NOAA Ship Discoverer Attachment A C-T-D Station Summary | Cast
No. | Grid
No. | Time
GMT | Date
GMT
1977 | Latitude
North | Longitude
West | CTD
Depth
M | Water
Depth
M | |-------------|-------------|--------------|---------------------|-------------------|-------------------|-------------------|---------------------| | 1* | WGC-3D | 1918 | 28/4 | 55-11.9 | 156-57.2 | 107 | 114 | | 2 | WGC-1E | 1642 | 29/4 | 54-02.6 | 163-06.2 | 79 | 89 | | 3* | | 2203 | 29/4 | 53-46.9 | 162-58.3 | 1500 | 1719 | | 4 | | 0005 | 30/4 | 53-51.1 | 163-02.5 | 70 | 1520 | | 5 | | 0100 | 30/4 | 53-51.1 | 163-02.5 | 1507 | 1520 | | 6* | | 0322 | 30/4 | 53-55.7 | 163-07.0 | 1020 | | | 7 | | 0451 | 30/4 | 54-00.2 | 163-11.8 | 78 | 86 | | 8 | | 0542 | 30/4 | 54-04.9 | 163-16.9 | 72 | 78 | | 9* | | 0633 | 30/4 | 54-09.7 | 163-21.9 | 69 | 78 | | 10* | 25 | 1349 | 30/4 | 54-29.0 | 165-47.0 | 393 | 402 | | 11* | 26 | 1553 | 30/4 | 54-41.7 | 166-10.7 | 273 | 285 | | 12* | 27 | 1807 | 30/4 | 54-56.7 | 166-38.3 | . 144 | 151 | | 13* | 38 | 2015 | 30/4 | 55-17.0 | 166-28.4 | 127 | 135 | | 14* | BC-13D | 0217 | 1/5 | 55-47.2 | 165-23.3 | 100 | 107 | | 15* | 49 | 0 504 | 1/5 | 55-39.1 | 166-12.6 | 115 | 124 | | 16* | 50 | 0704 | 1/5 | 55-52.8 | 166-41.3 | 125 | 131 | | 17* | 40 | 0912 | 1/5 | 55-45.0 | 167-17.8 | 125 | 134 | | 18* | 30 | 1126 | 1/5 | 55-36.8 | 167-54.2 | 128 | 135 | | 19* | 31 | 1318 | 1/5 | 55-48.9 | 168-19.0 | 132 | 141 | | 20* | 42 | 1514 | 1/5 | 56-08.3 | 168-17.7 | 154 | 163 | | 21* | 52 | 1716 | 1/5 | 56-20.2 | 167-45.1 | 125 | 1.32 | | 22* | BC-17A | 1854 | 1/5 | 56-33.9 | 167-34.0 | 100 | 108 | | 23* | 53 | 0202 | 2/5 | 56-29.4 | 168-10.4 | 117 | 122 | | 24* | 54 | 0342 | 2/5 | 56-38.9 | 168-35.5 | 102 | 109 | | 25* | 66 | 0602 | 2/5 | 56-55.0 | 168-58.3 | 79 | 86 | | 26* | 66.1 | 0745 | 2/5 | 57-08.2 | 167-37.9 | 67 | 73 | | 27* | 76 | 0936 | 2/5 | 57-21.0 | 167-16.1 | 65 | 70 | | 28* | 76.1 | 1156 | 2/5 | 57-30.2 | 166-47.0 | 62 | 68 | | 29* | 86 | 1354 | 2/5 | 57-39.2 | 166-18.4 | 59 | 66 | | 30* | 86.1 | 1542 | 2/5 | 57-49.0 | 165-46.8 | 52 | 61 | | Cast
No. | Grid
No. | Time
GMT | Date
GMT
1977 | Latitude
North | Longitude
West | CTD
Depth
M | Water
Depth
M | |-------------|-------------|--------------|---------------------|-------------------|-------------------|-------------------|---------------------| | 31* | 96 | 1740 | 2/5 | 58-09.7 | 165-55.5 | 40 | 49 | | 32* | BC-16A | 1951 | 2/5 | 5 7-59.9 | 165-16.0 | 45 | 50 | | 33* | 105.1 | 2219 | 2/5 | 58-09.2 | 164-57.6 | 35 | ·39 | | 34* | 105.2 | 2359 | 2/5 | 58-04.2 | 164-36.5 | 36 | 44 | | 35* | 95.1 | 0144 | 3/5 | 57-55.5 | 164-25.8 | 34 | 39 | | 36* | 95 | 0314 | 3/5 | 57-45.0 | 164-42.4 | 43 | 51 | | 37* | 95.2 | 0448 | 3/5 | 57-33.0 | 165-00.4 | 55 | 62 | | 38* | 85 | 0623 | 3/5 | 57-20.9 | 165-18.7 | 58 | 67 | | 39* | 84.1 | 0756 | 3/5 | 57-07.9 | 164-58.2 | 60 | 67 | | 40* | 84.2 | 0939 | 3/5 | 57-21.1 | 164-38.0 | 55 | 63 | | 41* | 94.1 | 1130 | 3/5 | 57-34.0 | 164-16.2 | 49 | 54 | | 42* | 94.2 | 1325 | 3/5 | 57-43.5 | 163-44.3 | 44 | 48 | | 43* | 94 | 1 524 | 3/5 | 57-24.2 | 163-49.4 | 46 | 56 | | 44* | 93.1 | 1713 | 3/5 | 57-08.0 | 163-31.0 | 55 | 64 | | 45* | BC-2D | 1841 | 3/5 | 57-02.2 | 163-25.0 | 58 | 65 | | 46* | 103.1 | 2200 | 3/5 | 57-19.2 | 163-05.1 | 48 | 53 | | 47 | BC-15B | 0112 | 4/5 | 57-37.6 | 162-44.9 | 37 | 46 | | 48* | 118 | 2154 | 4/5 | 58-00.8 | 161-59.8 | 38 | 42 | | 49* | 129 | 0016 | 5/5 | 58-00.9 | 161-12.8 | 37 | 49 | | 50* | 128 | 0251 | 5/5 | 58-02.5 | 160-24.7 | 30 | 39 | | 51* | 136 | 0543 | 5/5 | 58-06.1 | 159-29.8 | 20 | 31 | | 52* | 135 | 0811 | 5/5 | 57-45.1 | 158-57.6 | 33 | 45 | | 53* | 134 | 1007 | 5/5 | 57-29.7 | 158-36.5 | 39 | 44 | | 54* | 125 | 1316 | 5/5 | 57-08.5 | 159-21.3 | 48 | 53 | | 55* | 126 | 1521 | 5/5 | 57-28.5 | 159-42.2 | 45 | 53 | | 56* | 127 | 1711 | 5/5 | 57-45.9 | 160-05.1 | 42 | 50 | | 57* | 117 | 2020 | 5/5 | 57-40.9 | 161-08.8 | 43 | 53 | | 58 | 116 | 2221 | 5/5 | 57-28.0 | 160-40.0 | 55 | 60 | | 59* | 115 | 0023 | 6/5 | 57-11.1 | 160-20.8 | 58 | 62 | | 60 | 114 | 0229 | 6/5 | 56-54.5 | 159-58.6 | 52 | 57 | | 61 | 114.1 | 0356 | 6/5 | 56-38.3 | 160-00.9 | 35 | 42 | | 62 | 114.2 | 0555 | 6/5 | 56-25.8 | 160-30.9 | 26 | 38 | | 63 | 114.2U | 0558 | 6/5 | 56-26.6 | 160-31.3 | 26 | 38 | | 64 | 110 | 0718 | 6/5 | 56-34.1 | 160-42.8 | 50 | 60 | | 65 | 110.1 | 0840 | 6/5 | 56-46.3 | 160-56-0 | 15 | 65 | | Cast | Grid
No. | Time
GMT | Date
GMT
1977 | Latitude
North | Longitude
West | CTD
Depth
M | Water
Depth
M | |-----------|-------------|-------------|---------------------|-------------------|-------------------|-------------------|---------------------| | 66 | 110.1 | 0918 | 6/5 | 56-47.2 | 160-54.5 | 56 | 65 | | 67* | 111 | 1040 | 6/5 | 56-56.7 | 161-10.8 | 66 | 68 | | 68 | 111.1 | 1159 | 6/5 | 57-05.2 | 161-20.6 | 61 | 70 | | 69 | 112 | 1311 | 6/5 | 57-14.1 | 161-32.3 | 46 | 56 | | 70 | 112.1 | 1435 | 6/5 | 57-25.0 | 161-45.9 | 41 | 47 | | 71 | 103 | 1706 | 6/5 | 57-13.6 | 162-31.7 | 43 | 53 | | 72 | 102.1 | 1901 | 6/5 | 57-04.6 | 162-20.3 | 47 | 58 | | 73 | 102 | 2036 | 6/5 | 56-57.3 | 161-59.3 | 42 | 53 | | 74 | 101.1 | 2153 | 6/5 | 56-46.8 | 161-59.7 | 63 | 67 | | 75* | 101 | 2350 | 6/5 | 56-37.4 | 161-31.3 | 66 | 71 | | 76 | 1010 | 0004 | 7/5 | 56-37.3 | 161-31.9 | 66 | 71 | | 77 | 100.1 | 0128 | 7/5 | 56-26.1 | 161-39.4 | 51 | 58 | | 78 | 100 | 0245 | 7/5 | 56-14.3 | 161-45.5 | 50 | 60 | | 79 | 100.2 | 0440 | 7/5 | 56-03.5 | 161-40.9 | 35 | 44 | | 80 | 90 | 0651 | 7/5 | 55-59.7 | 162-08.5 | 52 | 60 | | B1 | 90.1 | 0812 | 7/5 | 56-09.6 | 162-18.7 | 68 | 76 | | 82* | 91 | 0930 | 7/5 | 56-18.0 | 162-27.3 | 64 | 74 | | 83 | 91.1 | 1050 | 7/5 | 56-26.2 | 162-39.0 | 69 | 75 | | 84 | 92 | 1212 | 7/5 | 56-34.9 | 162-50.6 | 70 | 76 | | 85 | 92.1 | 1323 | 7/5 | 56-43.0 | 163-02.0 | 64 | 70 | | 86 | 93 | 1511 | 7/5 | 56-53.5 | 163-12.2 | 60 | 66 | | 87 | 93.2 | 1724 | 7/5 | 56-53.8 | 163-52.8 | 64 | 70 | | 88 | 84 | 1947 | 7/5 | 56-54.7 | 164-36.3 | 61 | 69 | | 89 | 83.1 | 2117 | 7/5 | 56-41.9 | 164-21.4 | 66 | 73 | | 90 | 83 | 2244 | 7/5 | 56-29.3 | 164-08.1 | 75. | 79 | | 91 | 82.1 | 0003 | 8/5 | 56-23.5 | 163-50.3 | 77 | 82 | | 92 | 82 | 0120 | 8/5 | 56-19.7 | 163-32.5 | 78 | 82 | | 93 | 81.1 | 0230 | 8/5 | 56-10.7 | 163-23.7 | 81 | 86 | | 94 | 81 | 0333 | 8/5 | 56-03.1 | 163-14.8 | 78 | 85 | | 95 | 80.1 | 0451 | 8/5 | 55-52.3 | 163-02.5 | 77 | 84 | | 96 | 80 | 0608 | 8/5 | 55-42.5 | 162-52.0 | 47 | 57 | | 97 | 80.2 | 0706 | 8/5 | 55-35.5 | 162-52.6 | 34 | 45 | | 98* | 70 | 0954 | 8/5 | 55-25.4 | 163-31.9 | 65 | 67 | | 99* | 70.1 | 1119 | 8/5 | 55-35.6 | 163-40.7 | 79 | 83 | | 100* | 71 | 1300 | 8/5 | 55-45.9 | 163-54.6 | 90 | 93 | | Cast
No. | Grid
No. | Time
GMT | Date
GMT
1977 | Latitude
North | Longitude
West | CTD
Depth
M | Water
Depth
M | |-------------|-------------|-------------|---------------------|-------------------|-------------------|-------------------|---------------------| | 101* | 71.1 | 1425 | 8/5 | 55~54.8 | 164-04.1 | 85 | 92 | | 102* | 72 | 1534 | 8/5 | 56-03.9 | 164-13.9 | 83 | 90 | | 103* | 72.1 | 1705 | 8/5 | 56-14.0 | 164 -35.0 | 83 | 90 | | 104* | 73 | 1840 | 8/5 | 56-24.3 | 164-56.2 | 76 | 84 | | 105 | 61.1 | 2155 | 8/5 | 56-03.8 | 165-39.9 | 91 | 98 | | 106 | 61.10 | 2203 | 8/5 | 56-03.7 | 165-40.0 | 91 | 98 | | 107 | 61.1 | 2210 | 8/5 | 56-03.7 | 165-40.1 | 91 | 98 | | 108 | 61.10 | 2216 | 8/5 | 56-03.7 | 165-40.2 | 91 | 98 | | 109* | 61.1 | 2221 | 8/5 | 56-03.6 | 165-40.3 | 91 | 98 | | 110 | 61.10 | 2233 | 8/5 | 56-03.5 | 165-40.5 | 91 | 98 | | 111 | 61 | 0006 | 9/5 | 55-54.6 | 165-24.1 | 93 | 99 | | 112 | 61U | 0014 | 9/5 | 55-54.5 | 165-24.3 | 93 | 99 | | 113 | 61 | 0020 | 9/5 | 55-54.4 | 165-24.4 | 93 | 99 | | 114 | 61U | 0027 | 9/5 | 55-54.4 | 165-24.4 | 93 | 99 | | 115 | 61 | 0033 | 9/5 | 55-54.3 | 165-24.8 | 93 | 99 | | 116* | 61U | 0045 | 9/5 | 55-54.1 | 165-25.0 | 93 | 9 9 | | 117 | 60.1 | 0211 | 9/5 | 55-46.7 | 165-07.5 | 93 | 100 | | 118 | 60.1U | 0220 | 9/5 | 55-46.7 | 165-07.6 | 93 | 100 | | 119 | 60.1 | 0227 | 9/5 | 55-46.6 | 165-07.8 | 93 | 100 | | 120 | 60.10 | 0235 | 9/5 | 55-46-6 | 165-07.9 | 93 | 100 | | 121* | 60.1 | 0239 | 9/5 | 55-46.5 | 165-08.0 | 93 | 100 | | 122 | 60.1U | 0249 | 9/5 | 55-46.5 | 165-08.1 | 93 | 100 | | 123 | 60 | 0413 | 9/5 | 55-40.3 | 164-50.0 | 92 | 99 | | 124* | 59.1 | 0531 | 9/5 | 55-30.9 | 164-42.0 | 93 | 101 | | 125 | 59 | 0647 | 9/5 | 55-23.2 | 164-30.4 | 95 | 100 | | 126* | 58.1 | 0752 | 9/5 | 55-15.9 | 164-20.7 | 89 | 95 | | 128 | 58 | 1713 | 9/5 | 55-09.9 | 164-12.9 | 52 | 59 | | 129 | 58.2 | 1847 | 9/5 | 55-02.0 | 164-28.8 | 45 | 55 | | 130* | 46 | 2032 | 9/5 | 54-56.5 | 164-52.1 | 70 | 78 | | 131 | 46.1 | 2143 | 9/5 | 55-02.5 | 165-04.8 | 102 | 109 | | 132 | 47 | 2253 | 9/5 | 55-07.5 | 165-16.2 | 106 | 114 | | 133* | 48 | 0108 | 10/5 | 55-24.2 | 165-44.8 | 110 | 117 | | 134 | 62 | 0501 | 10/5 | 56-10.0 | 165-53.9 | 94 | 101 | | 135* | 62U | 0510 | 10/5 | 56-10.0 | 165-53.9 | 94 | 101 | | Cast
No. | Grid | Time
GMT | Date
GMT
1977 | Latitude
North | Longitude
West | CTD
Depth
M | Water
Depth
M | |-------------|-------------|-------------|---------------------
----------------------|-------------------|-------------------|---------------------| | 136 | 62 | 0517 | 10/5 | 56-10.1 | 165-53.9 | 94 | 101 | | 137 | 62U | 0523 | 10/5 | 56-10.1 | 165-53.9 | 94 | 101 | | 138* | 62 | 0528 | 10/5 | 56-10.0 | 165-54.0 | 94 | 101 | | 139 | 62U | 0539 | 10/5 | 56-10.1 | 165-54.0 | 94 | 101 | | 140 | 62.1 | 0702 | 10/5 | 56-16.1 | 166-09.6 | 92 | 101 | | 141 | 62.1U | 0713 | 10/5 | 56-16.0 | 166-09.5 | 92 | 101 | | 142 | 62.1 | 0721 | 10/5 | 56-16.0 | 166-09.4 | 90 | 101 | | 143 | 62.1U | 0730 | 10/5 | 56-16.0 | 166-09.4 | 90 | 101 | | 144 | 62.1 | 0737 | 10/5 | 56-16.0 | 166-09.3 | 93 | 101 | | 145* | 62.1U | 0748 | 10/5 | 56-16.0 | 166-09.2 | 93 | 101 | | 146 | 63 | 0804 | 11/5 | 56-24.4 | 166-27.4 | 94 | 100 | | 147 | 63U | 0814 | 11/5 | 56-24.6 | 166-27.4 | 94 | 100 | | 148 | 63 | 0826 | 11/5 | 56-24.9 | 166-27.4 | 94 | 100 | | 149 | 63U | 0834 | 11/5 | 56-25.2 | 166-27.5 | 94 | 100 | | 150* | 63 | 0843 | 11/5 | 56-25.3 | 166-27.4 | 92 | 100 | | 151 | 63U | 0853 | 11/5 | 56-25.6 | 166-27.6 | 92 | 100 | | 152 | 63.1 | 0958 | 11/5 | 56-29.3 | 166-42.3 | 93 | 102 | | 153 | 63.1U | 1005 | 11/5 | 56-29.4 | 166-42.3 | 93 | 102 | | 154 | 63.1 | 1010 | 11/5 | 56-29.5 | 166-42.3 | 93 | 102 | | 155 | 63.1U | 1015 | 11/5 | 56-29.6 | 166-42.3 | 93 | 102 | | 156* | 63.1 | 1020 | 11/5 | 56-29.6 | 166-42.3 | 93 | 102 | | 157 | 63.1U | 1030 | 11/5 | 56-29.8 | 166-42.2 | 93 | 102 | | 158 | 74.1 | 1319 | 11/5 | 56-57.6 | 166-02.9 | 65 | 70 | | 159 | 74.10 | 1326 | 11/5 | 56-57.6 | 166-02.8 | 6 5 | 70 | | 160 | 74.1 | 1333 | 11/5 | 56-57.6 | | 65 | 70 | | 161 | 74.10 | 1339 | 11/5 | 56 - 57.6 | 166-02.5 | 65 | 70 | | 162* | 74.1 | 1345 | 11/5 | 56-57.5 | 166-02.5 | 65 | 70 | | 163 | 74.1U | 1355 | 11/5 | 56-57.5 | 166-02.3 | 65 | 70 | | 164* | 74 | 1517 | 11/5 | 56-49.5 | 165-39.7 | 69 | 74 | | 165 | 74 T | 1527 | 11/5 | 56-49.5 | 165-39.6 | 69 | 74 | | 166* | 73.1 | 1659 | 11/5 | 56-36.8 | 165-16.6 | 68 | 76 | | 167 | 73.10 | 1709 | 11/5 | 56-36.8 | 165-16.7 | 68 | 76 | | 168* | BC-19A | 0344 | 12/5 | 58-42.2 | 163-53.0 | 23 | 33.5 | | 169* | 106.1 | 0646 | 12/5 | 58-42.2 | 165-04.9 | 25 | . 34 | | 170* | 107 | 1002 | 12/5 | 58-43.1 | 166-19.1 | 29 | 38 | | Cast
No. | Grid
No. | Time
GMT | Date
GMT
1977 | Latitude
North | Longitude
West | CTD
Depth
M | Water
Depth
M | |-------------|----------------|-------------|---------------------|-------------------|-------------------|-------------------|---------------------| | 171* | 123 | 1319 | 12/5 | 59-14.3 | 166-38.5 | 21 | 29 | | 172* | BC-18A | 1702 | 12/5 | 59-39.8 | 167-07.4 | 20 | 31.5 | | 173* | 140-1 | 1816 | 12/5 | 59-28.9 | 167-22.8 | 20 | 31 | | 174* | BC-9B | 1953 | 12/5 | 59-13.1 | 167-42.1 | 32 | 39 | | 175* | 139.1 | 2259 | 12/5 | 58-57.4 | 167-59.5 | 33 | 42 | | 176* | BC-4E | 0229 | 13/5 | 58-36.5 | 168-21.7 | 46 | 55.1 | | 177* | 138.1 | 0413 | 13/5 | 58-22.2 | 168-40.3 | 60 | 66 | | 178* | 137 | 0553 | 13/5 | 58-08.0 | 169-00.9 | 62 | 69 | | 179 | 1370 | 0605 | 13/5 | 58-08.0 | 169-01.1 | 62 | 69 | | 180*. | 69 | 0733 | 13/5 | 57-54.0 | 169-19.2 | 57 | 65 | | 181 | 69T | 0745 | 13/5 | 57-53.9 | 169-19.3 | 57 | 65 | | 182* | 69.1 | 0907 | 13/5 | 57-41.2 | 169-35.9 | 59 | 69 | | 183 | 69.1V | 0917 | 13/5 | 57-41.2 | 169-35.9 | 59 | 69 | | 184* | 57 | 1042 | 13/5 | 57-28.1 | 169-49.5 | 57 | 67 | | 185 | 57 0 | 1053 | 13/5 | 57-28.2 | 169-49.3 | 57 | 67 | | 186 | 68 | 1301 | 13/5 | 57-31.4 | 169-01.6 | 60 | 70 | | 187 | 68 0 | 1308 | 13/5 | 57-31.4 | 169-01.4 | 60 | 70 | | 188* | 77 | 1531 | 13/5 | 57-28.8 | 168-05.5 | 65 | 71 | | 189 | · 770 | 1541 | 13/5 | 57-28.8 | 168-05.4 | 65 | 71 | | 190 | 76 | 1810 | 13/5 | 57-20.9 | 167-15.8 | 60 | 69 | | 191 | 7 60 | 1817 | 13/5 | 57-20.9 | 167-15.8 | 60 | 69 | | 192 | 76 | 1825 | 13/5 | 57-20.8 | 167-15.9 | 60 | 69 | | 193 | 76U | 1832 | 13/5 | 57-20.7 | 167-15.9 | 50 | 69 | | 194* | 76 | 1837 | 13/5 | 57-20.7 | 167-16.0 | 60 | 69 | | 195 | 76 0 | 1846 | 13/5 | 57-20.7 | 167-16.1 | 60 | 69 | | 196* | 75.1 | 2031 | 13/5 | 57-13.7 | 166-51.9 | 61 | 65 | | 197 | 75 . 10 | 2042 | 13/5 | 57-13.7 | 166-52.1 | 61 | 65 | | 198* | 75 | 2213 | 13/5 | 57-07.3 | 166-26.2 | 61 | 63 | | 199 | 75 0 | 2223 | 13/5 | 57-07.3 | 166-26.3 | 61 | 63 | | 200 | 65.1 | 0014 | 14/5 | 56-56.2 | 166-57.6 | 68 | 75 | | 201 | 65.1V | 0022 | 14/5 | 56-56.3 | 166-57.7 | 68 | 75 | | 202 | 65.1 | 0028 | 14/5 | 56-56.4 | 166-57.7 | 69 | 75 | | 203 | 65.1V | 0032 | 14/5 | 56-56.5 | 166-57.7 | 69 | 75 | | 204* | 65.1 | 0038 | 14/5 | 56-56.5 | 166-57.7 | 69 | 75 | | 205 | 65.10 | 0048 | 14/5 | 56-56.6 | 166-57.7 | 69 | 75 | | Cast
No. | Grid
No. | Time
GMT | Date
GMT
1977 | Latitude
North | Longitude
West | CTD
Depth
<u>M</u> | Water
Depth
M | |-------------|-----------------|-------------|---------------------|-------------------|-------------------|--------------------------|---------------------| | 206 | 65 | 0240 | 14/5 | 56-45.9 | 167-29.5 | 84 | 91 | | 207 | .65U | 0246 | 14/5 | 56-45.9 | 167-29.3 | 84 | 91 | | 208 | 65 | 0252 | 14/5 | 56-45.9 | 167-29.1 | 84 | 91 | | 209 | 65 U | 0256 | 14/5 | 56-45.8 | 167-29.0 | 84 | 91 | | 210* | 65 | 0300 | 14/5 | 56-45.8 | 167-28.9 | 84 | 91 | | 211 | 6 50 | 0310 | 14/5 | 56-45.6 | 167-28.4 | 84 | 91 | | 212 | 64.1 | 0409 | 14/5 | 56-39.9 | 167-13.7 | 93 | 100 | | 213 | 64.1U | 0417 | 14/5 | 56-39.8 | 167-13.6 | 93 | 100 | | 214 | 64.1 | 0422 | 14/5 | 56-39.8 | 167-13.5 | 93 | 100 | | 215 | 64.1U | 0427 | 14/5 | 56-39.7 | 167-13.4 | 93 | 100 | | 216* | 64.1 | 0432 | 14/5 | 56-39.7 | 167-13.3 | 93 | 100 | | 217 | 64.1U | 0441 | 14/5 | 56-39.5 | 167-13.2 | 93 | 100 | | 218 | 64 | 0538 | 14/5 | 56-35.0 | 166-58.3 | 95 | 100 | | 219 | 64U | 0544 | 14/5 | 56-34.9 | 166-58.3 | 95 | 100 | | 220 | 64 | 0552 | 14/5 | 56-34.8 | 166-58.3 | 94 | 100 | | 221 | 64 ʊ | 0600 | 14/5 | 56-34.8 | 166-58.4 | 94 | 100 | | 222* | 64 | 0607 | 14/5 | 56-34.7 | 166-58.4 | 94 | 100 | | 223 | 64U | 0618 | 14/5 | 56-34.6 | 166-58.6 | 94 | 100 | | 224* | 51 | 0843 | 14/5 | 56-05.5 | 167-11.6 | 127 | 133 | | 225 | 51 0 | 0856 | 14/5 | 56-05.4 | 167-11.8 | 127 | 133 | | 226 | 40 | 1050 | 14/5 | 55-43.8 | 167-18.2 | 130 | 135 | | 227 | 40 0 | 1100 | 14/5 | 55-43.9 | 167-18.3 | 130 | 135 | | 228* | 39 | 1247 | 14/5 | 55-30.3 | 166-52.0 | 129 | 136 | | 229 | 3 90 | 1259 | 14/5 | 55-30.4 | 166-52.0 | 129 | 136 | | 230 | 38 | 1500 | 14/5 | 55-17.4 | 166-28.2 | 129 | 136 | | 231 | 38 0 | 1510 | 14/5 | 55-17.3 | 166-28.3 | 129 | 136 | | 232* | 37 | 1647 | 14/5 | 55-03.3 | 166-04.8 | 128 | 135 | | 233 | 37 U | 1659 | 14/5 | 55-03.2 | 166-04.9 | 128 | 135 | | 234* | 36 | 1831 | 14/5 | 54-52.0 | 165-43.3 | 138 | 144 | | 235 | 36U | 1834 | 14/5 | 54-52.0 | 165-43.4 | 138 | 144 | Attachment B Mooring Deployment Summary | Mooring
No. | Time
GMT | Date
GMT
1977 | Latitude
North | Longitude
West | Depth
Meters | X Rate | Loran-C
Y Rate | Z Rate | Receiver
Channel
No. | |----------------|-------------|---------------------|-------------------|-------------------|-----------------|----------|-------------------|----------|----------------------------| | WGC-3D PMEL | 1840 | 28/4 | 55-12.0 | 156-57.3 | 112.4 | 18574.41 | :33376.40 | 45005.93 | 10 | | WGC-1F PMEL | 1930 | 29/4 | 54-03.8 | 163-05.8 | 88.3 | 18241.08 | 34394.46 | 47270.35 | 8 | | BC-13D PMEL | 0146 | 1/5 | 55-47.1 | 165-23.1 | 108 | 18517.89 | 34474.73 | 48202.50 | 6 | | BC-17B PMEL | 2353 | 1/5 | 56-36.2 | 167-41.2 | 109 | 18644.86 | 34727.53 | 49145.30 | 4 | | BC-16A PMEL | 2029 | 2/5 | 57-59.2 | 165-15.8 | 50 | 18750.13 | 33742.03 | 48118.34 | 1 | | BC-2E PMEL | 2002 | 3/5 | 57-02.5 | 163-26.0 | 65 | 18708.92 | 33803.54 | 47444.26 | 5 | | BC-15C PMEL | 0624 | 4/5 | 57-39.0 | 162-41.4 | 45 | 18741.32 | 33463.16 | 47126.00 | 9 | | BC-19A UW | 0322 | 12/5 | 58-42.6 | 163-52.8 | 33.5 | 18735.41 | 33171.08 | 47518.59 | 1 | | BC-18A UW | 1647 | 12/5 | 59-40.1 | 167-07.5 | 31.5 | 18536.43 | 33028.70 | 48452.71 | 6 | | BC-9C UW | 2122 | 12/5 | 59-12.0 | 167-43.2 | .40.5 | 18571.89 | 33414.47 | 48748.63 | 2 | | BC-4E UW | 0208 | 13/5 | 58-36.6 | 168-21.7 | 55.1 | 18626.15 | 33893.57 | 49109.98 | 10 | #### NOAA Ship MILLER FREEMAN Cruise Report RP-4-MF-77B Leg VII 5/23 - 6/11//7 #### Introduction This cruise was made in support of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) designed to study the circulation of water on the continental shelf areas of Alaska. Because it covered two diverse areas, Bristol Bay and the Icy Bay region, Leg VII was divided into two segments denoted as VIIA and VIIB in the following discussion. The objectives of each of these segments were: ### Leg VIIA: - (1) Deploy satellite-tracked free-drifting buoys to asses surface circulation in the Southern portion of Bristol Bay known as St. Georges Basin. - (2) Collect CTD and XBT data sufficient to delineate the frontal boundary between the well mixed coastal water of Bristol Bay and the two layered water typical of Bristol Bay Mid Shelf. - (3) Collect CTD data in nearshore areas to investigate the behavior of local river discharge and phenomena such as the high salinity anomoly in Kuskokwim Bay. - (4) Attempt to locate and, if possible recover, the current meter station BC-15B lost on a recovery attempt by the NOAA Ship DISCOVERER two weeks earlier. ## Leg VIIB: - (1) Recover three current meter moorings and deploy one current meter mooring in the Icy Bay region. - (2) Collect CTD and Water samples for filtering of Suspended Sediments in the general area of the WIST arrays. #### Personnel The following scientific personnel were aboard to carry out the proposed program: #### Leg VITA. - (1) R. L. Charnell, Chief Scientist - (2) J. D. Schumacher - (3) D. J. Pashinski ### Leg VIIB. - (1) D. J. Pashinski, Chief Scientist - (2) J. Fisher - (3) M.
Pizzello ## **Accomplishments** Attachment A is a summary of stations occupied during the Bristol Bay portion of the cruise. The field program for the NOAA Ship MILLER FREEMAN was dependent upon the accomplishments of the NOAA Ship DISCOVERER during her cruise 26 April - 16 May, 1977. Because of the very profitable DISCOVERER cruise the scope of the MILLER FREEMAN CTD program was reduced from the original proposal so that more ship time could be directed to the effort in the Icy Bay region. Because of near ideal weather conditions over Bristol Bay at the time of the Leg VIIA effort the Bristol Bay portion of the project was highly successful. Six free-drifting buoys were deployed in St. Georges Basin. These buoys, tracked by the Nimbus-6 satellite, were of the Richardson design produced by Polar Research Labs, drogued with a 2m x 10m window shade at a central depth of 15 meters below the surface. They were deployed buoy first, using the small waist crane and a release hook, followed by simply dropping the weighted drogue. At the time of release confirmation of their correct operation had been received. Special recognition in the successful deployment of these buoys is due for George Lapiene (OCSEAP, Juneau) for his herculean effort to ensure the delivery of the buoys to the NOAA Ship MILLER FREEMAN, dockside in Kodiak, AK. in spite of last minute delays in shipping schedules and a commercial air carrier strike. Five XBT sections were made to delineate the character of the coastal/shelf water front in Bristol Bay. For each section shallow water XBTs were dropped at one nautical mile intervals. As expected the structure front was found in the proximity of the 50 meter isobath in all cases, and was extremely narrow; a transition from a two layer shelf water, structure to a well mixed coastal water occurred in less than 10 nautical miles. This marks the first time for such a detailed investigation of this prominant feature of Bristol Bay. Nearshore excursions were made into Etolin Strait, Kuskokwim Bay, and Kulukak Bay to further examine the transition from open bay conditions to nearshore regimes. This included special investigations around the previously observed high salinity anomoly region of outer Kuskokwim Bay and a CTD section across the mouth of Kvichak Bay. This: data when properly analysed should be valuable in quantifying the behavior of fresh water inputs to Bristol Bay. Following the loss of current meter station BC-15B during the DISCOVERER cruise a listening schedule was established as each CTD station was occupied by the MILLER FREEMAN. It is known that the mean circulation in Bristol Bay is low so that should BC-15B be adrift, it probably would not have exited the area at the time of the MILLER FREEMAN cruise. There was no positive response to this effort, so the ship reoccupied the old site of BC-15B on the chance that it had not properly released. Again there was no response to the interogation, although the new station, BC-15C, could clearly be heard. It is clear that BC-15B has been lost after having been set adrift on the attempted recovery. Attachment B is a summary of stations occuppied during the NEGOA, Icy Bay, portion of the cruise. This portion of the cruise was intended to primarily service three instrumented moorings in the near shore region off Icy Bay with a CTD program to fill periods when mooring work could not be scheduled. A generous allotment of cruise time was dedicated to this effort in the light of the highly variable weather in the Gulf of Alaska. With the excellent weather conditions of the Bristol Bay portion of the cruise carrying on into the Icy Bay effort all goals established were achieved withma considerable added benefit in extending our knowledge of the area into the esturine reaches of the coast. Two moorings, WIST-1-and WIST-11 were successfully recovered in the shallow water near the coast culminating a prototype experiment into Wave Induced Sediment Transport processes. Each mooring carried newly developed sediment traps, standard current meters, and nephelometers. Two of the four sediment traps operated correctly, a reasonable success figure for this stage in the development. One current meter failed due to a battery failure, however, indications are the failure occurred recently and little data loss was incurred. The nephelometer of WIST-11 failed to return with the mooring due to failure of the securing lanyard. Evidence indicates that the lanyard chaffed on the accoustic release to the point that the strength was reduced to less than that sufficient to lift the nephelometer. The long term current monitoring station 62 was maintained with the successful recovery of 62K and subsequent deployment of 62L. The intitial location of the station was complicated by uncertainty in the geographic position due to discrepencies in the position data at the time of the previous deployment. These difficulties were overcome and the station was maintained. Again one current meter failed due to a battery problem without a large loss in data. The full scale station grid was occuppied with CTD stations. The Icy Bay stations were occuppied twice, and the Cape Yakataga line was occuppied once. The full coverage of the area station grid allows the excellent data set to be maintained over another quarter. During the fall of 1976 through out discussions on direction to take in OCSEAP near shore work the question of studying the fjords of the Alaskan coast continually arose. At that time other projects were receiving higher priority and the investigation of the fjords was shelved. This cruise provided a unique opportunity to obtain some exploratory CTD data in both Icy Bay and Yakutat Bay. These exploratory stations should reveal if the fjords have classical circulation patterns or an unknown dynamic control. A line of 5 CTD stations were occuppied up the axis of Icy Bay to the limit of safe penatration. This line observed water column profiles across the entrance sill and in the first basin. The line occuppied a station on the sill separating the inner and outer basins and the last station was just into the inner basin. Preliminary view of the data suggests a classic esturine circulation with warm saline water coming in from offshore to replenish the basin bottom waters. Within Yakutat Bay a line of 8 CTD stations were occuppied in the same plan as those in Icy Bay. Yakutat Bay is a two basin system similar to Icy Bay though the inner sill is not as shallow as the Icy Bay sill. The principal differences between the two bays is the volume of drifting ice. This leads to the question of surface water temperature and the possibility of a more intense circulation within Yakutat Bay. ## Acknowledgments This cruise was successful for a variety of conditions, including some we had no control over. In large measure the success was due to the ship and the professionalism of her entire complement. It has been a pleasure to work aboard the MILLER FREEMAN because she is so well appointed and has cooperative and enthusiastic personnel. Most important the officers show great adaptability in the face of ever changing scientific requirements. Thanks go to the entire ship for her part in making this a very successfull effort. ## ATTACHMENT A ## STATION SUMMARY ## MILLER FREEMAN CRUISE RP-4-MF-77B LEG VII A 23 MAY - 5 JUNE , 1977 | STATION | GRID | DATE/TIME | LATITUDE | LONGITUDE | CAST DEPTH | WATER DEPTH | |---------|-------------|-----------|----------|------------------|-------------|-------------| | NUMBER | NUMBER | GMT | N. | W. | M | M | | 1* | 36.0 | 146/0414 | 54-51.4 | 165-44.5 | N.B. 0027 | 154 | | 1 | 36.0 | 0426 | 54-51.4 | 165-44.5 | 148 | 154 | | 2 | 36.1 | 0547 | 54-47.0 | 165-57.2 | 196 | 203 | | 3 | 26.0 | 0722 | 54-42.0 | 166-10.3 | 280 | 298 | | 3* | 26.0 | 0752 | 54-42.1 | 166-09.8 | N.B. 0056 | 298 | | 4* | 16.0 | 0937 | 54-37.0 | 166-42.3 | N.B. 0544 | 411 | | 4 | 16.0 | 0951 | 54-37.0 | 166-42.7 | 406 | 411 | | 5 | 26.1 | 1125 | 54-38.8 | 166-27.3 | 3 50 | 353 | | 6 | 27.0 | 1344 | 54-57.2 | 166-38.9 | 1 54 | 157 | | 6
7 | 38.0 | 1556 | 55-17.0 | 166-28.9 | 138 | 141 | | 8 | 38.1 | 1713 | 55-13.9 | 166-45.0 | 135 | 146 | | 9* | 28.0 | 1830 | 55-10.9 | 167-03.1 | N.B. 0011 | 152 | | 9 | 28.0 | 1836 | 55-10.8 | 167-03.1 | 146 | 152 | | 10 | 28.1 | 1948 | 55-09.4 | 167-17.8 | 156 | 161 | | 11* | 18.0 | 2058 | 55-06.0 | 167-33.4 | N.B. 0535 | 269 | | 11 | 18.0 | 2108 | 55-06.0 | 167-33.7 | 260 | 269 | | 12 | 18.1 | 2242 | 55-00.3 | 167-54.4 | 740 | 1372 | | 13* | 10.0 | 147/0038 | 54-53.3 | 168-15.6 | N.B. 0503 | 2205 | | 13 | 10.0 | 0050 | 54-53.2 | 168-15.8 | 751 | 2203 | | 14 | 20.0 | 0517 | 55-29.8 | 168-19.4 | 294 | 294 | | 15 | 31.0 | 0720 | 55-45.6 | 168-19.0 | 13 5 | 144 | | 16 | 42.0 | .0925 | 56-07.9 | 168-12.9 | 157 | 157 | | 17 | 53.0 | 1140 | 56-29.2 | 168-10.3 | 128 | 128 | | 18 | 54.0 | 1330 | 56-38.7 | 168-36.0 | 106 | 113 | | 19 | 55.0 | 1535 | 56-50.7 | 169-07.0 | 80 | 86 | | 20 | 56.0 | 1742 | 57-10.9 | 169-18.1 | 70 | 75 | | 21 | 57.0 | 1957 | 57-28.0 | 169-50.2 | 6 5 | 70 | | 22 | 69.0 | 2245 | 57-40.0 | 169-17.9 | 60 | 68 | | | XBT LINE | | | CICAL MILE INTER | | | | 23 | 79.0 | 148/0125 | 58-17.0 | 168-45.3 | 65 | 69 | | | XBT LINE | | • | CICAL MILE INTER | | | | 24 | 89.0 | 0350 | 58-39.1 | 168-20.7 | 50 | 55 | | | XBT LINE | 8 DRO | | CICAL MILE INTER | | | | 25 | 99.1 | 0509 | 58-48.8 | 168-08.4 | 38 | 38 . | | 26 | 99.0 | 0630 | 58-58.8 | 167-55.9 | 40 | 44 | | 27 | 109.1 | 0747 | 59-07.8 | 167-42.0 | 37 | 42 | | 28 | 109.0 | 0914 | 59-18.0 | 167-29.0 | 33 | .38 | | 29 | 124.1 | 1042 | 59-27.3 | 167-13.1 | 29 | 32 | | 30 | 124.0 | 1201 | 59-35.6 | 167-02.9 | 29 | 32 | | | | | | • | | | |------------|-------|------------------|-----------------|----------------|-----|----------| | 31 | 133.6 | 148/2027 | 60-20.1 | 165-29.8 | 25 | 30 | | 32 | 133.5 | 2328 | 60-09.9 | 165-24.5 | 18 | 22 | | 33 |
133.4 | 149/0051 | 59-59.9 | 165-19.8 | 23 | 29 | | 34 | 133.3 | 0246 | 59-50.3 | 165-30.8 | 25 | 31 | | 3 5 | 133.2 | 0430 | 59-43.5 | 165-41.8 | 20 | 24 | | 36 | 133.1 | 0924 | 59-35.6 | 165-57.2 | 24 | 27 | | 37 | 133.0 | 10 39 | 59-31.1 | 166-13.4 | 26 | 28 | | 38 | 132.0 | 1303 | 59-22.4 | 165-27.0 | 16 | 20 | | 39 | 132.1 | 1421 | 59-12.0 | 165-37.1 | 22 | 26 | | 40 | 122.0 | 1534 | 59-03.0 | 165-49.3 | 27 | 31 | | 41 | 122.1 | 1650 | 58-52.9 | 166-04.0 | 28 | 33 | | 42 | 107.0 | 1817 | 58-42.8 | 166-19.4 | 36 | 40 | | 43 | 107.1 | 1939 | 58-31.2 | 166-35.1 | 42 | 45
45 | | | XBT | _ | | MILE INTERVALS | 44 | 43 | | 44 | 97.0 | 2115 | 58-19.0 | 166-51.6 | 46 | 52 | | | XBT | | | MILE INTERVALS | 40 | . 32 | | 45 | 97.1 | 2308 | 58-05.1 | 167-06.7 | 60 | e t | | 46 | 96.1 | 150/0217 | 57-55.5 | 166-07.7 | | 64 | | | XBT | | | MILE INTERVALS | 59 | 63 | | 47 | 96.0 | 0354 | 58-10.0 | | ,, | 50 | | | XBT | | | 165-55.8 | 46 | 50 | | 48 | 106.1 | | | MILE INTERVALS | | •• | | | | 0515 | 58-20.0 | 165-39.7 | 41 | 48 | | 49 | 106.0 | 0642 | 58-29.8 | 165-23.1 | 40 | 44 | | 50 | 121.1 | 0813 | 58-40.0 | 165-05.1 | 38 | 40 | | 51 | 121.0 | 0959 | 58-51.1 | 164-47.7 | 26 | 33 | | 52 | 131.4 | 1153 | 59-06.3 | 164-51.0 | 24 | 27 | | 53 | 131.3 | 1333 | 59-18.1 | 164-50.2 | 20 | 24 | | 54 | 131.5 | 1530 | 59-23.9 | 164-19.8 | 19 | 23 | | 5 5 | 131.1 | 1807 | 59-05.5 | 164-07.9 | 23 | 30 | | 56 | 131.0 | 1941 | 59-02.1 | 163-48.1 | 22 | 27 | | 57 | 120.2 | 2120 | 5 8-50.2 | 163-45.0 | 27 | 30 | | 58 | 120.4 | 2306 | 58-47.5 | 163-16.6 | 25 | 27 | | 59 | 120.5 | 1 51/0137 | 58-34.0 | 162-39.1 | 25 | 29 | | 60 | 120.6 | 0300 | 58-44.7 | 162-35.7 | 34 | 38 | | 61 | 120.7 | 0415 | 58-55.0 | 162-27.7 | 36 | 40 | | 62 | 130.1 | 0515 | 58-46.7 | 162-16.1 | 26 | 31. | | 63 | 130.2 | 0621 | 58 -38.9 | 162-25.8 | 44 | 50 | | 64 | 130.3 | 0712 | 58-30.1 | 162-22.8 | 40 | 46 | | 65 | 119.0 | 0928 | 58-12.3 | 162-39.0 | 35 | 38 | | 66 | 104.1 | 1132 | 58-02.2 | 162-56.0 | 40 | 42 | | 67 | 104.0 | 1330 | 57-52.7 | 163-11.7 | 43 | 47 | | 68 | 94.1 | 1540 | 57-37.5 | 163-30.9 | 45 | 49 | | 69 | BC-15 | 1841 | 57-38.0 | 162-44.9 | 43 | 48 | | 70 | 118.0 | 2234 | 58-01.4 | 162-02.3 | 39 | 43 | | 71 | 118.1 | 152/0023 | 58-00.9 | 161-36.3 | 52 | 56 | | 72 | 129.0 | 0152 | 58-00.8 | 161-13.6 | 38 | 42 | | 73 | 129.1 | 0318 | 58-01.9 | 160-47.9 | 38 | 42 | | 74 | 128.0 | 0439 | 58-03.0 | 160-22.6 | 43 | 47 | | 75 | 128.1 | 0602 | 58-05.2 | 159-56.6 | 41 | 48 | | 76 | 128.2 | 0905 | 58-38.8 | 159-53.7 | 27 | 31 | | 77 | 128.3 | 1032 | 58-29.6 | 159-44.8 | 28 | 32 | | 78 | 128.4 | 1153 | 58-20.1 | 159-36.2 | 25 | 28 | | 79 | 136.0 | 1327 | 58-05.8 | 159-31.4 | 43 | 47 | | 80 | 136.1 | 1513 | 57-56.3 | 159-17.0 | 45 | 49 | | | | 2.2.2.2 | 31 30.3 | 133-116U | 7.7 | 47 | | 81 | 135.0 | 152/1646 | 57-44,9 | 158-58.9 | 41 | 48 | |--------------|-------|----------|-----------------|--------------------|------|-----| | 82 | 135.1 | 1758 | 57-37.1 | 158-47.6 | 40 | 48 | | 83 | 134.0 | 1906 | 57-30.1 | 158-37.5 | 38 | 46 | | 84 | 134.4 | 2006 | 57-24.9 | 158-29.4 | 29 | 37 | | 85 | 134.5 | 2310 | 57-03.6 | 159-08.8 | 33 | 36 | | 86 | 125.0 | 153/0018 | 57-08.8 | 159-21.6 | 49 | 53 | | 87 | 114.0 | 0252 | 56-55.2 | 159-56.9 | 53 | 57 | | 88 | 114.1 | 0425 | 56-46.5 | 159-47.0 | 43 | 47 | | 89 | 114.2 | 0949 | 56-26.2 | 160-31.1 | 43 | 47 | | 90 | 110.0 | 1118 | 56-33.9 | 160-43.6 | 56 | 64 | | 91 | 110.1 | 1314 | 56-44.9 | 160-57.4 | 62 | 70 | | 92 | 101.1 | 1643 | 56-27.1 | 161-39.7 | 64 | 68 | | | XBT | 9 DROPS | AT 1 NAUTIO | CAL MILE INTERVALS | 3 | | | 93 | 101.2 | 1813 | 56-15.0 | 161-26.2 | 53 | 59 | | | XBT | 4 DROPS | AT 1 NAUTIC | CAL MILE INTERVALS | 3 | | | 94 | 101.3 | 1940 | 56-03.9 | 161-12.5 | 24 | 30 | | 95 | 90.0 | 2234 | 55-58.5 | 162-10.0 | 51 | 60 | | 96 | 80.0 | 154/0209 | 55-41.8 | 162-53.2 | - 54 | 57 | | - | XBT | 10 DROPS | AT 1 NAUTIO | CAL MILE INTERVALS | 5 | | | 97 | 80.1 | 0337 | 55-30.0 | 162-40.4 | 31 | 35 | | 98 | 70.0 | 0648 | 55-26.1 | 163-32.0 | 69 | 73 | | 99 | 70.1 | 0812 | 55-36.0 | 163-42.8 | 80 | 88 | | 100 | 59.0 | 1112 | 55 –22.7 | 164-31.4 | 92 | 102 | | 101 | 58.0 | 1257 | 55-10.3 | 164-13.2 | 60 | 64 | | 102 | 46.0 | 1532 | 54-56.4 | 164-50.1 | 75 | 79 | | 1.03 | 37.0 | 1646 | 55-03.2 | 165-04.9 | 104 | 115 | | 104 | 35.0 | 1918 | 54-42. 3 | 165-21.9 | 166 | 176 | | | XBT | 5 DROPS | AT 6 NAUTIO | CAL MILE INTERVALS | 5 | | | | | | | | | | ^{*} Indicates the grid station at which a Nimbus Drift Buoy was deployed ## BRISTOL BAY TOTALS | CTD CASTS | 104 | |-----------------------------|-----| | XBT DROPS | 116 | | DISCRETE SURFACE SALINITIES | 216 | | DRIFT BUOY DEPLOYMENTS | 6 | Attachment B Station Summary - Leg VII B | | | | | | Cast | Water | |------------|--------------|------------------|------------------|------------------|--------------|--------------| | Sequen | ce Grid | Date/time | <u>Latitude</u> | <u>Longitude</u> | <u>Depth</u> | Depth | | 1 | r | 159/0653 | 59-11.1 | 142-20.3 | 700 | 1682 | | 2 | H | 0855 | 59-20.2 | 142-08.5 | <i>275</i> | 2 91 | | 3 | G | 0951 | <i>59-23.3</i> | 142-04.3 | 195 | <i>209</i> | | 4 | F | 1046 | 59 - 26.8 | 141-59.6 | <i>175</i> | 187 | | 5 | E | 1152 | <i>59-33.3</i> | 141-50.5 | 160 | 165 | | 6 | D | 1257 | <i>59-39.4</i> | 141-42.2 | 108 | 112 | | 7 | C | 1340 | 59-42.7 | 141-38.4 | 76 | 80 | | 8 | В | 1417 | <i>59-45.9</i> | 141-34.6 | 5 0 | <i>55</i> | | 9 | A | 1452 | 59-48.9 | 141-30.9 | 24 | 29 | | 10 | 62L | 160/0216 | <i>59-38.5</i> | 142-07.0 | 181 | 185 | | 11 | P | 0514 | <i>59-23.3</i> | 142-59.6 | 700 - | 1 <i>573</i> | | 12 | 0 | <i>0</i> 700 | <i>59-33.5</i> | 142-50.0 | <i>650</i> | 677 | | 13 | N | 0836 | <i>59-40.</i> 7 | 142-42.6 | 320 | 32 9 | | 14 | M | 09 38 | 59 -46.0 | 142-36.3 | 175 | 186 | | 15 | L | 1025 | <i>59-49.6</i> | 142-31.0 | 125 | 137 | | 16 | K | 1 117 | 59-55.3 | 142-28.1 | 9 9 | 90 | | 17 | ; J | 1212 | 60-01.4 | 142-25.5 | <i>53</i> | 45 | | 18 | IC-1 | 1505 | 59 -47.9 | 141-39.3 | 40 | 446 | | 19 | IC-2 | 1544 | 59-51.5 | 141-36.4 | 29 | <i>32</i> | | 20 | IC-3 | 1627 | <i>59-55.7</i> | 141-32.9 | 64 | 70 | | 2 1 | IC-4 | 1840 | <i>59-58.0</i> | 141-25.3 | 16 | 20 | | 22 | IC-5 | 2042 | <i>59-59.2</i> | 141-22.5 | 42 | 46 | | 23 | A | 161/0155 | 59-48.6 | 141-30.7 | 22 | 26 | | 24 | В | 0234 | 59-45.8 | 141-34.1 | 51 | 60 | | 25 | C | 0313 | 59-43.0 | 141-38.7 | 82 | 86 | | 26 | D | 0359 | 59-39.6 | 141-42.2 | 117 | 121 | | 27 | E | 0504 | <i>59-33.1</i> | 141-51.0 | 168 | 172 | | 28 | F | 0604 | 59-27.1 | 141-59.6 | 189 | 193 | | 29 | G | 0 653 | <i>59-23.5</i> | 141-04.5 | 216 | 220 | | 30 | H | 0750 | 59-19.9 | 142-09.2 | 450 | 464 | | 31 | I | 0918 | 59-11.3 | 142-19.6 | 700 | 1829 | | 32 | YT-1 | 1600 | <i>59-34.9</i> | 140-09.8 | 21 | 25 | | 33 | YT-2 | 1645 | 59-39 .3 | 140-04.8 | 149 | 153 | | 34 | YT-3 | 1731 | 59-42.6 | 139-57.4 | 113 | 117 | | 35 | YT-4 | <u> 1</u> 818 | <i>59-45.6</i> | 139-49.9 | 64 | 68 | | 36 | YT-5 | 1 910 | <i>59-48.0</i> | 139-42.5 | 38 | 42 | | <i>37</i> | YT-6 | 200 9 | <i>59-53.3</i> | 139-40.8 | 22 | 26 | | 38 | <i>YT-</i> 7 | 2151 | <i>59-56.4</i> | 139-35.1 | 245 | 252 | | 39 | Y T-8 | 2 252 | 59-58.7 | 139-33.5 | 70 | 87 | ## Mooring Summary | WIST-I | recovered | 159/1530 | 59-45.6 | 141-36.9 | |---------|--|-------------------------|------------------|----------| | | 2 - RMC-4 cu
1 - Sediment
1 - Nephelon | - | | | | WIST-II | recovered | 159/1710 | 59-39.2 | 141-41.6 | | | 4 - RCM-4 cu
3 - Sediment | rrent meters
: traps | | | | 62K | recovered | 160/0003 | 59 - 38.7 | 142-07.2 | | | 4 - RCM-4 cu | irrent meters | | | | 62L | deployed | 160/0307 | 59-38.5 | 142-07.2 | | | 4 - RCM-4 cu | rrent meters. | | | RU #141 Addendum to B-BOP Quarterly Report Estimate of Funds Expended by the University of Washington to May 31, 1977 Total Allocation (5/16/75 - 9/30/77) ? We have not received our total FY 77 allocation as yet. | A. | Salaries-faculty, staff, students | 63,739 | |----|-----------------------------------|--------| | в. | | 7,090 | | c. | Expendable Supplies and Equipment | 10,687 | | D. | Permanent Equipment | 67,020 | | Ε. | Travel | 14,448 | | F. | Computer | 4,539 | | G. | Other Direct Costs | 39,949 | | н. | Indirect Costs | 27,918 | | | | | Total Expenditures \$235,390 B-BOP Hydrographic Data Summary April 1 - June 30 1977 | DATES | STATIONS | CRUISE | | REGION | REMARKS | |---------------------|----------|---|------|--------------------------|-------------------------------| | 26 Apr-16 May 77 | 226 | Discoverer
RP-4-DI-77A
LEG V | | Central
Bristol Bay | 169 down casts
57 up casts | | 23 May-11 June 77 | 104 | Miller Freema
RP-4-MF-77B
LEG VII | n | Perimeter
Bristol Bay | near shore
and slope | | B-BOP Instrument Su | mmary | | | | | | DATE LOCAT | ION (| NSTRUMENTS | DAYS | REMARKS | | | DATE | LOCATION | INSTRUMENTS | DAYS | REMARKS | |-------------------|--------------------------|-------------|-------|-----------------------| | 27 Sep 76 | BC-2D | 2 RCM-4 | 219 | 1 cm leaked | | 3 May 77 | 57-02.3
163-25.7 | 1 TG-2 | | | | 25 Sept 76 | BC-4D | 2 RCM-4 | 231 | | | 13 May 77 | 58-36.6
168-21.7 | 1 TG-3 | | | | 24 Sep 76 | BC-9B | 2 RCM-4 | 231 | | | 12 May 77 | 59-13.0
167-42.0 | 1 TG-3 | | | | 29 Sep 76 | BC-13C | 2 RCM-4 | 215 | | | 1 May 77 | 55-47.2
165-13.8 | 1 TG-2 | | | | 26 Sept | BC-15B | 2 RCM-4 | 220 | Released but | | 4 May 77 | 57-37.7
162-44.9 | 1 TG-2 | | not recovered | | 21 Sep 76 | BC-17A | 2 RCM-4 | 1 222 | Evidence of traweling | | 1 May 77 | 56-34.0
167-33.0 | | | Lower CM Lost | | 3 May 76 | BC-2E
57-02
163-26 | | | | # Cont. B-BOP
Instrument Summary | 13 May 77 | BC-4E
58-36.6
168-21.7 | |-----------|-------------------------------| | 12 May 77 | BC-9C
59-12.0
167-43.2 | | 1 May 77 | BC-13D
55-47.1
165-23.1 | | 4 May 77 | BC-15C
57-39.0
162-41.4 | | 2 May 77 | BC-16A
57-59.2
165-15.8 | | 6 May 77 | BC-176
56-36.2
167-41.2 | | 12 May 77 | BC-18A
59-40.1
167-07.5 | | 12 May 77 | BC-19A
58-42.6
163-52.8 | ## Addendum to N-COP Quartly Report Estimate of Funds Expended by the University of Washington to May 31, 1977. Total allocation (5/16/75 - 9/30/77). We have not received our total FY 77 allocation as yet. | Α. | Salaries - faculty, staff, students | 10,723 | |----|---------------------------------------|----------| | В. | Benifits | 1,066 | | C. | Supplies | 11,906 | | | 1. *6 Instrument time code generators | 2,010 | | D. | Permanent Equipment | 19,811 | | Ε. | Travel | 5,507 | | F. | Computer Services | 8,255 | | G. | Other Direct Costs | 5,412 | | н. | Indirect Costs | 4,697 | | | | | | | Total Expenditures | \$67,377 | ^{*}Total Expendutures does not include this amount. ## QUARTERLY REPORT Contract No: 03-5-022-67, T.O. #1 Research Unit No.: 151 Reporting Period: 1 April - 30 June 1977 Number of Pages: 2 STD Measurements in Possible Dispersal Regions of the Beaufort Sea Knut Aagaard Department of Oceanography University of Washington Seattle, Washington 98195 6 July 1977 ## I. Objectives To examine by means of STD measurements the possible sinking and spreading into the Canadian Basin of waters modified on the Beaufort shelf. Such sinking and spreading constitute an unexplored but possibly very important dispersal mechanism. #### II. Field Activities The March STD work concluded the field program of this contract. For details, see attached Preliminary Report, Cruise W27, Ref. M77-29. ## III. Results, and IV. Preliminary Interpretation Processing and analysis of the CTD data are continuing. The fall data tapes have been submitted, and the spring tapes will be completed shortly. The flooding of the shelf with dense off-shore water seen in the fall does not appear to have occurred this spring. #### V. Problems Encountered None. ## VI. Estimate of Funds Expended to 31 May 1977 | TOT | AL ALLOCATION (5/16/75-9/30/ | 77): | \$142,627 | |-----|------------------------------|-------------------|-----------| | A. | Salaries - faculty and staf | f \$19,13 | 8 | | В. | Benefits | 2,29 | 3 | | C. | Expendable supplies and equ | ipment 3,72 | 5 | | D. | Permanent Equipment | 23,209 | • | | Ε. | Travel | 4,78 | 3 | | F. | Computer | 2,92 | 4 | | G. | Other Direct Costs | 24,55 | 5 | | н. | Indirect Costs | 9,390 | | | | | TOTAL | 90,034 | | | | REMAINING BALANCE | 52,593 | University of Washington Department of Oceanography Seattle, Washington 98195 Preliminary Report University of Washington Participation in NOAA UH-IH Helicopter CTD Survey W27 STD Measurements in Possible Dispersal Regions of the Beaufort Sea 4 - 11 March 1977 by Richard B. Tripp NOAA Contract 03-5-022-67, TA 1 Research Unit No. 151 Approved by: Knut Aagaard, Research Associate Professor Principal Investigator Francis A. Richards, Professor Associate Chairman for Research REF: M77-29 #### STD MEASUREMENTS IN BEAUFORT SEA ## 1. Objectives To examine by means of STD measurements the possible sinking and spreading into the Canadian Basin of waters modified on the Beaufort Shelf. Cruise W27 is the second survey during this contract year in the examination of this possibly very important dispersal mechanism. #### 2. Narrative Two sets of CTD stations, each consisting of two parallel lines normal to the coast, were occupied across the shelf. One set was off Lonely and the other off Oliktok. Station spacing was approximately five miles and parallel line spacing was fifteen miles. Pertinent CTD station information is listed in Appendix A. The scenario of events is as follows: - March 4, 1977 Weather: cloudy, temperature -28°C, winds 015/10. - 0903 AST Tripp and Swift departed Barrow in helicopter N56RF (Barnhill and Winter) for the Lonely West section. There was some difficulty finding suitable ice. Most of the ice was rafted and > 6 ft. - 1230 After accomplishing two stations we departed for Lonely to refuel. - 1450 Departed Lonely for Station 3. - 1850 Landed at last site in this line. However, it was nearing total darkness and we had to abort the station. - 2030 Return to Barrow. A total of 5.6 hours of flight time were logged. - March 5, 1977 Weather: cloudy, light snow, temperature -28°C, winds 035/15. 0916 AST Darnall and Swift departed Barrow in helicopter N56RF (Barnhill and Winter) for the Lonely East section. - 1410 Returned to Lonely to refuel after occupying Station 9. The fuel pump at the Husky camp was down and refueling was delayed for four hours. - 2030 Departed Lonely for Barrow. Severe icing conditions. - 2110 Returned to Lonely. A total of 3.7 hours of flight time were logged. - March 6, 1977 Bad weather: no flying was attempted. - March 7, 1977 Weather: clear; temperature -30°C, winds 090/16. - 1145 AST Darnall and Swift departed Lonely in helicopter N56RF (Barnhill and Winter) for Station 10 on the Lonely East section. After finishing the station, the heaters on the helicopter quit working. The radios became inoperative because of the cold. - 1416 Returned to Barrow. A total of 2.1 hours of flight time were logged. - March 8, 1977 No flying. Helicopter down for maintenance. - March 9, 1977 Weather: cloudy, temperature -27°C, winds calm. - 0900 AST Tripp and Darnall departed Barrow in helicopter N57RF (Feld and Winter) for Lonely. - 1035 Departed Lonely, after refueling, for the Oliktok West section. March 9, 1977, cont'd. 1730 - Returned to Lonely for fuel after occupying Station 15. 1845 - Departed Lonely. 1935 - Returned to Barrow. A total of 5.7 hours of flight time were logged. March 10, 1977 Weather: cloudy, temperature -28°C, winds 360/05. 0923 AST - Tripp and Darnall departed Barrow in helicopter N57RF (Feld and Winter) for Lonely. 1053 - Departed Lonely, after refueling, for the Oliktok East section. 1748 - Returned to Lonely for fuel after occupying Station 22. 1820 - Departed Lonely. 1920 - Returned to Barrow. A total of 6.1 hours of flight time were logged. March 11, 1977 Weather: clear, temperature -32°C, wind 035/3. 0934 AST - Tripp, Darnall, and Lt. L. Ashim (U.S. Naval Postgraduate School) departed Barrow in helicopter N57RF (Feld and Winter) to complete the Lonely East section. 1350 - Returned to Lonely for fuel after occupying Station 25. 1450 - Departed Lonely. 1556 - Returned to Barrow. A total of 4.0 hours of flight time were logged. During this time period, the ice was compact, quite broken and rafted. The winds were light and prevailed from the northeast. A few narrow leads were observed at the edge of the shelf. The refrozen leads were \sim 3 ft thick and the rest of the ice > 5 ft thick. There were some pieces of multi-year ice throughout the area. #### 3. Methods CTD casts were taken on each station utilizing a Plessy Model 9400 profiling system with a redesigned sensor package capable of permitting its deployment through an eight-inch auger hole. 110V power was supplied by a $2\frac{1}{2}$ KW Onan portable generator. This operation worked quite satisfactorily out of the UH-IH helicopter. The data were stored on 7-track magnetic tape for reduction ashore. In order to determine field correction factors for the conductivity and temperature sensors, a water sample and temperature measurement were obtained from a Nansen bottle one meter above the sensors. Salinity samples were analyzed at Barrow utilizing a Hytech Model 6220 portable salinometer S/N 4917. #### 4. Personnel | R. B. Tripp | Principal Oceanographer | University of Washington | |-------------------|-------------------------|--------------------------| | C. H. Darnall | Oceanographer | University of Washington | | J. Swift | Graduate Student | University of Washington | | Lt. Mike Barnhill | Pilot N56RF | NOAA | | R. DeHart | Mechanic N56RF | NOAA | | Lt. Don Winter | Pilot N57RF | NOAA | | G. Feld | Machanic N57RF | NOAA | ## 5. Acknowledgments The NOAA personnel participated in every aspect of the operation. Lt. Barnhill, Mr. Feld and Mr. DeHart's "can-do" approach was greatly appreciated, and certainly helped in accomplishing the mission. APPENDIX A | Consec. No. | Date/Time
GMT March 1977 | Latitude
N | Longitude
W | STD Depth
M | Water Depth
M | |-------------|-----------------------------|---------------|----------------|------------------|------------------| | 1 | 4-2158 | 71-22.0 | 152-57.6 | 83 | 84 | | 2 | 2305 | 71-26.0 | 152-52.9 | 78 | 79 | | 3 | 5-0154 | 71-30.1 | 152-43.3 | 6 | 74 | | 4 | 0157 | 71-30.1 | 152-43.3 | 73 | 74 | | 5 | 0247 | 71-34.4 | 152-38.0 | 126 ⁻ | 127 | | 6 | 0358 | 71-39.9 | 152-30.3 | 366 | 367 | | 7 | 2059 | 71-13.1 | 152-17.0 | 26 | 27 | | 8 | 2251 | 71-17.5 | 152-11.6 | 48 | 49 | | 9 | 2341 | 71-22.5 | 152-06.1 | 83 | 84 | | 10 | 7-2234 | 71-25.8 | 151.54.2 | 220 | 221 | | 11 | 9-2347 | 70-55.4 | 150-07.3 | 25 | 26 | | 12 | 10-0023 | 70-59.9 | 150-05.4 | 27 | 28 | | 13 | 0102 | 71-04.0 | 150-03.6 | 39 | 40 | | 14 | 0141 | 71-08.6 | 150-01.7 | 56 | 57 | | 15 | 0253 | 71-14.4 | 149-59.3 | 540 | >541 | | 16 | 2208 | 70-52.3 | 149-24.5 | 28 | 29 | | 17 | 2244 | 70-58.0 | 149-21.9 | 31 | 32 | | 18 | 2328 | 71-01.8 | 149-19.5 | 37 | 38 | | 19 | 11-0021 | 71-06.9 | 149-20.7 | 42 | 43 | | 20 | 0104 | 71-12.5 | 149-14.8 | 81 | 324 | | 21 | 0127 | 71-12.5 | 149-14.8 | 323 | 324 | | 22 | 0210 | 71-16.7 | 149-12.2 | 529 | >530 | | 23 | 2112 | 71-35.8 | 151-44.7 | 547 | >548 | | 24 | 2212 | 71-31.5 | 151-53.0 | 547 | >548 | | 25 | 2308 | 71-26.0 | 151-59.1 | 198 | 199 | ## Quarterly Report Research Unit # 208 Reporting Period 4/1/77-6/30/77 Number of Pages: 9 YUKON DELTA COASTAL PROCESSES STUDY William R. Dupre Department of Geology University of Houston Houston, Texas 77004 ####
QUARTERLY REPORT ### I. Task Objectives The overall objective of this project is to provide data on geologic processes active within the Yukon-Kuskokwim delta in order to aid in the evaluation of the potential impact of scheduled oil and gas exploration and possible production. In particular, attention has been focused on the following: - 1) Study the processes along the Yukon-Kuskokwim delta shoreline (e.g., tides, waves, sea-ice, river input) in order to develop a coastal classification including morphology, coastal stability, and dominant direction of longshore transport of sediments. (Task D-4, B-2). - 2) Study the hydrology and sediment input of the Yukon and Kuskokwim Rivers as they largely determine the sediment budget of the northern Bering Sea. (Task B-11, B-2). - 3) Determine the type and extent of Quaternary faulting and volcanism in the region. (Task D-6). - 4) Reconstruct the late Quaternary chronology of the delta complex in order to determine: - a) frequency of major shifts in the course of the Yukon River. - b) effects of river diversion on coastal stability. - c) relative age of faulting and volcanism. - d) frequency of major coastal storms as recorded in chemierlike sequences along the coast. ## II. Field and Laboratory Schedule A) Field Trip Schedule N/A B) Scientific Party N/A - C) Methods - 1) Textural analyses of beach and river sands by seiving and settling tube techniques: in progress. - 2) Radiocarbon dating of wood and peat by Steve Robinson, U.S.G.S.: in progress. - 3) Pollen analysis by Tom Ager, U.S.G.S.: in progress. - 4) Interpretation of 1893 bathymetric maps, 1954 photos and topographic maps, 1973 aerial photos, and 1973-76 LANDSAT imagery to document changes in the shoreline and offshore bathymetry. - D) Sample localities See Figure 1 - E) Data Analysed - 1) Number and type of samples collected. N/A - 2) Number and types of analyses - a) Textural analyses: 25 completed, 65 in progress - b) Radiocarbon dates: 5 completed, 8 in progress - c) Pollen analysis: 9 completed, 5 grab samples and 2 cores, in progress Figure 1: Location of pollen, textural, and radiocarbon camples completed this quarter. - F) Milestone Chart and Data Submission Schedules - 1) See Figure 2 - 2) Two major changes have occurred since the submission of the last milestone chart. The field trip to observe breakup along the Yukon delta was cancelled because of serious illness. In addition, all sample analyses are behind schedule. Some of the problems encountered are discussed in another section of the report. I felt, however, that it was best to delay submitting grain size and pollen analyses until all were completed, thereby facilitating their interpretation. If requested, however, analyses will be sent as soon as completed. ## III. Results Most of the work remains in progress, although almost all of the shoreline changes have been documented, and most of the geologic mapping is completed. Samples of the documented shoreline changes are included in Figure 3. Completed radiocarbon dates are listed below in Table 1. | Project No. | USGS No. | Lat. | Long. | Date | | |-------------------|----------|----------------|---------|------------------|---| | II - 7 | 213 | 62°41' | 164°37' | 600 <u>+</u> 70 | | | 7-13-3B | 212 | 62°32' | 164°52' | 1430 <u>+</u> 50 | | | II - 9 | 225 | 62°18' | 164°59' | 1550 <u>+</u> 80 | | | 7-12-2B | 214 | 62°37 ' | 164°40' | 2420 <u>+</u> 80 | | | 1-6 | 215 | 61°36' | 166°10' | 5070 <u>+</u> 60 | | | | | | | | - | Table 1: Radiocarbon dates by Steve Robinson, U.S.G.S., Menlo Park. See Figure 1 for location. - F) Milestone Chart and Data Submission Schedules - 1) See Figure 2 - 2) Two major changes have occurred since the submission of the last milestone chart. The field trip to observe breakup along the Yukon delta was cancelled because of serious illness. In addition, all sample analyses are behind schedule. Some of the problems encountered are discussed in another section of the report. I felt, however, that it was best to delay submitting grain size and pollen analyses until all were completed, thereby facilitating their interpretation. If requested, however, analyses will be sent as soon as completed. ## III. Results Most of the work remains in progress, although almost all of the shoreline changes have been documented, and most of the geologic mapping is completed. Samples of the documented shoreline changes are included in Figure 3. Completed radiocarbon dates are listed below in Table 1. | Project No. | USGS No. | Lat. | Long. | Date | |---------------|----------|---------|---------|------------------| | II - 7 | 213 | 62°41' | 164°37' | 600 <u>+</u> 70 | | 7-13-3B | 212 | 62°32' | 164°52' | 1430 <u>+</u> 50 | | 11-9 | 225 | 62°18' | 164°59' | 1550 <u>+</u> 80 | | 7-12-2B | 214 | 62°37 ' | 164°40' | 2420 <u>+</u> 80 | | I-6 | 215 | 61°36' | 166°10' | 5070 <u>+</u> 60 | Table 1: Radiocarbon dates by Steve Robinson, U.S.G.S., Menlo Park. See Figure 1 for location. Figure 2: Activity/Milestone/Data Management Chart Field Work Sediment-core analysis Radiocarbon Dating Pollen Analysis Photo Interpretation 2 Ouarterly Reports Annual Report Final Report (Dec, 1979) Draft EIS (May, 1979) Final EIS (Sept, 1979) Sale (Dec, 1979) 1 Includes grain size, mineralogical analysis 2 Including LANDSAT imagery ## IV. Interpretation of Results: ## A. Shoreline Changes: It has been previously stated by Shepard and Wanless (1973) that very little change has occurred along the Yukon delta in the past 75 years. This does not seem to be the case. Some areas of the delta are prograding at rates exceeding 30 meters per year (Fig. 3, A). The most rapid area of deposition is at the mouth of Kwikluak Pass, the main distributary (Fig. 3, B), as would be expected. Substantial changes have occurred in the location and configuration of barrier islands in the area (e.g., Sand Island, Fig. 3, C), with erosion rates locally exceeding 35 meters per year. Some areas of the mainland are also eroding at rates in excess of 17 meters per year (e.g. Punoarat Point on the north side of Angyoyararak Bay, Hooper Bay Quad, B-3). Elsewhere large areas of the shoreline have remained virtually unchanged since 1898. In short, there is an extreme variability in the rates of shoreline processes which can be documented in the area. ## B. Radiocarbon dates: Sample I-6 (5070 B.P) dates a peat layer above the dunes at Hooper Bay. These dunes (which are faulted locally), are thus older than 5,000 years, as previously suspected as the the basis of regional geologic relationships. Figure 3: Selected examples of documented shoreline erosion (Dashed areas in A and B indicate net erosion, dotted areas, net deposition from 1898-1954). Samples II-9 (1550 B.P.) and 7-13-3B (1430 B.P.) date a portion of the chemier plain south of the modern delta. Sample 7-12-2B (2420 B.P.) dates a part of the Black subdelta which clearly pre-dates the formation of the chemier plain. On the basis of these dates and others previously reported, it seems clear that the chemier plain dates from approximately 2,000 - 2,400 B.P. to the present. The Black River continued to be a major sediment contributor, at least as recently as 1,350 years B.P., (as previously reported), and continues to carry a significant amount of sediment during periods of major flood. Sample II-7 (600 B.P.) dates a part of the modern delta. The inception of the modern delta postdates the age of the Black sub-delta, thus is younger than 2,400 B.P. Samples from the modern delta and the Kashunuk River suggest it may be as younger as 1,200 years, but a slightly older age cannot be excluded at this point. ## C. Textural data: Grain size analyses from both the Yukon River and beaches along the coast show the bed load is remarkably well sorted, fine grained sand. Unfortunately, there seems to be a significant discrepancy between the analyses done by settling tube methods (U.S.G.S.), and those done by seive analyses (U of H). Therefore the significance of the textural information remains somewhat unclear, and the data will not be submitted until the discrepencies are resolved. # V. Problems encountered/recommended changes: The most serious problem this quarter was the cancellation of the field work during breakup due to illness. It is extremely important to observe breakup along the coast; hopefully funding for next year will include such a trip. The problem with the grain size analyses is in part a function of the two different techniques, but calibration of the settling tube may also be a problem. This will be verified shortly. Delays in sediment analysis have been numerous, mainly due to equipment failures, but no long-term problems are expected. Lately, it should be noted that the shoreline and much of the bathymetry shown on the most recent bathymetric map of the Yukon delta (16240, 6th Ed., 1976) is from 1898 charts, hence is woefully inadequate for modern navigation purposes. ## VI. Estimate of Funds Expended: A. Expended (incl travel advances) \$6,808.95 B. Committed (incl. University overhead) \$5,402.39 # QUARTERLY REPORT Research Unit #217 Reporting Period: 1 April - 30 June 1977 LAGRANGIAN SURFACE CURRENT OBSERVATIONS FOR OCSEAP - ALASKA Principal Investigator: D.V. Hansen Affiliation: Atlantic Oceanographic and Meteorological Laboratories NOAA, Miami, Florida 21 June 1977 I. Objective: To obtain and interpret Lagrangian surface current data in the Gulf of Alaska and Bering Sea. # II. Activities: - 1. Work continued on development of automated buoy data processing capability. The system is now complete and a draft manuscript has been written (A. Herman and C. Cardwell) for an ERL Technical Memorandum describing the system. The system will now be used to build a graphical data archive of basic observations and derived properties for ease of presenting data for interpretation and flexibility in responding to requests from the Project Office. - 2. Six buoys
were deployed in the St. George Basin in mid May. After two weeks useable transmissions were being received from all buoys. The northern three buoys were moving northward in agreement with expectation, but the southern three buoys were moving westward, evidently contrary to the conventional wisdom for the region. All of these buoys were moving at relatively slow speeds, around 3 km/da. - 3. The principal investigator participated in the physical oceanography workship at Alderbrook in May to report findings to date, and initiated arrangements for integration of drift buoy data with hydrographic data for the NEGOA region. - 4 A proposal for expansion of the Lagrangian current observation project in FY 1978 has been completed. - III. Results: No new scientific results of consequence have emerged during this quarter. - IV. Interpretation of results: Not applicable. - V. Problems: Late transfer of funds created a severe lead time problem with equipment procurements. Only by air freighting the buoys to the ship was it possible to maintain the desired schedule. It was touch and go, but we made it, the buoys were deployed and are doing fine. - VI. Estimate of funds expended: As of the end of the reporting period the available funding will be about 85% expended. We should finish out the fiscal year about on schedule. ## QUARTERLY REPORT Contract #03-5-022-91 Research Unit #244 Reporting period: 1 April 1977- 30 June 1977 Number of Pages: 5 STUDY OF CLIMATIC EFFECTS ON FAST ICE EXTENT AND ITS SEASONAL DECAY ALONG THE BEAUFORT-CHUKCHI COASTS # Principal Investigator R. G. Barry Acting Director, Professor of Geography Institute of Arctic and Alpine Research University of Colorado Boulder, Colorado 80309 30 June 1977 # Summary of First Quarter Activities # A. Field and Lab Activities # 1. Field trip schedule J. Rogers and G. Wohl carried out aircraft and ground reconnaissance of fast ice conditions in the Kotzebue and Barrow areas on $3-15\,\mathrm{June}$. # 2. Personnel ## Field work (June) J. Rogers - Graduate Research Assistant, University of Colorado G. Wohl - Graduate Research Assistant, University of Colorado ## Office - R. G. Barry P.I., University of Colorado - R. E. Moritz Graduate Research Assistant, University of Colorado - J. Reynolds Graduate Research Assistant, University of Colorado (4 time from 1 June) - B. Warmerdan Graduate Research Assistant, University of Colorado (½ time from 1 June) - C. Wright Professional Research Assistant, University of Colorado (½ time from 1 June) ## 5. Data Analyzed Office work during this quarter has concentrated on (a) synoptic climatological analysis, (b) preparation of ice maps for 1976, (c) preliminary examination of the possibilities for long-range forecasting of ice conditions. # (a) Synoptic climatological analysis Moritz's M.A. thesis analyzing the climatic characteristics of the Beaufort Sea pressure pattern types was successfully defended and will be prepared for publication in the near future. An abstract is attached as Appendix 1. #### (b) Ice maps Maps of ice conditions for all three sectors of both Beaufort and Chukchi coasts in 1976 have been analyzed and drafted. Each map is accompanied by an interpretation of ice surface characteristics. As noted below, these will be submitted with the September report. # (c) Assessment of the possibilities for long-range forecasting of ice conditions. The regression analysis of ice data and climatic parameters discussed in the 1977 Annual Report provides a starting point for this work (see Appendix 2, which is an Abstract submitted to the 1977 POAC Conference). Among the factors which can be utilized for establishing long-range forecasts of meteorological and hydrological variables are: 1) persistence in anomalies of the variable through time; 2) cyclicities and periodicities in the time series of the variable. Both of these factors are being used to examine the long-range predictability of the break-up and decay of Beaufort Sea Ice. It has been shown in previous reports that the primary variable which can be used to determine the extent and decay of fast and pack ice is air temperature. Wind direction is also an important variable, but it is not as readily usable for long-range prediction schemes as is the controlling sea level pressure distribution. Wind direction is difficult to use since 12 (30 each) directional modes have been established for it, whereas pressure distribution in key areas which influence ice in the Beaufort Sea and air temperature need only to be specified in terms of normal, above normal or below normal. The first step in the development of a forecasting scheme is to establish the persistence and periodicities of temperature and pressure at the key locations during the late spring and summer months. Barnett (1976), for example, has suggested a 5-year periodicity in the severity of summer ice conditions between Barrow and Prudhoe Bay. This needs to be tested with our temperature and pressure data, and if substantiated, incorporated into a forecasting scheme. Similarly, inspection of our results to date suggest that there is some persistence in the sign of anomaly of air temperature during the summer months. The bimodal distribution of Barrow temperatures (expressed in thawing degree days) suggests that if July is warmer than normal, August and September will also be above normal and considerable ice melt will ensue. Observed relationships between climatic variables and ice decay which can be used for forecasting may be applied individually or as a group. The possible techniques can be expanded to incorporate contingency table or even the month-in-advance long-range forecasts of temperatures issued by the U.S. Weather Service. The important fact is that the primary climatological variables of importance to sea ice decay have been established and now methodologies may be developed for ice forecasting. The possibilities of forecasting sea ice conditions along the Alaskan coasts have already been investigated by J. E. Walsh (pers. comm. 1977). Using 23 years of data and 12 areas along the coast he has determined the empirical orthogonal functions of pressure, temperature and ice extent which account for most of the variance in those variables. Three eigenvectors account for 88% of the variance in pressure, of which the primary eigenvector (51%) represents high pressure over Barter Island. Three eigenvectors account for 71% of the variance in air temperature, of which the first eigenvector represents (42%) anomalously warm air over Barrow, Alaska. Four eigenvectors account for 75% of the variance in annual ice extent; the first eigenvector (35%) represents a summer mode in which there is no variance in the Bering Sea, but considerable ice extent variance in the Chukchi and Beaufort Sea. The second ice extent eigenvector represents the winter mode where all the variance in ice extent is in the Bering Sea (18% of total variance in this eigenvector). Subsequent analysis of the pressure and temperature data revealed that they are characterized by only a low autocorrelation at a one month (or longer) lag. The ice extent eigenvector autocorrelations are only somewhat more encouraging out to 2 or 3 months lag. When employing only summertime data, Walsh still does not find encouraging results. Skill scores for the summer temperature data give the best results, especially in a narrow band of 6 to 8 months forecast interval. Walsh is working on another, areally independent, analysis before finalizing his conclusions. These findings are being used to guide our own work. # 6. <u>Data Submission Schedule</u> The Chuckchi sector maps for 1976 are completed as in our Annual Report (March 1977) schedule and Beaufort sector maps are in progress. It is thought to be preferable to submit all outstanding map products with their interpretations in the September Quarterly Report rather than submit drafted maps without the completed analyses. # B. Recommended Changes It is recommended that future activities should include an attempt to compare Hunt and Naske's historical results on ice extent with past climatic data. ## C. Estimate of Funds Expended \$25,000. #### APPENDIX 1 # SYNOPTIC CLIMATOLOGY OF THE BEAUFORT SEA COAST OF ALASKA R. E. Moritz Institute of Arctic and Alpine Research Dept. of Geography, University of Colorado #### **ABSTRACT** 21 characteristic patterns (CP's) which recur frequently have been identified in the 1946-1974 time series of daily MSL atmospheric pressure fields over the sector 60°-80° N, 120°-170° W by applying an "objective" typing routine to NMC grid-point data. The most frequent pattern has high pressure in the Beaufort Sea-North Alaska region, lower pressure to the south, and zonally-oriented isobars over Northern Alaska. This pattern occurs most frequently (~35% of days) during the cold season (October -May). The second most frequent pattern (CP2) has highest pressures in the south-southeast section of the study sector with a low to the northwest, causing southwesterly surface geostrophic flow over the region. This pattern has a frequency maximum in July-August. The 30-year mean monthly frequencies of the 21 CP's indicate definite seasonality in pattern occurrence. Winter is dominated by highs and ridges in the northern part of the sector and lows passing through the southern half of the area. Summer is primarily characterized by a northward extension of high pressure from the Pacific anticyclone which influences southern Alaska, and the frequent passage of low pressure systems over Central Alaska and northward along the west coast. A greater variety in daily pressure patterns is observed during summer than during winter. Daily weather data from Barrow and Barter Island, Alaska have been stratified according to the pressure pattern type occuring on the corresponding day. Analysis of variance tests show highly-significant differences between the mean meteorological characteristics of the several
CP's. These tests, carried out for each month separately, indicate large inter-CP differences with regard to daily maximum temperatures, daily temperature departures from normal, and daily mean wind speeds. Significant inter-CP differences were found in some months (notably July and August) for mean daily dew point depressions also. Chi-squared tests of association show highly significant associations between wind direction categories and pressure pattern types (CP's). In general, good agreement was found between expected (from geostrophy) wind directions, from the CP maps, and the observed distribution of surface winds for all days classified with the given CP. It has been shown that the <u>spatial pattern</u> of sea-level pressure over the study sector accounts for an important component of the variation in daily weather along the Beaufort Sea Coast. Examination of individual CP's and their weather characteristics has facilitated the identification of some probable physical causes for the observed weather data. For example, CP2, although predominantly a summer pattern, shows a secondary maximum frequency of occurrence in January. These occurrences are associated with large positive temperature departures at Barrow and Barter Island (mean of $\pm 13.5^{\circ}$ C). This "seasonally anomalous" pattern brings Pacific low pressure systems into the Beaufort Sea region. CP2 is also associated with increased cloud cover, high wind speeds, decreased dew-point depressions, and southwesterly wind directions along the Beaufort Coast. All of these characteristics indicate a breakdown in the polar night radiative cooling process and associated vertical temperature inversion. The unstratified January temperature departure distribution for Barrow is very right-skewed, indicating that the infrequent but large positive departures associated with these processes are "balanced" by highly frequent but smaller negative departures. These negative values, in turn, are associated with CP's having low wind speeds and clearer skies, again pointing up the importance of the radiative processes. During the summer season, the temperature departures along the coast are clearly associated with the direction of local airflow. This direction is, in turn, largely determined by the prevailing CP. The over-ice (northerly) winds bring lower-than-normal temperatures while winds off the strongly-heated tundra bring higher values. CP8, with a low pressure center near the Central Yukon-Alaska border region, is responsible for northerly winds at both Barrow and Barter Island, where mean daily temperature departures are -3.0° C under this pattern. CP2, on the other hand, brings a southerly component into the local airflow, and has mean departures of $1-1.5^{\circ}$ C above normal. A daily catalog of pressure pattern types has been developed for the entire period of study and weather characteristics for the two stations have been analyzed for each type and month in this framework. These data are to form the basis of links between observed coastal ice behaviour in the melt season, and atmospheric circulation processes over the region. #### APPENDIX 2 A METEOROLOGICAL BASIS FOR LONG-RANGE FORECASTING OF SUMMER AND EARLY AUTUMN SEA ICE CONDITIONS IN THE BEAUFORT SEA Jeffery C. Rogers; Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colo. 80309. A stepwise regression analysis of 23 years of meteorological and summer/autumn sea ice data from the Pt. Barrow to Prudhoe Bay sector and Canadian sector of the Beaufort Sea was used to determine the meteorological factors accounting for most of the variance in the ice severity (determined by the distance northward the pack ice retreated at a given time) during that period. One parameter, air temperature, was found to explain much of the variance in ice conditions during the summer although significant contribution to the total variance was made by cloud cover and wind speed and direction depending upon the lateness of the season. The statistical results for mid—September are interpreted as suggesting that winds work in conjunction with atmospheric heating to determine the ice severity, the former moving the ice only if/after sufficient heating and melting have taken place. Based upon those results possible methods for long-range forecasting of summer/autumn sea ice conditions based upon expected air temperature conditions will be discussed. Such methods include persistence between monthly and seasonal anomalies of temperature in the Arctic and suspected two, three, and particularly five year cycles in temperature conditions. Since high correlations between summer temperatures and ice conditions can be shown to exist in many places in the Arctic, possible forecasting applications will be discussed for other seas in the Arctic. ## NINTH QUARTERLY REPORT TITLE: Mechanics of Origin of Pressure Ridges, Shear Ridges and Hummock Fields in Landfast Ice R.U. #250 PERIOD: April 1, 1977-June 30, 1977 PRINCIPAL INVESTIGATORS: Lewis H. Shapiro, William D. Harrison, and Howard F. Bates, Geophysical Institute, University of Alaska I. TASK OBJECTIVES: To determine the mechanics of origin of pressure ridges, shear ridges and hummock fields in landfast ice. II. FIELD AND LABORATORY SCHEDULE: Field investigations. # III. RESULTS AND INTERPRETATION: The study of the vibration of ice sheets as an indicator of increasing stress was continued. The application of control theory to the problem was investigated and the preliminary results indicate that this is a promising approach to the problem. A tide gauge and an array of stress transducers were installed at Barrow to acquire data during the period of active movements in late spring. The beach ridges formed this year were less extensive than those of previous years. This was due to the lack of grounded features in the relatively thin ice sheet that formed this year, which permitted the ice to go out early. However, some field work was done on those ridges which did form. An aspect of the study of the formation of beach ridges which has caused difficulty is the absence of an appropriate value for the effective friction between the advancing ice sheet and typical beach gravels. Calculations of the forces involved in the process, as we have observed it to occur, cannot be made without this parameter, and so a series of experiments were conducted at Barrow during this quarter to attempt to measure it. The experiments involved the use of a bulldozer to drag large blocks of ice up the beach from a starting point in a water depth of about 0.5 m for a distance of several meters over dry gravel. The weights of the blocks were calculated from measured dimensions and density determinations. The force required to move the blocks was measured with a dynamometer installed in the cable connecting the bulldozer with the blocks. The data obtained are still being reduced. However, preliminary calculations indicate a range of values for the "coefficient of friction" of 0.2 to 0.7 depending upon the roughness of the ice and the gravel surface. - IV. PROBLEMS ENCOUNTERED: None. - V. ESTIMATED FUNDS EXPENDED: \$10,000 ## Quarterly Report Contract #03-5-022-55 Research Unit #258 Task Order # 5/8 Reporting Period 3/1-6/30/77 Number of Pages 103 MORPHOLOGY OF BEAUFORT, CHUKCHI AND BERING SEAS NEAR SHORE ICE CONDITIONS BY MEANS OF SATELLITE AND AERIAL REMOTE SENSING Dr. W. J. Stringer Assistant Professor of Applied Science Geophysical Institute University of Alaska Fairbanks, Alaska 99701 June 30, 1977 ## OCS COORDINATION OFFICE ## University of Alaska Quarterly Report for Quarter Ending June 30, 1977 Project Title: Morphology of Beaufort, Chukchi and Bering Seas Near Shore Ice Conditions by Means of Satellite and Aerial Remote Sensing. Contract Number: 03-5-022-55 Task Order Number: Я Principal Investigator: W. J. Stringer ## I. Task Objectives: The objective of this study is to develop a comprehensive morphology of near shore ice conditions along the ice-frequented portions of the Beaufort, Chukchi and Bering Sea coasts of Alaska. This comprehensive morphology will include a synoptic picture of the development and decay of fast ice and related features, and in the absence of fast ice, the nature of other ice (pack ice, ice islands, hummock fields, etc.) which may occasion the near shore areas in other seasons. Special emphasis will be given to consideration of potential hazards to offshore facilities and operations created by dynamic ice events. Based on satellite observations available since 1972, a historical perspective of near shore ice dynamics will be developed to aid in determining the statistical rate of occurrence of ice hazards. # II. Field and Laboratory Schedule: This project has no field schedule. All remote sensing aircraft data is to be provided by project management. Occasional field reconnaissance flights will be carried out on an unscheduled basis. The work does not involve laboratory activities. During this quarter our annual photographic reconnaissance of Beaufort Sea near shore ice conditions was performed. This information will be used in compiling Beaufort Sea near shore ice maps for the 1976-77 ice year. #### III. Results: Landsat band 7 hard copy at 1:500,000 scale has been used to complete preliminary near shore sea ice maps for the 1972-73, 1973-74, 1974-75 and 1975-76 ice seasons. This information is being used to update and complete the summary and morphology maps reported in our recent annual report. In addition, mapping has been initiated in two map categories not previously reported: Stranded ice and melt season open water. The stranded ice maps show those areas (particularly in the Beaufort Sea) where formerly contiguous ice remains apparently fast although open water is found between the ice and the coast. The melt season open water maps document specifically the areas of first open water. This product is being prepared for use by OCS bird
studies investigators. Copies of the updated synthesis maps as well as the stranded ice and open water maps will be included in our next quarterly report. The major accomplishment this quarter was the completion of a study of the semi-permanent ice feature on Hanna's Shoal (162°W, 72°N). This report, included as Appendix A, describes in detail the mechanism of growth of piled ice around Hanna's Shoal. The study was undertaken to provide a prediction of ice behavior in the vicinity of man-made islands. # IV. Preliminary Interpretations: Based on the Hanna's Shoal study it would appear possible that a number of man-made islands placed sufficiently far offshore to encounter moving ice during much of the ice season could create a semi-permanent ice field. This possibility and its implications will be considered in subsequent reports. V. Plans For Next Reporting Period: During this quarter our plans are to complete the updating of the synthesis maps and complete the open water and stranded ice maps underway at present. Other research and vacation will account for over half of our time during this quarter. Hence, productivity will reflect a less-than-full-time effort. VI. Problems Encountered/Recommended Changes: None VII. Estimate of Funds Expanded: 60% VIII. Appendices (Appendix A, attached) # Growth and Decay of "Katie's Floeberg" ## APPENDIX A ## INTRODUCTION The grounded ice feature located at 162°W 72°N on Hanna's Shoal in the Chukchi Sea approximately 160 km off the coast of Alaska (Figure 1) has been variously termed a "bergfield," (Toimil and Grantz, 1976) an "island of grounded sea ice" (Kovacs, Gow, and Dehn, 1976) and "Katie's Floeberg" (Stringer and Barrett, 1975a). All of these labels imply something about the structure and composition of the feature. To avoid making any such implications in this paper, the ice structure on Hanna's Shoal will be referred to as "the feature" or "the grounded ice feature." In a previous paper (Stringer and Barrett, 1975b) the effects of the grounded ice feature on the pack ice moving past Hanna's Shoal was studied. It was found that at times, the pack ice moved past the feature in a uniform sheet, with only a polynya on the lee side of the feature to indicate its presence. At other times, the pack ice was seen to be divided into zones of ice moving at different velocities, separated by shear lines. In addition, no significant divergence of the pack ice around the feature was observed as the ice was forced past, indicating that the ice must have been undergoing significant piling in the vicinity of the feature. This piling was deduced to be the primary mechanism of growth of the feature. A correlation is shown between the ice piling, the weather and the growth and decay of the feature. ## II. DATA SOURCES The primary data source for studying the feature has been 1:1,000,000 and 1:500,000 scale imagery obtained from NASA's satellites, Landsat I and II. Landsat I (formerly ERTS-1) was launched on 25 July 1972 and the first cloud-free image of the feature on Hanna's Shoal was acquired by the satellite on 7 March 1973. The Landsat orbit is such that the general area of the feature is imaged once every 18 days. However, the overlap of succeeding days' images due to the nature of the satellites orbit allows the feature to be observed up to four days in succession. A second satellite, Landsat II, was launched on 22 January 1975, resulting in increased coverage. A total of more than 40 images have been obtained to date for the area, with the latest available image acquired on 28 August 1976. Thus four years of Landsat coverage was available. Another major source of data was the NOAA-3 and NOAA-4 weather satellites, which daily obtain small-scale (approximately 1:5 million) images of the Arctic Ocean. The scale of these images was so small that their usefulness was restricted to determining if the feature was still in existence at any particular time. However, this was an especially important source of information for late fall because, normally, few Landsat images are obtained during this time due to cloud cover. Landsat imagery was not available for December and January because the sun was below the horizon throughout these months. A third source of data was photography obtained by various investigators both on the feature itself and from low-flying aircraft. These include both color and black-and-white oblique photographs. ## III. GROWTH AND DECAY CYCLES The grounded ice feature on Hanna's Shoal has been observed on satellite imagery dating as far back as 1966 (Kovacs, Gow, and Dehn, 1976) and undergoes yearly growth and decay cycles. For the purpose of observing the detailed growth and decay cycles of the feature over long periods of time, Landsat imagery appears to be the best source of data due to its high resolution capability. For that reason Landsat imagery was considered to be the principal data source and thus, the growth and decay cycle of the feature beyond dates of Landsat data availability was not followed in detail. # 1972 (See Figure 2) The first Landsat image available of the area of Hanna's Shoal was acquired on 2 August 1972 (scene 1010-22133). This scene shows old pack ice covering approximately 60 percent of the area, including Hanna's Shoal. The remnants of what may be the feature can be seen, although it may just be remnants of old ice ridges in the pack. There are similar pieces seen elsewhere in the pack ice. An image obtained on 26 September, (scene 1065-22192) although partially obscured by clouds, also shows the area where the feature should have been. But the feature cannot be seen, so it seems to have completely disappeared in 1972 although it was observed earlier that year by Kovacs, et al. (1976). # 1973 (See Figure 3) The first available Landsat image showing the feature was obtained on 7 March 1973 (scene 1227-22203). It shows pack ice completely covering the ocean surface with the exception of a small polynya on the southeast side of the feature indicating ice movement in that direction. A plume of fog extending from the polynya southeastward suggests that the wind was responsible for the movement of the ice. The area just "upstream", on the northwest side, of the feature appeared to have been repeatedly broken up and refrozen and was in the form of a wedge. The feature at that time had a semi-elliptical shape approximately 9 km by 3 km with the major axis oriented approximately northeast-southwest (the feature was always observed to be oriented in this approximate direction throughout the years 1973-1976). An image obtained the following day (scene 1228-22261) shows both the direction of ice motion and wind direction to have shifted, with the wind out of the northeast and ice moving to the southwest. The previous polynya had frozen and a new one formed. The wedge observed the previous day which had been attached to the feature had broken loose. The feature did not change in size or shape between March 7 and 8. However, by 12 April (scene 1263-22203) the feature had nearly doubled in size, being 14.8 km long by 5.6 km wide, still oriented roughly northeast-southwest. The outline of the feature as it appeared on 8 March was still visible and indicated that most of the growth had occurred on the north and northeast sides of the feature. A fracture pattern differing in appearance from the wedge could be seen "upstream" from the feature. A second, much smaller (5.1 x 1.9 km) grounded feature appeared to the north of the larger one. It had the same general shape and orientation that the larger one did on 8 March. The polynyas on the southwest side of the features indicate ice movement from northeast to southwest. Trails of fresh ice in the pack indicate the previous directions of ice movement. Both features had grown larger by 1 May (scene 1282-22261) - the larger one 20.4 km by 5.6 km and the smaller one 7.4 km by 3.7 km. The ice motion was from the northeast to the southwest. On 2 May (scene 1283-22315), the direction of ice motion had shifted to an east-to-west movement. The wedge-shaped extensions could again be seen in this scene. One Landsat cycle later, on 19 May 1973 (scene 1300-22260) the pack ice, which was well-consolidated on 2 May, appeared fractured and broken. The direction of pack ice movement was approximately from the northeast, but was difficult to determine because little movement could be detected on the image; there were no open leads or polynyas large enough to make a positive determination. The northeastern end of the larger of the two features had broken off and thus the major dimension was decreased to 13.0 km but the minor dimension appeared to be 6.5 km wide, nearly a kilometer wider than in the previous image. The smaller feature was actually somewhat longer in this image then on 2 May, 9.3 km long by 3.7 km wide. By 6 June (scene 1318-22255), the larger feature had decayed further. At that time, both features were nearly the same size, the "larger" one 9.3 km by 5.1 km and the "smaller" one 9.3 km by 4.6 km. The pack ice was even more decayed. A polynya on the western side of the features on 5 June (scene 1317-22200) indicated ice motion had been in that direction, but on 6 June open water on the eastern side indicated that the direction of ice motion had shifted 180° and was moving west to east. On 6 June the clouds cleared enough to reveal a small wedge of ice that had previously formed to the east but had broken off as the wind changed. The last available image of 1973 was obtained on 2 September (scene 1406-22131) showing the feature much reduced in size: 2.8 km long by 1.9 km wide. The location of the smaller companion feature was off of the Landsat scene so that the existence of the smaller feature was not determined. The pack ice was a loose swirl pattern of unconsolidated ice. The direction of ice motion was indeterminate. The feature may or may not have disappeared completely in 1973. This will be discussed
more fully below. # 1974 (See Figure 4) The first available Landsat imagery in 1974 was an overlapping series from 19-23 March (scenes 1604-22090, 1605-22145, 1606-22203, and 1608-22320). On 19 March, the pack ice can be seen to have moved northwest to southeast creating a polynya on the southeast side of the feature. On 20 March the direction of ice motion shifted to the southwest as shown by the opening leads. The ice motion again shifted direction and on 21 March it was moving east to west as evidenced by the large polyna. It continued moving west through 23 March. The ice traveled, from 20 March to 23 March, approximately 15 km in a westerly direction. Adding to this the southwesterly movement from 19 to 20 March gives a total ice movement of approximately 18 km west southwest. The ice in the immediate northeast vicinity of the feature was very broken, consisting of old floes of varying size in a matrix of young and new ice. One Landsat cycle later, 7 and 8 April, the feature appeared unchanged. However, close comparison of the 7 April and 8 April images (scenes 1623-22142 and 1624-22201, respectively) showed that the ice in the wedge adjacent to the eastern side of the feature had not moved whereas the rest of the ice had moved westward 2 to 5 km. Ice north of the shear line which was visible to the north of the feature had moved even more (Stringer and Barrett, 1975). The wedge had in fact consolidated with the rest of the feature as can be seen on 27 April (scene 1643-22252). The point of the wedge had been rounded off and close examination showed the faint outline of the feature as it appeared in earlier images. The open and refreezing leads in this scene indicate that the ice motion had been to the north, then shifted to the northwest. The feature was 14 km long by 6 km wide. The 16 May scene (1662-22304) was almost completely covered by clouds, but the outline of the feature could be seen. Its dimensions at The dimensions of the grounded ice feature did not significantly change through 5 July (scene 1712-22061), being 17 km long by 6 km wide on that date. Throughout the summer, the pack ice steadily decayed and was thin and broken and/or puddled by 5 July. The 12 August image (scene 1750-22161) was the last date in 1974 in which the feature was visible on Landsat imagery. The feature was clearly visible, partially surrounded by remnants of unconsolidated pack ice and open water. The feature was 15 km long by 5.5 km wide, not having decayed or changed shape much since 16 May. An image obtained on 4 October 1974 (scene 1803-22083) showed no trace of the feature. Although the scene was partially obscured by clouds, the area where the feature should have been was obscured by small cumulus clouds on the order of a kilometer in diameter. If the feature was still in existence, it would have to have been less than that size in order to be hidden under the clouds. The area appeared to be totally free of pack ice. The limit of the pack ice can be seen in the eastern corner of the image. On 22 October (scene 1821-22082) the pack ice covered the area, but no polynya (the most distinguishable characteristic of the feature) could be observed. In an effort to pinpoint the day that the feature disappeared and to determine when it reappeared in 1974, NOAA 3 images acquired from September to November were examined. There were few available images due to cloud conditions. The feature was still visible on the 6 September NOAA 3 image (Figure 5a). The pack ice was more than 100 km to the north, although a few floes were observed in the area of the feature. The next clear NOAA 3 image of the area was obtained on 4 October (Figure 5b). That image concurred with the Landsat image of the same date; the feature seemed to have disappeared. NOAA images obtained on 6 October and 13 October (Figure 5c) also revealed no feature. By 18 October (Figure 5d) thin pack ice seemed to be forming in the area. The 23 October NOAA 3 image (Figure 5e) and the 22 October Landsat image both showed newly formed ice in the area. On 10 November, the date of the next NOAA 3 image (Figure 5f), a small polynya appeared at approximately 162° W latitude 72° N longitude. The pack ice in the area was quite dense. A lead which opened along the Chukchi Sea coastline indicated that the ice was in motion. The lead was about the same width as the apparent polynya and so seemed to confirm the existence of the polynya. Two NOAA images, 23 November (Figure 5g) and 25 November (Figure 5h), showed the polynya more clearly. Apparently the feature had started to reform by 10 November after disappearing sometime between 9 September and 4 October. # 1975 (See Figure 6) The earliest 1975 Landsat image of the area of the feature was acquired 25 February (scene 1947-22031). At that time, the feature was already well-developed, being 21 km long by 9 km wide and oriented northeast-southwest, the same as for the previous two years. A polynya had formed on the eastern side of the feature but had refrozen by the time the image was acquired, indicating that the ice had moved approximately 10 km east. The characteristic wedge pattern was again seen on the west side of the feature. On 15 March (scene 1965-22022) the ice was moving in a north-northwest direction, as shown by the open polynya on that side of the feature. The edge of the feature showed the jagged remains of the ice wedge seen on 25 February that had broken off as the pack ice moved away. These remains enlarged the feature to 23 km by 12 km. The 2 April Landsat image (scene 1983-22013) showed a very pronounced wedge of fractured and ridged ice on the eastern side of the feature and a large polynya, mostly frozen over, on the western side, indicating ice motion was from east to west. However, at the time the image was acquired, a lead system had started to open to the north of the feature, with the ice to the north moving approximately northwest. On 3 April (scene 1984-22071) the major lead had widened considerably and a large pattern of fracture leads had opened. However, the wedge of piled ice was still intact. The feature remained the same size on both days, 21.5 km by 11 km. Scene 2079-22082 obtained on 11 April showed the wedge of ice on the eastern side of the feature to have broken off, due to the change in direction of motion of the pack ice from an east to west movement to a northeast to southwest movement. The size and shape of the feature remained nearly unchanged (22 km by 10 km). The next day, scene 2080-22140, showed the ice motion to have shifted again, this time to a southwest to northeast movement, a shift of nearly 180°. The amount of movement in that direction was 1.0 to 1.5 kilometers. Beginning on 29 April a four day series of overlapping images of the area of the feature was obtained. On 29 April (scene 2097-22081), the feature appeared essentially unchanged from the 12 April image with the exception of a narrow addition of ice on the northwest corner of the feature. A wedge of ice was seen forming again on the northwest side of the feature, with a corresponding polynya to the southeast, both the result of ice motion to the southeast. The ice had moved very little between this scene and the one obtained on 30 April (scene 2098-22135) with the result that the polynya had partially frozen. Some ice movement formed cracks in the polynya. Twenty-four hours later, the polynya had completely frozen, but a small lead on the west side of the feature indicated that the ice motion had changed to that direction (scene 2099-22194). On 2 May (scene 2100-22252) the ice had indeed moved west, opening a large polynya on that side of the feature. The 17 May image (scene 2115-22075) showed little change in the dimensions of the feature. The pack ice was broken and decayed by this time. The next available image, 17 August 1975 (scene 2207-22184), showed the feature very decayed and somewhat smaller in size, 20 km long but only 4 km wide. The pack ice was very decayed and had been moving from approximately northeast to southwest. The next available image of the area was a NOAA 4 image acquired on 23 September 1975 (Figure 7) which showed new pack ice covering the area and a large polynya to the southwest of the feature. On 11 October, a Landsat scene (scene 2262-22240) showed the feature much reduced in size, 14 km by 7.5 km, but similar in shape to that seen in the early part of the summer. A refrozen polynya to the west indicated ice motion in that direction. The 11 October image was the last Landsat image for 1975. The feature apparently did not disappear in 1975. # 1976 (See Figure 8) The first available Landsat imagery of the area in 1976 was a series of four images acquired on 17, 18, 19 and 21 March (scenes 2420- 21583, 2421-22042, 2422-22100 and 2424-22212 respectively). The feature had undergone considerable decay since 11 October 1975 but had grown to its largest observed size yet, 27 km by 10 km. A small round core could be seen on the southwest tip of the feature, with large growth features to the north and east. A wedge shaped fracture pattern could be seen forming to the northwest on 18 March but the wedge had detached and moved southwest on the 19th indicating ice motion in that direction. By the 21st the ice had moved even further southwest, but a new lead had opened up to the south indicating a change of direction of ice movement. On the 10 May Landsat image (scene 2474-21570), the feature was half out of the picture so its size could not be determined, but it was at least as large as in March. A polynya on the south side indicated ice motion in that direction. On 16 June, (Landsat scene 2511-22015), the feature could be seen, being 30 km by 25 km in size, and in the shape of a teardrop, with the tip to the southwest. The pack ice was very decayed, with about 5 percent of the pack consisting of open water due to small holes in the ice. No ice motion was detectable. On 23 July, (Landsat scene
2548-22063), the feature was approximately 6 km narrower than on 16 June, being 31 km long by 19 km wide. The pack ice consisted of decayed and loosely consolidated small floes. No ice motion was detectable: no polynyas or leads were seen. By 28 August, (Landsat scene 2584-22053), the feature had decayed considerably, losing much of its material on the northwest and southeast sides. The long axis, as usual, was oriented approximately northeast-southwest. The feature itself was in the shape of a "T", with the length of the top of the "T" approximately 20 km, while the narrow part was only 10 km wide. The northwest-southeast dimension was 31 km with the top of the "T" contributing 8 km. The pack ice was mostly loose, small floes, with open water to the west. The feature apparently did not disappear in 1976. NOAA 4 imagery showed its existence at least as late as 7 November (Figure 9). At that time pack ice covered the entire area surrounding the feature, but a large polynya several kilometers long revealed the feature's presence. The last NOAA image that showed the feature clearly was acquired on 28 October, and showed the feature nearly the same size as on the 28 August Landsat scene. ## SUMMARY The above sequences of NOAA and Landsat images show that the feature undergoes yearly growth and decay cycles. In March of 1973, it was shown that the direction of ice motion was in the same direction that the wind was blowing and hence winds were likely the major cause of ice motion, at least in the winter. Some years the feature seems to disappear completely. ## IV. BARROW WEATHER VERSUS ICE MOTION It is the hypothesis of this study that the process of growth and decay of the grounded ice feature is mostly dependent upon the weather conditions, especially the direction of the wind movement, at the location of the feature. The closest reliable and complete records of the weather in the area are collected at Barrow, Alaska. Since Barrow is over 100 km southeast of the location of the feature, the wind and weather conditions may not be the same at both locations. Figure 10 was made in an attempt to correlate the direction of ice motion in the area surrounding the ice feature with the direction of the winds at Barrow. The direction of the ice motion was derived by observing polynyas and open leads on Landsat imagery on the dates shown. Figure 10 shows that the direction of the ice motion was usually to the right of the wind vector. The average angle between the wind and the ice motion directions of all the values in Figure 10, with the exception of those of 10 and 11 April 1975 which were anomalous, was calculated to be 20° , with an average deviation of $+ 19^{\circ}$. When only the angles of ice motion measured to the right of the wind direction are considered, the average value is 29°, with an average deviation of + 13°. The latter situation may be more valid because the ice vectors to the left of the wind vectors occurred when the winds were low to moderately low in speed while the winds which occurred to the right of the ice motion were generally of higher speeds. Therefore, the ice vector at the grounded ice feature is usually approximately 29 degrees to the right of the wind vector at Barrow. In support of this, it has been found that the Coriolis acceleration causes the direction of ice motion to curve approximately 30° to the right of the wind direction (Zubou, 1945). Nansen observed (Zubov, 1945, p. 358), while drifting aboard a ship in the Arctic Ocean, that loose ice floes tended to move at an angle of 28° to the right of the wind direction. This is very close to the 29° observed on the Landsat images. Also, two Landsat images, 7 and 8 March 1973 (Figure 3a and 3b), show condensation trails extending from open polynyas, showing the direction of ice and wind motion simultaneously. The ice motion in these cases is 25° to 30° to the right of the wind direction. The only amomalies are the vectors on the 10th and 11th of April 1975. On 10 April, the wind at Barrow was out of the southwest, pointing N 30° E. But the direction of ice motion was to the southwest, pointing N 215° E. On 11 April the situation was similar, with the wind vector pointing N 50° E and the ice vector N 190° E. The wind speeds on these two days were moderate (14-19 km/hr) and moderately low (7-13 km/hr), respectively. The polynya used to determine the direction of ice motion may have formed prior to the time the wind was blowing northeast, which would have put its formation time back on the 7th of April. But this seems unlikely, as the surface temperatures were in the range of -23°C to -26°C at the time, which would have meant that the polynya should have been frozen over more than it appears to be on 11 April. Except for this unexplained anomaly, the wind direction at Barrow is correlatable with the ice motion at the feature, which means that the wind direction at the feature is generally the same as at Barrow and probably determines the direction of motion of the pack ice at the feature. Since it is assumed that the winds are the major cause of ice motion and that the wind direction at Barrow is usually the same as at the feature, the wind speed at Barrow may be correlatable with the velocity of the ice moving past the feature. The rate of ice movement at the feature is calculated by measuring the flow vectors at the feature and dividing by the time interval. Figure 11 shows the pack ice velocity at the ice feature plotted against the windspeed at Barrow for 1973 through 1976. When the types of ice motion are delineated, a pattern begins to emerge. The motion of ice that is free-floating and loose, such as loose floes or pack ice that is apparently free of coastal effects because of an intervening shear line or lead, is Type I. Pack ice motion of this nature may have gained momentum previously or may be part of the Pacific Gyre. Type II is ice motion that is apparently affected by coastal friction and may be heading towards Bering Strait. This type of motion is predominant, and is generally slower than Type I. Type III motion is very slow, apparently because the ice is partially attached to the shore or otherwise impeded. In some cases, the ice moved only a few kilometers per day, despite winds averaging 10 to 15 knots for 24 hours or longer. All three types of motion may be present at the same time. For example, during the period 7 to 8 April 1974, a shear line existed to the north of the feature. The ice north of the shear line moved at a rate of 17.8 cm/sec, the ice south of the feature, nearest the shore, moved only 3.9 cm/sec, while the ice between these two zones and obstructed by the feature, moved approximately 9.0 cm/sec. These form three zones with distinct boundaries, as indicated by the ice vectors in Figure 12. Due to this complex relationship, measuring the windspeed at Barrow will not give the magnitude of ice drift at the feature. Other factors to be considered are coastal friction, ice surface roughness, and amount of open water or thin ice. The ambient air temperature at the feature appears to be a major factor in determining the strength, and therefore the permanence, of new additions to the feature. There is no satisfactory way to correlate the temperature at Barrow with the temperature at the feature. However, since Barrow is on a point of land extending into the Arctic Ocean and the land surface to the south and east of Barrow has very little surface relief, and Barrow is at nearly the same latitude as the feature (Barrow Table 1. ICE VECTORS | Point
No. | Date | Ice Speed
(cm/sec) | Ice Motion
Direction | Average
Wind Speed
(km/hr) | |--------------|------------------------|-----------------------|-------------------------|----------------------------------| | 1 | 21-22 August 72 | 24 | SE to NW | 10.4 | | 2 | 7- 8 March 73 | 4.6 | N to S | 7.4 | | 3 | 11-12 April 73 | 2.3 | N to S | 5.3 | | 4a
b | 1-2 May 73 | 5.8
2.3 | E to W | 21.1 | | 5a
b | 5-6 June 73 | 5.8
8.1 | E to W | 6.1 | | 6 | 30 May - 2 June 74 | 9.6 | SE to NW | 5.8 | | 7a
b | 20-21 March 74 | 6.5
8.7 | E to W | 14.4 | | 8a
b
c | 7-8 April 74 | 17.8
3.9
9.0 | E to W | 18.9 | | 9 | 21 March-7 April 7 | 4 3.7 | E to W | 13.4 | | 10a
b | 17-18 March 76 | 20.8
10.4 | NNW to SSE | 14.7 | | lla
b | 18-19 March 76 | 29.0
10.4 | E to W | 9.1 | | 12a
b | 19-21 March 76 | 20.8
8.7 | ENE to WSW | 11.4 | | 13a
b | 2-3 April 75 | 6.4
1.2 | SE to NW | 9.0 | | 14a
b | 11-12 April 75 | 2.3
1.7 | SW to NE | 10.2 | | 15a
b | 29-30 April 75 | 7.8
5.8 | WSW to ENE | 10.2 | | 16a
b | 30 April-1 May 75 | 3.1
5.8 | E to W | 8.8 | | 17a
b | 17-18 May 75 | 8.7
5.2 | NE to SW | 6.9 | is at 70°20'; the feature is at 72°00'), the temperatures at the two locations may be similar. #### V. GROWTH MECHANISMS In the section on growth and decay cycles, mention was made of wedges of ice that appeared to consist of pack ice that had fractured and then reconsolidated by freezing. It is now postulated that the formation of these wedges constitutes the principal growth mechanism of the feature. The mechanism of formation of the wedges is more complex than simple fracturing and reconsolidation by freezing, and is illustrated in Figure 13. As the ice is forced past the feature, it piles up behind, i.e., "upstream" (with respect to the ice motion) of the feature (Stage I). Initially, the piled ice forms ridges oriented approximately parallel to the edge of the feature. As the ice piling continues, the ice pile expands upstream in a direction perpendicular to the effective cross section of the feature, where the effective cross section, X, is equal to Y tan ϕ , where X and Y are as shown in Figure 13, and ϕ is the angle between Y and the side of the wedge. The 12 April 1973 image (Figure 3c) shows this process. Long fracture lines extend
upstream and piled ice can be seen adjacent to the feature. At some point in the process of piling, shear ridges develop, extending upstream from the sides of the feature to a point where the ridges intersect, forming a wedge shape which effectively encloses the piled ice. In an attempt to determine when this occurs, the ratio, R, of the length, Y, (Figure 13) of the wedge to the cross section, X, of the feature was computed for those scenes for which the measurements could be made. Table 2 gives the dimensions and ratios for those TABLE 2. ICE WEDGE DIMENSIONS | Year | Date | Cross Section X (km) | Length Y (km) | Y/X | |-------------|------------|----------------------|---------------|------| | 1 | 7 March | 8 | 13 | 1.6 | | | l May | 9 | 22 | 2.4 | | | 1 May | 8 | 8 | 1.0 | | | 2 May | 9 | 21 | 2.3 | | | 6 June | 5 . | 10 | 2.0 | | | 8 April | 9 | 18 | 2.0 | | | 27 April | 9 | 18 | 2.0 | | 2 | 2 April | 15 | 28 | 1.9 | | | 29 April | 15 | 38 | 2.6 | | | 11 October | 13 | 10 | 0.77 | | <u>1976</u> | 18 March | 8 | 30 | 3.7 | | | 18 March | 14 | 38 | 2.7 | scenes used. The minimum observed ratio was 0.77, which occurred on 11 October 1975. This indicates that the shear ridge formation occurs not long after the piling begins. The development of the shear ridges does not halt the growth of the wedge. A previous study of the ice motion around the feature (Stringer and Barrett, 1975b) showed that the feature did not cause the pack ice to diverge significantly around it as the pack ice was forced past. Therefore compaction of the pack ice must occur in an amount proportional to the area of the polynya formed downstream of the feature. The total volume of ice compacted would be equal to the area of the polynya times the thickness of the pack ice. Some of the compaction would occur in the pack ice in the immediate vicinity of the wedge, depending upon the ice thickness, amount of open water, etc., while the remainder would occur along the shear ridges, resulting in piling and subsequent expansion of the wedge. This is Stage II of the growth mechanism. An illustration of Stage II is contained in the sequence of images obtained during the late winter and spring of 1973 (Figure 3). The feature was comparatively small on 8 March 1973, but by 12 April had more than quadrupled in area. It is unclear at this time whether Stage I or Stage II accounts for the majority of the feature's growth. The wedge seems to form soon after the ice movement commences and there are no sequences of images within a sufficiently short time frame to determine how much ice is piled before the wedge forms. The speed with which the ice moves past the feature is the primary factor affecting how soon the wedge forms. In the sequence of Landsat images obtained on 18, 19 and 21 March 1976, the ice was moving moderately fast, 20 to 30 cm/sec. In the 18 March scene, the ice had just started moving northeast to southwest. No wedge had formed by 19 March but ice piling was evident. By 21 March, however, a wedge had formed and substantial growth of the feature could be seen. The time between the 19 and 21 March images was too long to determine when the wedge formed. A close examination of the surface of the feature on the 12 April Landsat image revealed a concentric wedge-shaped pattern of growth. On the northeast end of the feature, Stage I fracture patterns and concommitant piling could be seen, indicated by the darker gray area. No definite wedges had yet formed. By 1 May 1973, the length of the feature had nearly doubled. Again, the wedge pattern can be seen in the newly added ice. The direction of ice motion had changed by approximately 45°, from northeast on 12 April to almost due east on 1 May. A new, much larger growth wedge had formed on the eastern side of the feature. Another example of the wedge forming process is illustrated on the 18 March 1976 image (scene 2421-22042). Three separate periods of growth can be seen here. The feature was originally a small oval of ice approximately 6 km in diameter. It was probably a remnant of the previous year's feature last seen on 11 October 1975 (see 1975 growth and decay cycle). Extending north-northeast of this oval core was a wedge pattern approximately 8 km long, the result of the first period of growth. The second period of growth was to the northeast, during which the feature doubled in length but did not change in width. During the third period of growth the feature increased in width but not in length. The third period of growth, towards the north and northwest, was still in progress at the time the image was obtained. The building process probably does not continue indefinitely. At some point (Stage III), if the direction of ice motion has remained constant, the wedge would cease to grow and the ratio R would reach a maximum value R_{max} . This would be the result of the angle ϕ becoming small enough that the predominant process would change from a combination of shear and pressure ridging to a simple shearing motion. The value of R_{max} is a function of the ice conditions, such as thickness, uniformity, temperature and brittleness. $R_{\mbox{max}}$ is probably also dependent on grounding of the newly formed shear ridges. The maximum R measured on the Landsat scenes was 3.7 on 18 March 1976. However, it is not clear that the ice formation measured was a true growth wedge. Another wedge measured on the same image gave an R of 2.7. A similar value of 2.6 was obtained for a wedge on 29 April 1975. The sequence of images of 1 and 2 May 1973 showed the length of the wedge actually decreasing. On 1 May the wedge had a ratio of 2.4 with pronounced shear boundaries. On the next day's image, the ratio was 2.3, yet the direction of ice motion had changed less than 20°. Therefore, it seems that the wedge had reached an R_{max} of 2.4 and a slight change in the direction of motion of the pack ice resulted in pieces of the wedge breakingooff. A somewhat different example of the Stage I and II processes is illustrated in the images obtained of the feature in the late winter and spring of 1974. The 20 March image showed the ice to have moved from east to west. There were numerous floes of various sizes frozen into a matrix of new ice immediately to the east and northeast of the feature. The ice movement towards the west caused that portion of the frozen matrix to the east of and in line with the feature to pile up on the eastern side. Some of the floes maintained their integrity, not breaking and piling. Despite the fact that the ratio of the length of the piled ice to the effective cross section of the feature was R = 1.0 (which is greater than the minimum of 0.77 observed above) no wedge formation was observed at that time. The 23 March image showed the piled ice to have consolidated and the wedge shape was finally apparent. Comparing this sequence with that of 11 and 12 April 1973 shows the absence of the initial fracture patterns in 1974. Possibly the ice upstream of the feature in 1974 was much newer ice (except for the floes), and may have rafted and piled immediately around the older floes and ridge remnants and then reconsolidated without breaking them up. In 1973, the ice was thicker and more uniform upstream. This would account for the observation by Toimil and Grantz (in press) of the irregular and older appearance of the ridges in the feature in 1974 rather than the expected newer appearance of ridges formed that ice season. The growth wedge does not always become permanently that affixed to the feature. Many of the images show the wedge forming and then later breaking loose due to shifts in the direction of the ice motion. The attachment of the growth wedge to the feature depends upon the winds, the temperature, and the length of time the direction of ice motion had remained constant. For example, during the 1974 sequence, the ice motion was from east to west consistently from 21 March until 8 April. Consequently, the wedge that had formed by 23 March was still in existence on 8 April and, despite a change in direction of motion, the wedge remained nearly intact on 27 April. This is in contrast to several other examples, such as that of April 1975. On 2 April a large wedge had formed on the eastern edge of the feature. But by 12 April the wedge had broken loose and the ice motion had changed direction more than once. In this case, the ice motion changed from an easterly to a northeasterly direction, resulting in the shearing off of the wedge at the previous edge of the feature. The above proposed method of growth is the major but not the only possible method. In order for this process to occur, relatively deep draft ice (thicker than first year sheet ice) must first become grounded on the shoal. Thus, the initial core of the feature would consist of remnants of multi-year ridges, floebergs, and possibly some ice islands, frozen to one another in a matrix of first year ice. Such deep draft features have been observed within the feature (Toimil and Grantz, in press; Kovacs, Gow, and Dehn, 1976). This type of growth probably accounts for only a small percentage of the total. Another minor growth mechanism can be observed in the 15 March 1975 image (Figure 6b). In this scene, a polynya had frozen over prior to 15 March. When the ice resumed movement, a new polynya formed; but a narrow shelf of the new ice that had covered the older polynya remained attached to the feature, adding to the area of the feature. On 2 April 1975, only a small portion of this shelf still existed. This method, which adds only a small percentage of material to the feature, is of minor importance. #### VI GROWTH AND DECAY AND THE WEATHER ### A. Barrow Weather Data As previously shown, the weather at Barrow is correlatable to ice motion at the feature and thus provides an approximation of the conditions at the feature. The primary source of weather data for Barrow was obtained by personnel at the National
Weather Service Office located at the Wiley Post-Will Rogers Airport at Barrow, Alaska. This data is published monthly by the NOAA Environmental Data Service, Asheville, North Carolina. The data pertinent to this study, (wind speed, wind direction, and temperature) was recorded at three-hour intervals and compiled into daily averages. The wind speed and direction values are the vector sums of the eight daily three-hour observations, while the temperature values are averages of the eight daily observations and the wind direction is the direction from which the wind is coming. In order to compare the weather data of the four years for which Landsat imagery of the feature was available, 1973 through 1976, the data for each year was plotted beginning approximately one month previous to the date of the first Landsat image to just after the last Landsat image of each year. Figures 14 through 17 show the weather data for the years 1973 through 1976, respectively. Another source of weather data taken at Barrow, but compiled differently, was obtained from the USAF Air Weather Service headquartered in Asheville, N. C. The data gives the percentage frequency of wind direction and speed from hourly observations. This data averaged over all months for the years 1945 through 1968 is plotted in Figure 18. Figure 18a shows the percentage frequency of wind direction, Figure 18b shows the mean wind speed versus direction and Figure 18c shows the percentage frequency of wind speed. As shown in Figure 18a, the winds at Barrow are predominantly out of the east and east-northeast. The numbers on the rose diagram give the percentages of the winds that occur within each of sixteen 22 1/2° divisions. The sum of east and east-northeast winds accounts for more than 30 percent of the total. A secondary peak occurs in the west with 5.6 percent of the winds from that direction. Figure 18b shows that more than 60 percent of the wind speeds are in the range of 11 to 26 km/hr. Figure 18c compares the winds speeds and directions. The maximums and minimums in the wind speed frequency approximately correspond to the maximums and minimums in the wind direction frequency. The data plotted in Figures 14 through 17 show the same distribution of maximums and minimums on a yearly basis. The predominant wind directions are east to northeast, and the winds are steady from these directions for periods of days at a time. The highest wind speeds are generally associated with these periods, although occassional high winds may come from other directions. The lowest wind speeds are generally associated with winds from other than the predominant directions. ## B. General Features of Growth Several general conclusions can be drawn regarding the location and orientation of the growth patterns of the feature. First, growth always starts very near 162°00'W 72°00'N, indicating that this is probably the shallowest point on Hanna's Shoal. Thus the ice would ground here first and form the "core" for further groundings and growth. In 1973, the first available images (7 and 8 March) showed the feature to be very small and located almost precisely at 162°00'W 72°00'N. Later images of 1973 showed the feature to have expanded from this point. First available images for 1974, 1975 and 1976 showed the feature already past the grounding stage of growth but the "core" could be seen clearly. This core was most vividly seen in the 17 thru 21 March 1976 series of images. Another general characteristic of the growth pattern of the feature is that growth by the "ice wedge" mechanism detailed above always occurs within a narrow zone on the northeast side of the original core. This zone generally varies no more than from north-northeast to east-northeast, approximately 45 degrees. The narrow growth zone is largely due to the weather conditions, mostly the wind direction, and will be discussed more thoroughly below. However, there is another reason for part of this behaviour. On the 12 April 1973 image of the feature, a large section of ice on the southwest tip of the feature can be seen to have broken off. This seems to indicate that growth cannot occur on the southwest side of the feature. Possibly the water is too deep to ground any ice that may pile there, and thus any shelf of ice that forms there would break off rather easily. ### C. Correlation of Barrow Weather and Growth of the Feature Figures 14 through 17 show the weather conditions at Barrow and the dimensions of the grounded ice feature during the period from approximately one month prior to the first available Landsat scene of each year to just after the last available scene of that year for the years 1973 through 1976, respectively. This encompasses approximately eight months of each year. The first available Landsat scene of the feature in 1973 was acquired on 7 March. At that time, the feature (Figure 14) was 9.3 km long, extending northeast-southwest, and 2.8 km wide. The preceding February was characterized by cold temperatures and winds averaging less than 16 km/hr from varying directions. The next available Landsat image was obtained on 11 April and showed the feature to be much larger -14.8 km by 5.6 km (only the larger feature is considered here). The temperatures during the period 7 March to 11 April warmed to near -18°C from a low near -40°C. The winds were almost steadily from the northeast to east and at speeds sometimes greater than 30 km/hr. The feature continued to increase in size through 1 May, when it reached its maximum observed size of 20.4 km by 5.6 km. Again the winds were mostly from the northeast, with some from the north and east. The wind speeds averaged near 16 km/hr while the temperatures were -15°C to-23°C. The feature had decreased in size by the 19th of May, to 13 km by 6.5 km. The winds during this time were more variable in direction and the temperatures were much warmer than earlier in the year. The first clear Landsat scene of the feature in 1974 was obtained on 20 March. The length of the feature (oriented northeast-southwest) was 9.3 km and the width was 6.5 km (Figure 15). During the preceding three weeks the winds at Barrow shifted slowly from the southwest to the east and then to the northeast. The wind speed during this time varied from 3 to 15 km/hr and the temperatures ranged from -40°C to -19°C. Growth of the feature was slow. However, the next image on 7 April shows a dramatic growth. The feature had increased to 18 km in length with no apparent change in width. The winds during the interval 20 March to 7 April were mostly from the northeast and averaged greater than 15 km/hr. A drop in wind speed occurred for a few days when the winds shifted and became light and variable. The predominance of winds from the northeast at moderate speeds resulted in a northeastward extension of the feature. The temperatures during this period were near -20°C. In 1975 the first Landsat scene of the feature was obtained on 25 February. At that time (Figure 16), the feature was already quite large, 21 km long by 9 km wide (same orientation as previous years). Since 9 February, the winds had been predominantly from the northeast with wind speeds averaging approximately 15 km/hr. The temperature hovered near -30°C. These conditions resulted in significant growth of the feature. By 15 March, the feature had increased to 23 km by 12 km, not a large increase considering that the weather conditions appeared to be favorable for growth. However, the exact size of the feature could not be determined because clouds partially obscured the scene. Between 15 March and 17 May, several images of the feature were acquired which showed little change in the feature. The formation of growth wedges occurred several times, only to become detached from the feature by a shift in the wind direction. These shifts, usually of 30 degrees or more, occurred only occasionally up through 2 April, but the windspeed was sufficient to cause the wedges to break loose. After 2 April, the shifts in wind direction occurred more frequently. Thus, conditions were not favorable for growth after 15 March and little growth occurred. The temperatures were quite low in 1975, being around -20°C to -30°C most of the time up until the end of April. The feature did not disappear in 1975. On 11 October 1975 it could still be seen to measure 14 km by 7.5 km. By 18 March 1976 the part of the feature remaining from 1975 had shrunk to a small, nearly circular core, upon which the feature had rebuilt. Three distinct phases of growth could be seen, the first phase apparently building the feature toward the north, the second phase extending it more toward the east, and the third stage, still in progress, building the feature toward the north. The initial stage of building to the north required winds from the north-northwest since the direction of ice motion is generally 30° to the right of the wind direction. These winds are not seen in the weather data (Figure 17). What appears to be more likely is that the winds from the northeast and east in late February built the initial ice wedge only to have it modified by a sudden shift in the winds to the south and southwest. No evidence of building is seen that could be attributed to the steady west winds in early February. In early March the winds were out of the northeast and east and built the second extension of the feature. The winds shifted to the north to northwest for approximately a week and the third building stage resulted with the feature growing to 27 km by 10 km. Building of the feature continued and by 16 June 1976 it was 30 km by 25 km. During this time, the winds were predominantly from the east and northeast at speeds from 3 to 30 km/hr. The temperature gradually rose from -30°C to 0°C. In summary, growth of the feature appears to occur when the winds are steady and of moderate speed, and the temperature is below -18°C. In addition, it was observed that growth via ice wedge formation never
occurred in directions ranging from southeast to south to west. Apparently the shoals are too deep to allow grounding of the ice in these directions. When the winds were predominantly out of the east to north and averaging 11 to 16 km/hr, growth of the feature occurred in directions ranging from east to north. The resulting feature was always seen to be oriented with its long axis in a northeast-southwest direction, with the southeast tip of the feature at 162°00'W 72°00'N. It is uncertain at what time during the winter the feature begins to grow. In 1973 and 1974, it was quite small in March, with much growth taking place later. In 1976, the core of the feature could be seen in mid-March with recent growth appearing to have occurred in February. However, in 1975, the feature was quite large by 25 February. Thus, growth probably begins in January or February, but may begin earlier. By the second week in May of each year, growth has virtually ceased. From that time until mid-Autumn, the feature decays. ## D. Summer Decay of the Feature The decay of the feature is a relatively simple process, which consists of melting and fracturing of the ice with large and small pieces of ice being broken off and carried away by wind and pack ice action. As shown by Figures 14 through 17, the decay process starts almost immediately after growth ceases, usually in mid-May, when the temperatures average -5°C to -10°C with the winds variable. In 1973, there was a sharp decline in length of the feature between 1 May and 19 May with a gradual decrease in the decay rate after that. For the other three years, decay proceeded more slowly until July or August. In 1974, the feature is believed to have disappeared completely, and may have done so in 1973 as well. In 1975, it did not disappear completely, and in 1976 the last available image, acquired on 28 August, showed the feature to be quite large but definitely decayed. The winds during the summer and early autumn are generally of moderate speeds but with varying directions when compared to winds of winter and spring. With temperatures generally above freezing until mid-September, the feature steadily decays. Then the pack ice, which is usually gone from the area in late August and September, returns and begins to rebuild the feature. The feature being extant throughout the fall in 1975 may have been the result of the pack ice remaining in the area that year (see Figure 6m). #### VIII SUMMARY AND CONCLUSIONS The growth of the grounded ice feature that recurs each year on Hanna's Shoal appears to be almost totally dependent on the wind direction, wind speed, and the temperature at that location. The wind directions as measured at Barrow seemed to correlate very well with the direction of ice motion at Hanna's Shoal, the ice moving in a direction approximately 30° to the right of the prevailing winds (which were usually from the east or northeast). A slight correlation was seen between the wind speed and the amount of ice movement. It was hypothesized that the primary mechanism of growth of the ice feature was the formation of wedges of piled ice bounded by shear ridges which consolidated with the main body of the feature. The growth occurred in three stages. Stage I consisted of the piling of ice on the upstream side of the feature. After the ice pile had reached a maximum size, distinct shear ridges formed, extending from the sides of the ice feature upstream where they came together, forming a wedge-shaped extension to the feature. Stage II continued with ice piling, with the shear ridges growing in length and breadth until the length of the wedge reached a maximum. During Stage III the wedge became consolidated to the feature by freezing and grounding of the piled ice. If the duration of Stage III was not sufficient to consolidate the growth wedge before the direction of ice motion changed, then the wedge broke free and no resultant growth occurred. Finally, a correlation was shown between the weather, especially the wind direction, and the formation of the growth wedges. When the winds were predominantly from the east and northeast the feature built up in those directions resulting in an ellipse shape oriented with the long axis northeast-southwest. The southwest tip of the feature always occurred very near 162°00'W 72°00'N, indicating deep water and thus no ice grounding on the southwest side of the shoal. The feature generally continued to undergo growth until mid-May, when it began to decay. The decay of the feature was due to melting and fracturing with the loose pieces moved away by wind, ice and water currents. The feature decayed until it either disappeared or until mid-autumn when the temperatures dropped and the pack ice once more moved into the area. The mid-winter characteristics of the growth of the feature are not known due to the lack of data. Thus, a typical cycle of growth and decay of the grounded ice feature may proceed as follows. If the feature was non-existent in the early-autumn, pack ice moving into the area of Hanna's Shoal would carry in deep-draft ice objects such as ice islands, floebergs, multi-year pressure ridges, etc. which would become grounded on the shoals. Other ice would become piled around these grounded pieces and freeze to them. As the pack ice became thicker, pressure ridges and hummock fields would form upstream of this nucleus and growth would commence. Ice wedges would form, and either consolidate to the feature and thus enlarge it, or break free and drift away. The time at which ice wedges first form is not known, but it is probably as soon as the pack ice becomes a uniform sheet. The ice wedges would continue to form until the pack ice became too fractured to form shear ridges, sometime in mid-spring, when the feature would begin to decay. The warming temperatures would cause the ice to melt and weaken and the moving pack ice would break off pieces of ice and carry them away. This ablation would probably occur until the feature either completely disappeared or the pack ice reformed, sometime in mid-autumn. The cycle would then begin again. The correlation between ice motion at Hanna's Shoal and the winds at Barrow seem quite good. The observed average deviation of the ice motion 30° to the right of the wind direction has been observed by others in pack ice. However, the correlation of wind speed with ice velocity was not very good because too many unknown factors enter in, such as the density, strength, and uniformity of the pack ice and the ambient air temperature. These factors cannot be determined from Landsat imagery. The correlation of growth (not amount of growth) with wind direction, speed and stability as well as temperature, appears to be quite good. When the winds are steady out of the east to north directions, in the range of 7 to 25 km/hr in speed, and the temperatures are below -18°C, formation of the ice wedges was seen to occur. Growth was not observed to the southwest. In addition, growth was inhibited by variable winds, and decay was seen to occur once the temperatures rose above -5°C. Finally, the introduction discussed the various terms used by different authors to describe the feature. As a result of this study, none of them seem adequate. The feature is not a floeberg, it is not an island of grounded sea ice, and it is not a berg field. The feature is a composite of all of the above. It has been seen to consist of floebergs, ice islands, pressure and shear ridges, hummock fields and very small areas of flat ice (Kovacs, et al., 1976; Toimil and Grantz, 1976). Thus the terms "grounded ice feature" or "island of grounded ice" seem more appropriate. ### <u>ACKNOWLEDGEMENTS</u> This study was supported by NOAA-OCS Contract No: 03-5-022-55 Task No. 8 and NASA Contract No. NAS5-20959. ## References - Kovacs, A., Gow, A. J., Dehn, W. F. (1976), "Islands of grounded sea ice", CRREL Report 76-4. - Stringer, W. J., Barrett, S. A. (1975a), "Katie's Floeberg", Northern Engineer, Vol. 7, No. 1, University of Alaska, Fairbanks, pp. 26-30. - Stringer, W. J., Barrett, S. A., (1975b), "Ice motion in the vicinity of a grounded floeberg", in Proceedings of the Fourth POAC Conference, pp. 527-551. - Toimil, L. J., and Grantz, A., (1976), "Origin of a bergfield at Hanna Shoal, northeastern Chukchi Sea, and its influence on the sedimentary environment", Arctic. - Zubou, N. N., (1945), Arctic Sea Ice, Translated by Naval Oceanographic Office and American Meteorological Society under contract to Air Force Cambridge Res. Center, 1963, Pub. by Naval Electronics Laboratory (San Diego), p. 491. # Figure Captions Figure 1: Location of ice feature grounded on Hanna's Shoal in the Chukchi Sea. Arrow shows predominant direction of ice motion. Figure 2: 1972 Landsat scenes of vicinity of Hanna's Shoal: a) scene 1010-22133, 2 August 1972; b) scene 1065-22192, 26 September 1972. Figure 3: 1973 Landsat scenes of vicinity of Hanna's Shoal: a) scene 1227-22203, 7 March, b) scene 1228-22261, 8 March, c) scene 1263-22203, 12 April, d) scene 1282-22261, 1 May e) scene 1283-22315, 2 May, f) scene 1300-22260, 19 May, g) scene 1318-22255, 6 June, h) scene 1317-22200, 5 June, i) scene 1406-22131, 2 September. Figure 4: 1974 Landsat scenes of vicinity of Hanna's Shoal: a) scene 1604-22090, 19 March, b) scene 1605-22145, 20 March, c) scene 1606-22203, 21 March, d) scene 1608-22320, 23 March, e) scene 1623-22142, 7 April, f) scene 1624-22201, 8 April, g) scene 1643-22252, 27 April, h) scene 1662-22304, 16 May, i) scene 1712-22061, 5 July, j) scene 1750-22161, 12 August, k) scene 1803-22083, 4 October, 1) scene 1821-22082, 22 October. Fall NOAA images of the vicinity of Hanna's Shoal: a) image 3808, 6 September 1974, b) image 4117, 4 October 1974, c) image 4229, 13 October 1974, d) image 4291, 18 October 1974, e) image 4353, 23 October 1974, f) image 4576, 10 November 1974, g) image 4737, 23 November 1974, h) image 4761, 25 November 1974. Figure 6: 1975
Landsat scenes of vicinity of Hanna's Shoal: a) scene 1947-22031, 25 February, b) scene 1965-22022, 15 March, c) scene 1983-22013, 2 April, d) scene 1984-22071, 3 April, e) scene 2079-22082, 11 April, f) scene 2080-22140, 12 April, g) scene 2097-22081, 29 April, h) scene 2098-22135, 30 April, i) scene 2099-22194, 1 May, j) scene 2100-22252, 2 May, k) scene 2115-22075, 17 May, 1) scene 2207-22184, 17 August, m) scene 2262-22240, 11 October. Figure 7: NOAA image 3909, 23 September 1975, of vicinity of Hanna's Shoal. Figure 8: 1976 Landsat scenes of vicinity of Hanna's Shoal: a) scene 2420-21583, 17 March, b) scene 2421-22042, 18 March, c) scene 2422-22100, 19 March, d) scene 2424-22212, 21 March, e) scene 2474-21570, 10 May, f) scene 2511-22015, 16 June, g) scene 2548-22063, 23 July, h) scene 2584-22053, 28 August. Figure 9: NOAA image 956, 14 October 1976, of the vicinity of Hanna's Shoal. # Figure Captions (Cont'd) Figure 10: Barrow wind directions (solid arrows) and pack ice directions (dashed arrows). Number above wind arrow gives direction from which the wind was blowing in degrees east of north. Angle between solid and dashed arrows gives direction of pack ice motion relative to the wind. The date is given beneath the arrows as well as the wind speed: L = low, 0-6 km/hr; ML = moderately low, 7-13 km/hr; M = moderate, 14-19 km/hr; MH = moderate high, 20-26 km/hr; H = high, over 26 km/hr. Figure 11: Wind speeds measured at Barrow versus pack ice motion as determined from Landsat imagery. Solid symbols indicate summer data (post ice-decay, usually after May 1). Open symbols indicate data for periods when the pack ice was observed to be mostly intact. Type I motion is indicated by circles, Type II is indicated by triangles, and Type III is indicated by squares. Reference numbersespond to those in Table 1. Figure 12: Ice vectors around the grounded ice feature during the 24-hour period, 7 April - 8 April 1974. Note the distinct shear line north of the feature. Figure 13: Idealized model of growth mechanism of grounded ice feature. The main body of the feature may be 5 to 25 kilometers wind. Figure 14: 1973 Barrow weather data and concurrent dimensions of the grounded ice feature. Dates shown are dates of Landsat images. Figure 15: 1974 Barrow weather data and concurrent dimensions of the grounded ice feature. Dates shown are dates of Landsat images. Figure 16: 1975 Barrow weather data and concurrent dimensions of the grounded ice feature. Dates shown are dates of Landsat images. Figure 17: 1976 Barrow weather data and concurrent dimensions of the grounded ice feature. Dates shown are dates of Landsat images. Figure 18: a) Rose diagram of percent wind direction at Barrow - numbers are the percent wind direction, b) Histogram showing percent frequency of wind speed versus the actual wind speed at Barrow, c) Rose diagram of average wind speed versus wind direction - numbers are the wind speeds in km/hr. Fig..1 Fig. 2a Fig. 2b Fig. 3a Fig. 3b Fig. 3c Fig. 3d Fig. 3e Fig. 3f F**i**g. 3g Fig. 3h Fig. 3i W162 Fig. 4a Fig. 4b Fig. 4c Fig. 4d Fig. 4e Fig. 4f Fig. 4h Fig. 4i Fig. 4j Fig. 4k Fig. 41 Fig. 5a Fig. 5b Fig. 5c Fig. 5d Fig. 5e Fig. 5f Fig. 5g Fig. `5h W162 Fig. 6a Fig. 6b Fig. 6c Fig. 6d Fig. 6e Fig. 6f Fig. 6g Fig. 6h Fig. 6i Fig. 6j Fig. 6k Fig. 61 Fig. 6m F**i**g. 8 a Fig. 8b Fig. 8c Fig. 8d Fig. 8e Fig. 8f Fig. 8g Fig. 8h Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 ### OCS Coordination Office University of Alaska Quarterly Report for Period Ending June 30, 1977 Project Title: Research Unit #259 Experimental Measurements of Sea Ice Failure Stresses Near Grounded Structures Contract No.: 03-5-022-55 T No.: 7 Principal Investigators: W. M. Sackinger, R. D. Nelson ### I. Task Objectives The objectives of this study are to measure, in-situ, the stresses generated in a sea ice sheet as it fails in the vicinity of a static obstacle, and the rate of movement of the ice sheet during this process. # II. Field or Laboratory Activities During the past quarter, the array of three transducers which was deployed on March 12, 1977, near Barrow, continued to transmit ice stress data reliably to the recorders on the shoreline. No technical problems with the telemetry link, the data acquisition equipment, or the recording equipment were encountered. A reconnaissance visit to the site was made on April 13, 1977, and the direction and location of the tension cracks which formed on March 16-18, 1977, (described in the 1977 Annual Report) were confirmed. A more complete description of the crack pattern was made during that visit. An additional reconnaissance was made on May 29, 1977, to check for possible thawing near the site. No evidence of thaw was noted, and no recent crack patterns were observed. It was decided to continue to acquire data throughout the beginning of breakup, until the transducers had clearly decoupled from the ice. #### III. Results Throughout April, May, and the first half of June, ice stress events occurred every few days, depending upon the intensity and direction of the wind. The open lead was generally located approximately three miles offshore, as indicated by radar and aerial reconnaissance, so there was very little relative ice motion near the site of ice stress transducer emplacement. All three transducers generally indicated each ice stress event, but at different magnitudes because of their location relative to the grounded ice ridge. Most of the events were tension events, because of the wind direction, and the site location. Ice tension seemed generally to increase with time constraints occasionally as short as one hour, but more commonly over several hours, followed by decay over several hours or even days. On June 11, a massive movement of the pack ice towards the shoreline produced extensive ice thrusting, buckling, and ridgebuilding. The telemetry system recorded this event up to the moment of damage of each transducer, as was expected. Data collection then terminated. ## IV. Preliminary Interpretation of Results It appears that a tensile stress is the most common condition, and that tensile stresses greater than 100 psi can be sustained under some conditions without crack formation. Stresses occur frequently near grounded obstacles. The many stress events must be examined in more detail, in conjunction with the wind records, the ice movement data from the ice dynamics radar, and related SLAR and satellite imagery, before additional conclusions can be drawn. ## V. Problems Encountered/Recommended Changes No problems were encountered during this quarter. Because of the substantial quantity of useful data on ice tensile and compressive stresses near the grounded pressure ridge which was obtained during this quarter, it is recommended that this research program be extended until December 31, 1977, to allow complete and thorough analysis of the data in the final report. VI. Estimate of Funds Expended \$98,778. # QUARTERLY REPORT Contract No. 03-5-022-55 or 261 Reporting Period April 1, 1977 to July 1, 1977 Beaufort Sea, Chukchi Sea, and Bering Strait Baseline Ice Study William R. Hunt and Claus-M. Naske July 1, 1977 #### Quarterly Report ### Beaufort Sea, Chukchi Sea, and Bering Strait Baseline Ice Study #### I. Task Objectives: The investigators are finishing work on a data supplement to the charts which show seasonal navigational conditions in the western Arctic from 1870 to 1970. This supplement presents all pertinent ice information and navigational information found in ships' logs. #### II. Field Activities: The investigators concluded their data collecting showing seasonal navigational conditions from 1870 to 1970 in April of 1977. Since that time, they have transcribed U. S. Coast Guard Navigational data from microfilm. #### III. Results: The investigators completed a number of maps which show the historic variations in ice conditions over a 100 year period. At the present, a draftsman is completing the task of transferring the rest of the collected navigational data to maps. The investigators have completed the data appendix for the final report, and are working on the narrative part accompanying the final report. The investigators will deliver the final report some time early in the fall of 1977 before the October 1, 1977 deadline. The accompanying sample shows the kind of data the investigators have extracted from the archives and microfilm. Arnold Liebes' diary of his trip to the Arctic on schooner Herman ## June 3, 1917 Small ice around, soon reached the ice flow. Could see it. Lawrence Is. 15 mi. ahead. Ice moved in at 9:30 p.m. # July 20, 1917 "Passed floating pieces of small ice." Passed quite a bit of scattering ice. The ice here is pure white and deep green, being part of arctic pack. ## July 21, 1917 Small pices of floating ice. Summary of Cruise of the Arctic, 1923 Left S. F. May 12 ### June 10, 1923 Struck the first ice, about 45 miles S. of St. Lawrence Island--but had no difficulty working through it. (made previous trips in 1912 and 1917). At St. Lawrnece heard that 4 a.m. schooners from Nome had been seized by the Russians at East Cape. ### June 15, 1923 Left--worked considerable ice--arrived at Little Diomede Island, June 16. ### July 8, 1923 Pt. Lay--very heavy ice conditions July 15, 1923 H. Kiebes and Co. trading station at Icy Cape July 23, 1923 arrived at their trading station at Wainwright July 25, 1923 caught in ice. Arnold Liebes diary of his trip to the Arctic on the schooner "Arctic" ### June 13, 1923 5 a.m. fog lifted and we started for the Deer Camp about 20 miles around the Island, work light ice all the way. #### June 14, 1923 Some ice moving by with the current ### June 16, 1923 Anchored off village at Little Diomede some pices of ice passing us from time to time traveling with the current. trading trip-random ice observations ## At East Cape June 17, 1923 Swenson's Schooner Chukotch tied up along side us, Capt. Weeden
and Trader Holden for dinner. At 7 p.m. Gasdaroff and other Russian arrived from village and Jake went back with them to see Karieff about trading licence. #### June 18, 1923 Can't get permit. Little young ice on water #### NORTHWIND - 1954 ### August 2, 1954 0000 anchored off Wales Alaska in co. with USS Burton Island depart c/ 315°T 0235 Fairway Rock = 248°T; 12 miles c/c 000°T 0320 c/c 009°T 0600 66°27' 168°3' 0800 crossed arctic circle (66°32'/168°/08') 0843 c/c 320°T 0950 c/c 012°T 1035 c/c 009°T 1150 67°00' 167°49' 1200 c/c 320°T 1800 2000 68°14' 168°04' with Pt. Hope = 070°T at 2.7 miles c/c 035°T ### August 3, 1954 0000 - underway enroute Pt. Barrow Cape Lisburne > 140°T; 9 miles c/c '045°T 0100 69°52' 164° 13' 0080 - 70°22' 162°32' 1200 - with Icy Cape = 163°T; 14 miles c/c 066°T 1314 - Pt. Trondhiln Radar = 156°T; 6 miles c/c 060°T 1853 - 71°07' 158°25' c/c 070°T 2000 - 2006 Entered first field of scattered block and brach ice at 71°11'N 158°15'W - 2020 Maneuvering at VCS - 2306 Anchored and stopped at Barrow ### August 4, 1954 - 0000 Barrow - 0800 Barrow - Up 76 airborne ice reconnaissance flight 0855 - 1200 Barrow - 1340 depart - 1313 VCS - 1400 c/ 040°T - 1440 Radar beam Pt. Barrow spit > 169°T c/c 090°T - 1456 with Pt. Barrow Spit ₹ 219°T c/c 105°T - 1815 VCS basic course 105°T maneuvering through broken ice. - stopped on edge of a giant floe awaiting resutls of ice reconnaissance 1915 - 1925 UP 76 airborne - underway in a northeasterly direction. UP 76 airborne _____Burton 1945 Island made good course 122°T dist. 5.5 miles - 68°14' 168°04' 2000 - 2005 steering VCS in a northeasterly direction made good course 093 T dist. 22.2 miles. ### August 5, 1954 0000 underway in Beaufort Sea enroute to Barter Is. c/105°T made good a course of 109°T 33 mile operated on VCS ### August 5, 1954 - continued 0400-0800 underway made good course 056°T, 21 miles 0800 70°59' 151°04' 0800-1200 made good a course of 101°T, 24.5 miles 1200 70°55' 149° 45' 1200-1600 made good course 115°T, 32 miles 1600-1800 underway as before 1800-2000 underway made no progress this watch, stuck in giant floe. 2000 70°29' 147° 06' c/c 090°T 2200 c/c 115°T (2000-2400) made good course 115°T, 32 miles ### August 6, 1954 0000 underway c/115°T USS Burton Island on Station astern 0128 westerly < 500 yards 0140 lying to east fog and poor visibility 0000-0400 made good course 119°T, 15 miles 0400 lying to as before 0402 underway on basic course 115°T maneuvering through ice on VCS 0400-0800 made good course 135°T 3 miles 0800 70°20' 145° 45' 0900 stopped 0927 underway on VCS 0800-1200 made good course of 130°T, 10 miles 1200 70°11' 145°15' 1200-1600 made good course 090°T, 20 miles 1615 VCS standing into Barter Island lying to off Barter Island 1634 underway enroute to Banks Isalnd c/050°T 1703 c/c 125°T 1750 stopped by giant floe awaiting ice recon. 1810 underway basic course 125°T 1921 70°11' 143°12' stopped 2000 2001 underway VCS 2332 200 yds stopped 2000-2400 made good course of 124°T, 26.3 miles # August 7, 1954 lying to in Beaufort Sea enroute to Herschel Island, USS Benton 0000 off to starboard bow 1 miles lyingto as before 69°58' 142°13' 0800 underway c/c 090°T 0925 0945 c/c 115°T VCS 1121 8000-1200 made good course of 135°T, 8.4 miles 1200 69° 52' 141°50' 1533 Demarcation Point = 180°T, 2.7 miles c/c 090°T 1200-1600 Made good course of 130°T, 18.7 miles 1600-1800 made good course 089°T, 10 miles 1800-2000 made good course 085°T, 3 miles 2000 69° 44' 140°37' ## August 7, 1954 - continued 2100 lying to in ice floe, fog, visibility < 300 yds. 2000-2400 made good course of 017°T, 1.5 miles ### August 8, 1954 0000 lying to ice floe off Clarence Lagoon, Canada 0123 underway VCS 0000-0400 made good course of 076°T, 13 miles 0400-0800 made good course 100°T, 22 miles 0800 60°45' 138°56' 0800-1200 made good course 065°T, 20 miles 1200 69°57' 137° 56' c/ 073°T 1300 took station 2000 yds astern of Burton Island 1800-2000 made good course 073°T, 26 miles 2000 70°28' 133°11 2000-2400 made good course 073°T, 51.6 miles ### August 9, 1954 0000 underway to Banks Island with USS B.I. Depart station (USSBI) c/090°T enroute to oceanographer station 0100 through the Amundsen Gulf. Proceeding end of B.I. arrived at Station "1" off Observation Pt., vessel lying to for study. 0420 completed oceanographic study c/ 037°T to station "2" 0521 71°11' 127° 02' 0800 arrived at Station 2, drifting 1000 completed study underway basic course 037°T 1125 1200 71°25' 126°30' Cape Kellet = 345°T, 23 miles c/c/ 320°T 1358 Cape Kellet = 350°T, 12 miles c/c/ 280°T 1410 all stop at oceanographer station 3. 1434 completed ob resumed course 035°T 1556 lying to at observation station "4" - 2 miles south of Cape Kellet 1650 anchored in Thesiger Bay Station 5 Cape Kallet bearing 294°T, 5000 yds 1815 Cape Kellet, Banks Island NWT 2000 # August 10, 1954 anchored Thesiger Bay, off Banks Is. Canada, Cape Kellet > 292°T 0000 underway on course 120°T enroute Sachs Harbor left tang. of Cape 0600 Kallet = 271°T, left tang. of Sachs Harbor entrance = 074°T Sachs Harbor 0080 Sachs Harbor 1200 1410 depart VCS c/ 220°T 1440 left tang. of Cape Kellet = 335°T c/c 310°T 1520 Cape Kellet > 086°T, 5 miles c/c 010°T 1620 72°38' 125°45' 2000 2000-2400 Made good course of 008°T, 3.7 miles # August 11, 1954 0000 underway to Cape Prince Alfred c/010°T ### August 11, 1954 - continued 0120 steering VCS in ice pack. 0330 made good course 036°T, 0730 made good course 26 miles on course 353°T 0800 74°03', 125°12' 0800-1200 made goo 0 miles on this watch 1200 74°02', 125°02' 1200-1600 made good course 306°T, 3.7 miles 1800-2000 made good course 7 miles on 020°T 2000 74°17', 125°15' 2253 stopped laying to 2000-2400 made good 2 miles on course 000°T #### August 12, 1954 0000 lying to in Beaufort off Banks Is., Cape Pr. Alfred - 044°T, 13 miles dist. 0800 74°19', 125°08' 1200 74°19', 125°08' 1600 underway on VCS in a northerly direction 1600-1800 made good course 036°T, 2 miles 1952 lying to 1800-2000 made good course 290°T, 2 miles 2000 74°20', 125°16' #### August 13, 1954 0000 lying to, Cape Pr. Alfred - 057°T, 12.5 miles 0602 VCS maneuvering in <u>ice</u> attempting to make good a northern course around Cape Pr. Alfred 0730 Made good 3 miles on course/ 349°T 0800 74°24', 125°20' 0800-1200 made good course 054°T, 2.0 miles 1200 74°26', 125°15' 1200-1600 made good a course of 087°T, 5,600 yds. 1645 underway VCS 1600-1800 made good course 090°T, 1.7 miles c/090°T 1915 74°28', 124°38' 2000 2114 anchored off Cape Pr. Alfred = 164°T, R Tan Gov. Isl. = 224°T L. Tan Gov. Is. 196.5" 2229 depart VC along northwest shore of Banks Island enroute to Cape Wrottesly #### August 14, 1954 made good course 061°T, 6 miles ### August 14, 1954 continued: 1200-1600 made good course 154°T 4.1 miles? 1600 anchored as before 2000 Mery Bay, Banks Island ### August 15, 1954 0000 Mery Bay 0800 Mery Bay 1200 Mery Bay 1515 depart VCS (to avoid heavy ice being carried into harbor by the current and wind) 1525 stopped, lying to. 1802 VCS maneuvering into ice to collect oceanographic data 1930 made good 9 miles around Bark Point to the east 2000 74°18', 118°26' 2030 stopped 2035 VCS 2000-2400 made good a course of 099°T, 29 miles #### August 16, 1954 0000 lying to off Rodd Head 74°08', 116°45' 0130 VCS USS Burton Island station, 1 mile starboard beam 0000-0400 made good course 304°T at 15.4 miles 0535 stopped, lying to 3 miles off Cape Vesez Hamilton 0730 made good 14 miles, on course 294°T 0800 74°22', 117°54' 1025 lying to off Rodd Head, Banks Island made good course of 125°T, 16.0 miles 1200 74°16′, 117°33′ 1328 VCS to make good course of 290°T 1200-1600 made good a course of 282°T, 13.5 miles 1600-1800 made good a course of 235°T, 8.5 miles 1801 all stop, commence drifting Oceanograph Station 12 1907 underway VCS maneuvering in ice enrout Carlton Bay 1900 made good 10 miles, on course 141°T 2000 74°18', 118°55' 2059 lying to 2.0 miles off Providence Point 2000-2400 MGC 124°T, 3.0 miles ### August 17, 1954 0000 lying to in McClure Strait, mouth of Mery Bay w/Providence Point - 159°T 0314 underway at VCS to clear ice pack drifting 0400 underway lying to as before 0639 VCS standing into Mery Bay 0737 stop lying to off Mery Bay 0800 74°14' 119° 08' 1200 74°14' 119° 07' 2000 74°14' 119° 10' ### August 18, 1954 - lying to off Mery Bay 0000 underway VCS enroute to Rodd Head, MGC 071°T, 11.7 miles 0139 underway maneuvering in heavy ice. 0400 - stop drifting off Rodd Head, 500 yds, MG dist. 15 miles 0730 - 74"16' 117" 35' 0800 - Maneuvering on VCS to maintain position 74°16' 117" 36' 0907 - 1200 - underway VCS for good anchorage 1518 - anchored 500 yds from beach 1542 - Rodd Head, Banks Island 2000 - anchor let qo 2315 - 2340 anchor dropped #### August 19, 1954 - 0000 anchored - 0800 Rodd Head, Banks Island - 74"16' 117"31' 1200 - 1220 depart - 1221 UCS maintain position - 74°16' 117°36' 2000 ### August 20, 1954 - lying to 0000 - 0255 UCS enroute Cape Sanlom - underway, maneuvering in ice 0400 - 0715 all stop, commence drifting, 1 mile off Cape Sanlom - 0400-0800 MGC 137°T, 23 miles - 73°55' 116"23' 0800 - 1030 underway maneuvering to position - 0800-1200 MGC 070°T, 5 miles - 73°55' 116°24', 2240 yds off Cape Sanlom 1200 - VCS maintain position 1830 - 1500 yds off Cape Sanlom stopped 1847 - 73°55' 116°26' 2000 ### August 21, 1954 - 0000 underway in NW direction to Cape Sanlom - lying to 1300 yds off Cape 0045 - 0000-0400 MGC 316°T, 25 miles - 0800 73°55' 116°24' - 73°55' 116°24' 1200 - VCS maneuvering to maintain position 1310 - set basic course 134°T enroute Russell, Pt. Banks Island 1400 - 1535 stop - underway basic course 134°T MGC 135°T, 6.5 miles 1555 - 1600-1800 MGC 131°T 11.0 miles - c/c 180°T rounding Russell Pt in Pr. of Wales St. MGC 137°T, 13.8 miles 1945 - 73°31' 115°12' 2000 - 2022 VCS - 2012 VCS - anchor Knight Harbor, Banks Island 3000 yds from land 2052 ### August 22, 1954 Knight Harbor Maintain 0000 0615 underway to maintain
position maneuvering in ice 73°28' 115°21' 0800 73"26' 115"26' 1200 depart base course 227°T VS making for an anchor approx. 8 miles to 1704 southwest 1600-1800 MGC 227°T, 7.5 miles 1820 stop lying to 1800 yds offshore, approx. 8 miles SW of Knights Harbor awaiting favorable ice conditions for transporting to shore. 2000 73°22' 115°43' August 23, 1954 lying 13 miles south of Russell Pt., Banks Is. 0000 0645 underway c/245°T maneuvering stop drifting 11 miles SW Knights Harbor 2000 yds offshore 0709 MGC 245°T, 2 miles 0730 73°20' 115° 51' 0800 73°21' 115° 51' 1200 1545 depart VCS maneuver to avoid ice, dragging a net over stern 1723 secured dragging net stopped maneuvering around medium floe of polar ice 1800 Holding bow of vessel in contact with floe scientist testing it. 1815 vessel backed clear of floe 1940 c/ 058°T standing out P. of Wales Strait to Viscount Melville Ld. 1945 73°12' 115°58' 2000 western edge Peel Pt. = 160°3 3 miles, c/c 090°T Peel Point = 190°T, 2.5 miles c/c 136°T MGC 058°T, 21.2 miles 2315 August 24, 1954 Viscoutn Melville Ld. off Peel Pt. to point east of Collinsin Inlet, Victoria Island c/136°T Barnard Pt.= 149°T 10.0 miles c/c 100°T 0145 c/c 076°T 0610 0730 MGC 73" 10' 109°19' 0800 1027 VCS 0800-1200 MGC 071°T, 37.2 miles 1200 73°18' 107° 46' VCS 1242 Basic course 270°T 1302 1315 VC along base 1200-1600 MGC 270°T, 3.8 miles, 180°T 8.5 miles, 300°T 7.0 miles 322°T 11.0 miles stopped Oceangr. station No. 11 1655 1742 c/ 220°T enroute to Wynnaitt Bay 1800-2000 MG VC in ice 2000 73°13' 109° 43' 2120 anchor closest pt. of land - 171°T 3,500 yds. Wynnaitt Bay, Victoria 2000-2400 MGC 220°T, 19 miles ``` August 25, 1954 ``` 1222 2000 Barnard Pt. ``` 0000 anchored Wynnaitt Bay, Victoria Isl. 0407 depart VCS to new anchorage inshore anchored 2000 yds offshore 0425 Wynnaitt Bay, Victoria Isl. NWT 0800 depart C 074°T 1140 73°06' 109°56' 1200 1433 c/c 291°T 1700 stop lying to Oceanography station 19 1732 VCS 1600-1800 MGC 287°T, 14 miles 1800 maneuvering in ice, VCS MGC 310°T, 13.8 miles 1930 73°28' 110°54' 2000 stopped Oceanography station #20 2023 2047 c/ 195°T 2000-2400 MGC 298°T 7.6 013°T 3.1 200°T 11.8 August 26, 1954 0000 c/195° 0030 VCS 0200 stopped O.C. Station 21 Completed underway c/316°T 0240 0320 c/c 212°T 0535 c/c 355°T maneuvering about in ice of medium sized floes changed basic course c/326°T 0716 MGC 316°T 13.5 miles 355°T 11.3, 236°T, 2.1 0730 73°04' 112°23' 0800 anchored Barnard Pt = RT 225°T LT 112° (5900) (3720) 1003 MGC 263°T, 14.2 miles Barnard Pt. Victoria 1200 2000 Barnard Pt. August 27, 1954 0000 anchored heavy fog Collinson Inlet Barnard Pt. 0800 1200 Barnard Pt. Barnard Pt. 2000 drifting VCS 2113 drifting 700 yds. off Barnard Pt. 2173 2337 VCS drifting August 28, 1954 0000 4,000 yds off Barnard Pt. (Beach) 0800 Barnard Pt. 0927 VCS to maintain position 0800-1200 MGC 285°T, 17 miles ``` anchored RT Barnard Pt. = 251° closest pt of land - 185° 2,050 yds. ### August 29, 1954 0000 Barnard Pt. 0800 Barnard Pt. 1200 Barnard Pt. 2000 Barnard Pt. ### August 30, 1954 0000 anchored in Collinson Inlet off Barnard Pt. 0800 Barnard Pt. 1200 Barnard Pt. 2000 Parnard Pt. #### August 31, 1954 0000 Barnard Pt. 0609 VCS to maintain position, 3 1/2 miles off B P. 0800 Barnard Pt. 0935 anchored off Barnard Pt. 1200 Barnard Pt. 1205 depart base course 315°T enroute Pr. of Wales St. 1600 MGC 306°T, 40 miles 1600 underway as before maneuvering in heavy ice. 1620-2000 MGC 330°T, 4.8 miles 2000 73°22' 114°08' 2000-2400 MGC 277°T, 2.6 miles in heavy ice. ### September 1, 1954 0000 underway in heavy ice base course 300°T 0400 underway maneuvering in heavy ice 0400-0800 MGC 350°T, 2 miles 0800 73°24' 114° 22' 0800-1200 MG 3,200 yds 1200 73°24' 114°22' 1205 ice demolition disturbance? illegible 1347 demolition charge detonated by team on ice 1200 yds from ship 1440 underway VCS pr. of Wales St., MGC 280°T, 500 yds. thru heavy ice 80/10th 1600 maneuvering in heavy ice 10/10th concentration 1645 Northwind and Burton Island following ice channel broken by USS Benton Island 1928 Stopped, maneuvered alongside Benton Island-Moored made Pr. of Wales St. off Resetts Point (5 miles south) 1600-2000 MGC 276°T, 12.4 miles 2000 73°26' 115°05' 2018 underway VCS to Prince Royal Island-Pr. of Wales St. 200-2400 MGC 236°T, 18 miles ### September 2, 1954 0000 Base Course 235°T ### September 2, 1954 continued - 0300 c/c 222°T, MGC 230°T, 22 miles, light ice conditions - 0500 VCS to Pr. Royal anchorage - anchored-SW of largest and southern Pr. Royal Is. LTan O61°T, RTan O77°T, 0557 1875 yds, MBC 220°T, 9.5 miles. - 0800 Princess Royal Island, Pr. of Wales St. - 1200 Princess Royal Is. - 2000 Prince Royal #### September 3, 1954 - anchor dragging due to large ice floes maneuvering to clear ice. 0400 - 0500 ice clear - 0510 anchor dragging set of giant ice floes maneuvering to clear. - 0540 clear - 0800 Princess Royal - 1200 Princess Royal - 2000 Pr. Royal #### September 4, 1954 - 0000 Prince Royal Is., 2950 yds from land - underway to keep ice from fouling anchor chain 0702 - stop closest pt of land now 4030 yds 0737 - 0800 Princess Royal - 1200 Pr. Royal - underway VCS closing on Princess Royal Island 1607 - 1625 anchored PRI = 055° T, 0800 yds - 2000 Pr. Royal Island ### September 5, 1954 - 0000 anchored closest land 2980 yds in Pr. of Wales St. - 0800 Prince Royal Island - 1200 Prince Royal-Pr. of Wales - 1214 depart VCS close to Pr. Royal Island - 1223 stopped - 1305 underway base course 216°T - 1314 took station 1000 yds astern of NMCS Labrador, maneuvering in ice - 1404 moored, with Lab. - 2000 72°40' 118°30' #### September 6, 1954 - 0000 moored 13 miles NW of Princess Royal Island - 0017 departed VCS maneuvering in ice. 0116 ice coverage slight c/223°T enroute south of Burton Bay - 0400 MGC 224°T, 29 miles - 0516 stopped oceangraph station - 0536 depart c/ 111°T - 0630 oceanograph station #25 - 0658 c/ 110°T - 0400-0800 MGC 220°T, 17.5, MGC 111°T, 14.4 miles - 0800 71°57', 119°10' # September 6, 1954 ``` 0810 stopped oceangr. station #26 0835 VCS 0947 c/ 225°T enroute Cape Lambton 0800-1200 MGC, 222°T, 30.7 miles 1200 71°34' 120°17' 1320 c/c 238°T 1602 c/c 251°T 1627 VC approching Wilson Head 1721 app. Cape Lambton lying to Oceang. station off Cape L. 1830 depart 1855 1935 lying to 0.S.#28 1600-2000 MGC 261°T, 19 miles 2000 70°59', 123°17' 2114 O.C.S.#29 2206 underway 208°T 2320 OCS #30 ``` ## September 7, 1954 ``` Lying to OCS #30, Amundsen Gulf 0000 underway c/ 208°T 0005 lying to OCS #31 0132 underway c/ 346°T enroute Sachs Harbor 0224 71°49' 125°24' 0800 VCS approaching anchorage 0920 anchored Cape Kellet = 272.5° T 0940 Sachs Harbor 1200 Sachs Harbor 2000 depart VCS 2000 c/ 270°T 2030 2150 Cape Kellet = 001°T, five miles c/c 316°T ``` # September 8, 1954 ``` underway in Beaufort Sea c/316°T 0000 c/c 325°T 0107 VCS along pack ice boundary 0720 73°31' 130°14' 0800 c/c 091°T 0805 VCS enroute Gore Island 0830 0800-1200 MGC 114°T, 28 miles 73°17' 128° 12' 1200 maneuvering to follow edge of pack ice 1200 c/c 201°T 1515 1200-1600 MGC 226°T, 14.5 miles c/c 136°T 1603 c/c 041°T 1730 c/c 090°T upon reaching ice pack 1845 1852 maneuvering for VC through ice. ``` ``` September 8, 1954, continued ``` - 1600-2000 MGC 090°T, 27.3 miles 2000 73°12' 127°07' - 2000 VCS in an attempt to avoid ice - 2138 MGC 179°T - 2208 c/c 134°T - 2250 c/c 090°T - 2330 MG 20 miles in a southeasterly direction ### September 9, 1954 - 0000 underway in Beaufort 090°T - 0020 with Mick (sic) Point = 104°T, 5 miles c/c 000°T - 0735 Maneuvering VCS - 0800 Gore Islands - 0853 anchored off G.I.'s large island RT107°T, LT 082°T, 5,800 yds small island RT 172°T LT 142°T, 3100 yds. - 0800-1200 MGC o34°T 4.2 miles - 1200 Gore Islands - 1543 depart c/ 311°T to new anchorage south of Gore Islands - 1553 maneuvering about Base course to avoid scattered ice floes - 1604 VCS - 1735 anchored 74°20' 125°12' with SW gore Island = 038°T, 5.2 miles - 2000 Gore Islands - 2205 depart VC - 2325 set base course 179°T enroute to OCS at 73° 54.9' 125° 42.0' ### September 10, 1954 - 0000 underway on course 181°T - 0127 c/c 231°T lying to 0CS #33 (73°50' 125°25' - 0400 c/ 140°T enroute to Norway Island - 0509 anchored Norway Island RT 137° LT 115, closest point 3700 yds - 0520 OCS #34 73° 124°53' - 0800 Norway Island, Banks Is NWT - 1155 depart toward southwest on VCS - 1200 73°40' 124°53' - 1205 c/ 230°T - 1330 c/c 211°T - 1355 c/c 262°T - 1435 stop-drifting - 1510 USS Burton Island rendevous (?) - 1612 enroute VCS to Barter Island via Cape Kellet - 1700 c/ 180°T - 2211 72°30' 126°01' c/c 190°T #### September 11, 1954 - 0000 enroute Barter Island via Cape Kellet c/ 170°T - 0100 c/c 240°T - 0300 lying to rend. with HMSC Labrador - 0535 depart 209°T - 0800 71°28' 127°43' ### September 11, 1954 continued - 1115 c/c 259°T 1125 c/c 128°T 1138 c/c 180°T 1200 70°43' 128°58' 1220 c/c 090°T - 1247 stop 8 miles west of Ballie Islands - 1315 underway c/258°T - 1934 stppped - 1944 underway - 2000 70°22' 132°52' #### September 12, 1954 - 0000 c/ 258°T - 0115 reduced speed due to small ice floes - 0143 further reduced speed - 0143 reduced speed - 0200 c/c 234°T to avoid heavy ice - 0422 c/c 270°T - 0607 increased speed - 0800 69°58' 138°13' - 0820 c/c 320°T - 1130 MGC 270°T, 35 miles - 1200 69°56'139°54' - 1443 Entered waters of ten. of Alaska 65°51' 141°00' - 1530 c/ 305°T - 1200-1600 MGC 262°T 36 miles - 1913 c/c 269°T - 1934 c/c 244°T - 2000 70°14' 143°10' - 2030 c/c 270°T - 2047 VCS - 2122 anchorage off Barter Island ### September 13, 1954 - 0000 Barter Island - 0138 depart c/314°T - 0155 stopped maneuvering to stay 4000 yds from beach - 0800 Barter Isalnd - 1200 anchor BI - 2000 Barter Island #### September 14, 1954 - 0800 Barter Island - 1200 Barter Island - 2000 Barter Island - 2017 depart VCS to pick up boat - 2133 underway for Icy Cape c/292°T - 2145 VC to navigate through & ice broken ice? - 2232 c/ 292°T ``` September 15, 1954 enroute by Cape c/ 292°T 0000 c/c
283°T 0710 71°07' 151°07' 0800 71°19' 153°49' 1200 1445 c/c 301°T c/c 271°T 1500 c/c 240°T 1533 2000 71°12' 158°09' September 16, 1954 0000 enroute Icy Cape c/ 240°T 0545 VCS anchored off Icy Cape 13,000 yards from radar screen 0751 0800 Icy Cape 1200 Icy Cape 2000 Icy Cape September 17, 1954 0080 Icy Cape Icy Cape 1200 2000 Icy Cape September 18, 1954 0000 closest land = 211°T, 18000 yds 8000 Icy Cape 1200 Icy Cape 2000 Icy Cape September 19, 1954 0080 Icy Cape 1200 Icy Cape Depart c/327°T 1757 Rader target = 181°T, 12 miles c/c 270°T Rader T. (by cape) = 173^{\circ}T c/c 245^{\circ}T 1907 70°28' 162° 23' 2000 2030 Icy Cape (Radar) = 106°T, 17 miles c/c 226°T September 20, 1954 enroute Cape Pr. of Wales c/226°T 0000 0411 c/c 203°T 0721 c/c 188°T 68°18' 167°32' 0800 1015 c/c 257°T c/c 188°T 67°22' 167°52' 1024 1200 Noy Pat Place passed at 67°03' 168°03' c/c 192°T c/c 192°T 1300 1825 1814 1831 c/c 198°T ``` ## September 20, 1954 continued ### September 21, 1954 ``` 0030 c/c 090°T 0100 VCS approaching Wales 0115 anchored off Cape Pr. of Wales, closest land 5000 yds 0800 Wales 1130 depart c/184°T 1200 Wales 1427 With King Island = 090°T 15 miles, c/c 180°T 2000 63°53' 168°17' 2207 NE Cape of St. Lawrence Island - 232°T, 122 miles, c/c 177°T end ``` #### NINTH QUARTERLY REPORT TITLE: In-Situ Measurements of the Mechanical Properties of Sea Ice RW 265 PERIOD: April 1, 1977-June 30, 1977 PRINCIPAL INVESTIGATORS: Lewis H. Shapiro and Richard D. Nelson, Geophysical Institute, University of Alaska - I. TASK OBJECTIVE: To develop hardware and procedures for conducting in-situ measurements of the mechanical properties of sea ice. - II. SCHEDULE: Field work at Barrow, Alaska. #### III. RESULTS AND INTERPRETATION: Most of the past quarter was devoted to field work at Barrow. Tests were run to determine elastic and viscoelastic properties of the ice, as well as uniaxial compressive strength. The data have not been reduced as yet, although the work is in progress. #### IV. PROBLEMS ENCOUNTERED: Approximately two weeks were lost due to problems in the power supply to the work site. V. ESTIMATED FUNDS EXPENDED: \$25,000 # QUARTERLY REPORT Contract # 03-5-022-55, task 10 Research Unit # 267 Reporting Period, April 1, 1977 to June 30, 1977 Number of Pages: 7 OPERATION OF AN ALASKAN FACILITY FOR APPLICATIONS OF REMOTE-SENSING DATA TO OCS STUDIES Albert E. Belon Geophysical Institute University of Alaska June 30, 1977 # OPERATION OF AN ALASKAN FACILITY #### FOR APPLICATIONS OF REMOTE-SENSING DATA TO OCS STUDIES Principal Investigator: Albert E. Belon Affiliation: Geophysical Institute, University of Alaska Contract: NOAA # 03-5-022-55 Research Unit: # 267 Reporting Period: April 1 to June 30, 1977 #### I. TASK OBJECTIVES The primary objective of the project is to assemble available remote-sensing data of the Alaskan outer continental shelf and to assist other OCS investigators in the analysis and interpretation of these data to provide a comprehensive assessment of the development and decay of fast ice, coastal geomorphology, sediment plumes and offshore suspended sediment patterns along the Alaskan coast from Yakutat to Demarcation Bay. #### II. LABORATORY ACTIVITIES A. Operation of the Remote-Sensing Data Library We continued to search periodically for new Landsat imagery of the Alaskan coastal zone entered into the EROS Data Center (EDC) data base. As a result 378 cloud-free Landsat scenes were selected and ordered from EDC at a total cost of \$5488. These data products, which are gradually received from EDC, complete our files of Landsat data from the launch of the first satellite, July 26, 1972. Until March 1977 we had purchased the selected Landsat scenes in the following formats, commonly used by OCS principal investigators: - 70mm positive transparencies of multispectral scanner (MSS) spectral band 4, 5 and 7 - 70mm negative transparency of MSS, spectral band 5 - 9½ inch print of MSS, spectral band 6 After March 1977, the EDC price for Landsat data products having increased by an average of 166%, we reduced our routine purchase of selected Landsat scenes to two formats: - 70mm positive transparency of MSS, spectral band 5 - 9½ inch print of MSS, spectral band 6 Other formats are ordered on a case-by-case basis and at the request of individual OCS investigators. We continued to receive and catalog daily copies of NOAA satellite imagery of Alaska in both the visible and infrared spectral bands under a standing order with the NOAA/NESS Fairbanks Satellite Data Acquisition Station. 273 NOAA scenes at a total cost of \$2866 were acquired in 10" positive transparency format during the reporting period. We received and catalogued 17 runs (50 ft) of side-looking radar (SLAR) imagery acquired by a U.S. Army Mohawk aircraft on April 16 to 22, 1977 for NOAA/OCSEAP. The data provide complete coverage of the Beaufort and Chukchi Sea shelves prior to the break-up period. The imagery is of superb quality- the best so far obtained of these areas. A catalog and map of the recent SLAR data coverage have been distributed to OCS investigators in Arctic Project Bulletin No. 14, and are reproduced here as an appendix. B. Operation and Maintenance of Data Processing Facilities Much effort was expended during the reporting period in consolidating the remote-sensing data library and some of the optical data processing laboratory with the geophysical data archives of the Geophysical Institute. This consolidation offers significant benefits to the OCSEAP program: - 1) it provides substantially increased quarters for the remote-sensing data library and segregated, controlled-illumination space for the operation of optical data analysis instruments. - 2) it provides more work space for the increasing number of investigators who utilize our facilities to analyse the file copies of remote-sensing data. - 3) it exposes and makes available to OCS investigators other forms of geophysical data (seismic, meteorological, magnetic etc.) acquired by the Geophysical Institute over many years. - 4) it locates the remote-sensing data library on the same floor and adjacent to the Geophysical Institute library, which contains books, periodicals, reports and maps relevant to the OCSEAP. - 5) it locates the remote-sensing data library on the same floor and adjacent to the OCSEAP Arctic Project Office, thus providing easier access to Arctic Project Office personnel and visitors. - 6) it frees the previous location of the library, which was adjacent to the photographic laboratories of the Geophysical Institute, for an expansion of these laboratories in anticipation of the acceptance by NOAA/OCSEAP of our proposal to undertake the volume processing of airborne remote-sensing data to be acquired by NARL with NOAA/OCSEAP support. In connection with the latter point, we have located and secured approval for transfer of the following equipment from government laboratories in Alaska, Nevada and Mississippi: 1. KC-6 aerial camera (9" focal length) value \$120,000 2. KC-1B aerial camera (9" focal length) value \$10,000 3. KS-72 aerial camera (5" focal length) value \$25,000 . I²S multispectral camera (6" focal length) value \$ 10,000 Versamat continuous processor (5" to 9½" film or paper)value \$30,000 LogEtronic SP1070B strip printer (5" to 9½" film)value \$25,000 7. LogEtronic Mark III step and repeat printer (5" to 9½" film)value \$35,00 8. Omega B+W and color enlarger (10"x10" film) value \$ 10,000 Arrangements for shipping of this equipment to Alaska are now being made by Ted Flescher, logistics coordinator of the Arctic Project Office. Upon receipt, the first four items of equipment will be tested and shipped to NARL (Barrow) for installation in their C-117 remotesensing aircraft along with the SLAR and laser profilometer provided by CRREL; the second four items of equipment will be installed in the new photographic laboratory for processing the NARL-acquired airborne remote-sensing data. We are confident that the availability of this equipment, and the combined expertise and facilities of NARL and the Geophysical Institute will provide a good local capability for a remote-sensing data acquisition responsive to OCS needs and at relatively small cost to NOAA/OCSEAP. Although the move to new quarters occupied a substantial portion of the staff time devoted to the project, care was taken to avoid disrupting the activities of OCS investigators who utilized our facilities, and in particular all the data analysis equipment and light tables were kept operational, except during brief periods while they were being moved. # C. Development of Data Analysis and Interpretation Techniques Work continued, within the available financial resources of the project, on the conversion of existing computer programs for the digital analysis of Landsat data. A classification program consisting of a spectral clustering program (isoclass) and a maximum likelihood program, is now implemented on the University of Alaska Honeywell 66/40 time-sharing computer, but is currently limited to operate on relatively small areas (10x10 miles) at full ground resolution (80 meters). Eventually the capabilities of the program should be expanded to cover much larger areas. In the meantime we are working on conversion of another computer program which will allow the geometric correction of digital Landsat data to produce map-based classified data on our digital image recorder or computer print-outs. Arrangements have been made, at no cost to OCSEAP, for a visit of Mr. James McCord, chief of the photographic laboratories of the EROS Data Center. During his one week visit in July, Mr. McCord will conduct seminars and training sessions for photographic laboratory personnel and OCS investigators in the latest techniques for photographic enhancement of Landsat imagery and aerial photography (contrast stretching, edge enhancement, color-reconstitution etc.). In preparation for his visit, Mr. McCord has been
experimenting with new techniques for the enhancement of enhanced Landsat images of Arctic Alaska, including a February 1977 low-contrast image of the Beaufort Sea. Mr. McCord is excited about the excellent results which he has obtained so far and he is looking forward to communicating them to us during his visit. #### D. Assistance to OCS Investigators During the last quarterly period most OCS investigators were heavily involved in field projects and, for that reason, individual requests for assistance decreased somewhat from the previous quarter. Nevertheless 40 OCS investigators made extensive use of our services and facilities ranging from data searches and orders to operation of data analysis equipment. Data purchases by OCS investigators totalled \$1246 for orders placed to the EROS Data Center, \$36 for orders placed to NOAA/NESS, \$180 for orders placed to National Ocean Survey, and several hundred dollars in work orders for urgent or custom reproduction of selected data, principally SLAR data. In addition many investigators performed analyses of library copies of data archived in our facilities. Dr. William Stringer (RU #257), Dr. Jan Cannon (RU #99), Drs. John Burns and Lewis Shapiro (RU #230, 232, 248 and 249), Dr. Wilford Weeks (RU #88) and Dr. Thomas Royer (RU #289) continued to be frequent and heavy users of our data and facilities. Three examples of the range of assistance that we provide to OCS investigators are illustrated by current requests from three OCS users located outside Alaska. In connection with his field activities in the Beaufort and Chukchi Seas and the Bering Strait, Dr. Weeks (RU #88) needed continuous update of sea-ice imagery during the entire spring season. We are scanning incoming NOAA satellite, Landsat, and airborne imagery for applicability to his projects, order reproductions, and mail him the selected data, in most cases within two weeks after data acquisition, so that he is able to adjust his field program in accordance with his knowledge of synoptic sea-ice conditions provided by remotesensing data. Similarly, Dr. George Hunt (RU #83) needed historical remotesensing data of sea-ice temperatures and sea-ice edge position in the vicinity of the Pribilof Islands, as well as near real-time similar data for the planning of his field program and ship cruises during the May to SEptember 1977 period. In cooperation with RU #289 (for sea-surface temperature interpretation), we have provided him the historical remote-sensing data for his analyses, and we are currently providing him similar data on a one-two week delay basis during his field program. Dr. Pete Myers (RU #172) needs accurate and detailed information on bird habitat in the region south of Barrow, to extend his very detailed field mapping over a small area to a larger area. We are working with him on a new technique for computer-aided ecosystem mapping utilizing both the multispectral and multitemporal digital data from the Landsat satellite. # III. RESULTS A catalog of SLAR data of the Beaufort and Chukchi Seas acquired during April 1977 was prepared and distributed to all OCS investigators in May 1977 through the NOAA/OCSEAP Arctic Project Bulletin No. 14. It is reproduced here as an appendix. Work is proceeding on a major catalog of all remote-sensing data (satellite and aircraft) acquired during winter and spring 1977. This catalog will be updated through June 30, 1977 and will be distributed to all OCS investigators in late June/early August. Equipment, including aerial cameras and photographic processing systems, have been acquired and a new photographic processing laboratory is being established in anticipation of the implementation of an OCSEAP/NARL airborne remote-sensing data acquisition program. The remote-sensing and geophysical data archives of the Geophysical Institute have been consolidated into larger quarters, thus providing better facilities and services to OCS investigators. # IV. PRELIMINARY INTERPRETATION OF RESULTS The project's function is to provide remote-sensing data and technical support to the other OCSEAP projects. Therefore disciplinary data interpretations are normally reported by the individual user projects. # V. PROBLEMS ENCOUNTERED/RECOMMENDED CHANGES A proposed amendment to the project (RU #267) was submitted to OCSEAP in February, 1977 at the request of the OCSEAP Arctic Project Office. A companion proposal was also submitted by the Naval Arctic Research Laboratory (NARL). Both proposals related to the acquisition and photographic processing of remote-sensing data by a C-117 NARL aircraft. To date OCSEAP has not responded to these two proposals which requested a starting date of March 1, 1977. As a result the opportunity of acquiring all-weather remote-sensing data of the Beaufort and Chukchi Seas during the important 1977 spring break-up of sea-ice has been missed. We fear that any further delays will cause the open water (summer) season to be missed as well. #### VI. ESTIMATE OF FUNDS EXPENDED The estimated expenses of the project during the reporting period were approximately \$26,000. Project: Outer Continental Shelf Energy Program Location: Beaufort and Chukchi Seas Aircraft: Mohawk OV-1 Flight Line: Between points indicated (see map) Instrument: Motorola Side Looking Radar X-Band (3.5 cm) Real Aperture Dual Antenna Mode | Date | Run | Flight Line | Range
Swath | Lineal
Ft of
Film | Diraction
Of View* | Quality | |---------|--------|----------------------------------|----------------|-------------------------|-----------------------|-----------| | 4-22-77 | 25-01a | Icy Cape - Barrow | 25 km | 5' | SE | very good | | 4-19-77 | 25-01b | Icy Cape - Peard Bay | 25 km | 41 | SE | very good | | 4-20-77 | 25-02 | Barrow - Sag River | 25 km | 6, | S | very good | | 4-20-77 | 25-03 | Camden Bay - N. of Harrison Bay | 25 km | 4' | S | very good | | 4-22-77 | 25-04a | Barrow transect | 25 km | 2' | NE | very good | | 4-22-77 | 25-04b | Barrow transect | 25 km | 21 | SW | very good | | 4-22-77 | 25-04c | Barrow transect | 25 km | 2' | NE | very good | | 4-20-77 | 25-05a | Oliktok transect | 25 km | 2' | NE | very good | | 4-20-77 | 25-05b | Oliktok transect | 25 km | 2' | SW | very good | | 4-20-77 | 25-06a | Tigvariak Is. northeast over ice | 25 km | 2' | E | very good | | 4-20-77 | 25-06b | Tigvariak Is. northeast over ice | 25 km | 2' | W | very good | | 4-16-77 | 25-07 | Nenana - Fairbanks | 25 km | 2' | NV | very good | | 4-19-77 | 50-01 | Wales - Hotham Inlet | 50 km | 3' | SE | very good | | 4-19-77 | 50-02 | Wales - Granite Mountain | 50 km | 3' | N | very good | | 4-19-77 | 50-03 | Granite Mountain - Kiana Hills | 50 km | 2' | E | very good | | 4-19-77 | 50-04 | Elephant Point - Point Hope | 50 km | 3' | NE | very good | | 4-19-77 | 50-05 | Cape Lisburne - Icy Cape | 50 km | 41 | SE | very good | ^{*} transverse to flight path # Quarterly Report Contract #03-5-022-56 Task Order #19 Research Unit #289 Reporting Period 4/1/77 - 6/30/77 # Thomas C. Royer Principal Investigator Institute of Marine Science University of Alaska Fairbanks, Alaska 99701 June 30, 1977 Quarterly Report for Quarter Ending 30 June 1977 Project Title: Mesoscale Currents and Water Masses in the Gulf of Alaska Task Order Number: 19 Principal Investigator: Thomas C. Royer #### I. Task Objectives To continue gathering hydrographic data over the continental shelf region of the Gulf of Alaska in the eastern portion (GASSE), Western portion (GASSO) and the Kodiak Island (KISS) region. To continue the analysis of these acquired data. To archive the NOAA IR satellite data for the Alaskan coastline. #### II. Field Activities The Seward and Cook Inlet station lines were completed and the current meter array at IMS 9 (58°41'N, 148°21.6'W) was recovered using the NOAA ship, *Miller Freeman*. We are continuing to receive and monitor the NOAA satellite data. #### III. Results The data from EB-03 from 1972 to the present are now available in a graphic format. These data include wind speed and direction, atmospheric pressure, water temperature, air temperature and relative humidity. These data are being compared with weather data from Middleton Island to give estimates of the proper wind field for the region. We have also provided about 60 satellite photos to other OCS Principal Investigators. #### III. Results(continued) The current meter data for IMS 9 from November through March indicate that the general flow during this time was southwestward. That is, the position demonstrates flow from the Alaska Stream. This was predicted from the previous data, since reversals seem to primarily occur only in the late summer (July-October). We are attempting to evaluate the important mechanisms for this flow alteration; wind stress and fresh water runoff. An important result from our recent work is that dynamic height and sea level are closely related and that the dynamic height is locally controlled. This means that the shelf circulation near Seward could be driven by the fresh water runoff out of Prince William Sound. The phasing of seasonal sea level changes between Yakutat and Seward suggest that this could be the reason for the flow reversal off Seward. The principal investigator attended the physical oceanography meeting at Alderbrook, Washington and conferred with the staff at the OCSEAP office in Juneau. #### IV. Problems Encountered We have uncovered some severe problems with the noise levels of hydrographic data gathered aboard NOAA ships. We initially believed that the large errors were due to the salinity determinations. The errors in depth are of the order of meters and are depth dependent. The noise levels in the NOAA ship gathered data are more than 10 times the noise levels in the non-NOAA ship gathered data (Moana Wave and Acona). It is now believed that the problem is due to an impedence mismatch in the CTD system. This is a result of the NOAA ships using larger cable than the other vessels. The
problem has been passed on to PMC via the Juneau project office. #### IV. Problems Encountered(continued) Problems were encountered on the *Miller Freeman* due to 1000m depth restriction on the CTD which we were not informed of until after the ship sailed. There also seemed to be a communication problem between the project representative and the officiers on the *Miller Freeman*. Since the Principal Investigator is responsible for the data collection and quality, his recommendations or those of his representative should supersede all others except where the safety of the ship or its personnel are involved. ## QUARTERLY REPORT Contract No. 03-5-022-56 Research Unit No. 347 Reporting Period: April 1, 1977 through June 30, 1977 Number of Pages: 1 # MARINE CLIMATOLOGY OF THE GULF OF ALASKA AND THE BERING AND BEAUFORT SEAS James L. Wise Arctic Environmental Information and Data Center University of Alaska June 20, 1977 June 20, 1977 #### **OUARTERLY REPORT** # For the Period Ending June 30, 1977 #### I. Task Objectives: To determine and publish the knowledge of the climatological conditions of that portion of Alaska that is important to OCS development. # II. Field and Laboratory Activities: This portion of the project has no field or laboratory activities. It is a joint project with the National Climatic Center (NCC) in Asheville, North Carolina. AEIDC responsibilities are to provide extremes of all weather elements, information on coastal damage resulting from wind generated storm flooding, check analysis work done at NCC, and through our graphics department, prepare materials for publication. #### TII. Results: The final product of this research project is the publication of the "Climatic Atlas of the Outer Continental Shelf Waters and Coastal Regions of Alaska." The atlas has three volumes, Volume I, Gulf of Alaska; Volume II, Bering Sea; and Volume III, Chukchi and Beaufort Seas. The table of contents and areas covered in each of the three volumes is as shown in the annual report of March 1977. Preparation of all three volumes for printing is complete and the material will be turned over to the Government Printing Office in Boulder, Colorado for printing by the end of the quarter or shortly thereafter. Selection of the printer and schedule for printing are not known at this time. - IV. N/A - v. N/A ## OCS COORDINATION OFFICE # University of Alaska ## ESTIMATE OF FUNDS EXPENDED DATE: June 30, 1977 CONTRACT NUMBER: 03-5-022-56 TASK ORDER NUMBER: 25 PRINCIPAL INVESTIGATOR: Mr. James L. Wise # Period July 1, 1975 - June 30, 1977 (24 months) | | Total Budget | Expended | Remaining | |------------------|--------------|----------|----------------| | Salaries & Wages | 57,286 | 58,761 | (1,475) | | Staff Benefits | 10,284 | 10,486 | (184) | | Equipment | -0- | -0- | -0- | | Travel | 2,045 | 1,335 | 710 | | Other | 6,126 | 5,144 | 982 | | Total Direct | 75,741 | 75,708 | 33 | | Indirect | 30,147 | 30,545 | (<u>398</u>) | | Task Order Total | 105,888 | 106,253* | (<u>365</u>) | ^{*}Preliminary cost data, not yet fully processed. # Quarterly Report Contract No. N/A Research Unit No: 347 Reporting Period: April 1, 1977 through June 30, 1977 Number of Pages: 2 "Marine Climatology of the Gulf of Alaska and the Bering and Beaufort Seas" Climatic Atlases (3) # Principal Investigators James L. Wise Associate in Climatology Arctic Environmental Information and Data Center University of Alaska 707 'A' Street Anchorage, AK 99501 Comm: (907) 279-4523 William A. Brower, Jr. (D5312) Applied Climatology Branch National Climatic Center Federal BUilding, Room 401 Asheville, NC 28801 Comm: (704) 258-2850, x266 FTS: 672-0266 June 24, 1977 # Quarterly Report # I. Task Objectives To compile and publish a descriptive climatology of that portion of the Alaskan waters and coastal areas that are important to resource development of the outer continental shelf (OCS). # II. Field and Laboratory Activities This project has no field or laboratory activities. It is a joint effort by the AEIDC and the NCC to produce a climatic atlas for each of three Alaskan marine and coastal areas: the Gulf of Alaska $(50^{\circ}-65^{\circ}N, 130^{\circ}-165^{\circ}W)$; the Bering Sea $(50^{\circ}-65^{\circ}N, 155^{\circ}-180^{\circ}W)$; and the Beaufort Sea $(65^{\circ}-75^{\circ}N, 140^{\circ}-180^{\circ}W)$. NCC is to provide monthly climatological analyses in the form of 360 isopleth charts and some 10K statistical graphs. The analyses are to be based on 600,000 surface marine observations and two million (3-hourly) observations for 49 (selected) coastal stations contained in NCC's digital data base. AEIDC is to provide extremes of all weather elements and information on coastal damage resulting from wind generated weather elements, check analysis work done by NCC, and prepare all materials for publication. (AEIDC will provide an independent quarterly report). ## III. Results NCC's work is complete. All material NCC was to provide for use in the three atlases have been mailed to AEIDC for printing preparation. NCC's Principal Investigator, Bill Brower, visited Anchorage the week of April 3 to assist AEIDC in the editing of their draft work of NCC's input. Remaining work, which is the responsibility of AEIDC, is scheduled for completion with the publication of the atlas during the last quarter of FY-77 (AEIDC will provide an independent report). # IV. Preliminary Interpretation of Results The U.S. Navy Marine Climatic Atlas of the World, Vol. II, North Pacific Ocean (1959), one of eight volumes in a series of atlases of the world which is currently being updated by the Navy, has had wide acceptance as an authoritative reference for large-scale operational planning and research. 2. The present study will provide three atlases to represent the total of the Alaskan waters in greater detail and each will be based on more than 20 years of additional data. Also, as marine data are typically sparse in the near coastal zone, a zone of sharp gradients and complex climate, data for the 49 coastal stations were included. Such a combination should provide the best possible climatological picture for the coastal waters of Alaska. #### V. Problems Encountered A computer-visual inventory of the digital surface marine data file disclosed a sparcity of data north of 60° latitude. To permit a better climatic description of the Bering and Beaufort Seas, marine observations were digitized from manuscript forms archived at NCC for the period 7/73-12/74 and digital data for 22 additional coastal stations held in NCC's file were combined with data of the 27 stations orginally selected. However, as there were little data available in NCC's digital file for the land and marine area east of Barter Island, the Beaufort Sea Atlas will contain only a limited climatic description of the Mackenzie Bay area. #### VI. Estimate of Funds Expended All of the \$10K funded to NCC for FY-77 have been expended; and as NCC's work is complete, additional funds will not be required. # QUARTERLY REPORT Contract No.: R7120848 Research No.: 367 Reporting Period: 1 April - 31 July 1977 Number of Pages: 6 COASTAL METEOROLOGY R. Michael Reynolds Pacific Marine Environmental Laboratory 3 July 1977 <u>Task Title</u>: Coastal Meteorology PI: R. Michael Reynolds NOAA/PMEL 3711 15th Avenue N. E. Seattle, WA 98105 Reporting Period 1 April - 31 July 1977 # I. <u>Task Objectives</u> - A. Verify a mesoscale numerical model of atmospheric flow in the Yakutat Icy Bay region. - B. Confirm the model by comparing its results to measured data from a variety of sources, e. g. data buoys, NWS weather stations, and remote land stations deployed by PMEL. - C. Produce a high quality data set during a wintertime period both for model verification and for further understanding of details in land-ocean interaction. - D. Relate observed weather conditions in Bristol Bay and the Aleutians to analytical models of air modification. # II. Field and Laboratory Activities - A. Cruises: none - B. Field Experiments: The two remote meteorological stations which were installed at Pt. Riou and Pt. Manby have been maintained by NWS personnel in Yakutat. The data seems of reasonable quality, and the instruments are functioning well. - C. Laboratory Activities - 1. A meeting of OCSEAP PIs was held at Alderbrook Inn, Union, Washington on 17-19 May 1977. Mr. Reynolds attended. - Data from Norton Sound has been reduced and archived. This data will be useful in our predictions of the distance for offshore adjustment of the atmospheric boundary layer. - Data from various shore met stations is being reduced and intercompared. - 4. The modified Lavoie numerical model is being tested in a series of classical problems with known analytical solutions (wheat field, antarctic katabatic winds, ice edge, etc.). - 5. The reduced data tapes from the Yakutat aircraft study have been received from the National Center for Atmospheric Research. Work now is aimed at estimating data quality and parameterizing each flight for input to the model. #### III. Results - A. An intercomparison of winds measured at various sites is shown in Fig. 1. The scatter is considerable and a predominant offshore flow near the coast is apparent. - B. A simple two dimensional model of thermodynamic entrainment has been developed. This simple model should help interpret the modification of the offshore flow by heat flux. Figure 2 is an example of the application of the model to a series of radiosondes taken in February 1975. The agreement of measured mixed layer height and temperature is reasonable, while the humidity is not. This model will be applied to the Norton Sound data, a much better set. - C. Aircraft data from one flight, February 1977, has been compared with a model run. The results, shown in Figures 3 and 4, show some agreement in the vicinity of Yakutat Bay, but a boundary problem on the West boundary propagates deep into the model. The boundary problem appears to be
a serious one in meso-scale models. The Numerical Studies group of PMEL is actively working to improve this situation. Figure 1. Intercomparison of March 1977 winds from various sources. Each dot represents the tip of a measured wind vector. Note strong offshore tendency for Riou, Manby, and even EB43 (20 km offshore). Figure 2. Comparison of data measured in February 1975 off the Malaspina Glacier to two models of offshore air modification. Solid line is the new numerical solution which includes entrainment of heat; dashed line is a simple analytic solution. Oscillation in \tilde{k} and \tilde{s} possibly indicates an inertia effect. For definitions of symbols used, see 1977 annual report. Figure 3. Measurements of surface winds taken by aircraft and surface stations, February 25, 1977. Surface winds computed by Navy (FNWC) and synoptic map interpretation (NWS) is also shown. # VELOCITY VECTOR PLOT Figure 4. Numerical simulation of the winds for the February 25,1977 case. Serious boundary problems are evident. Agreement around Yakutat is good. 10 METERS PER SECOND ## FINAL REPORT # RADIOMETRIC SPECTRAL RESPONSE OF OIL FILMS OCSEAP RESEARCH UNIT 399 P. M. Kuhn, L. P. Stearns E. S. Salazar and B. J. Loupee NOAA - APCL - R31 Boulder, Colorado 80302 #### INTRODUCTION This project proposed to investigate the effects of various IR spectral pass bands on the response of an infrared radiometer in the identification and extent of simulated oil spills on sea water at different water temperatures. An attempt was made to also determine such effects on simulated oil spills of different oil thicknesses. The IR radiometer system employed was a single channel NOAA radiometer made up as a prototype unit from parts of the electronics of commercial manufacturers but with a NOAA designed optical train. Filters for the three spectral pass bands employed were manually changed for each experiment. In view of the necessarily limited funds remaining for this experiment after the Barrow IR imager deployment for the Arctic Project Office, three pass bands were investigated. The method followed in the research was that of observing the infrared signatures of four OCS furnished oil samples with respect to type, temperature and thickness in the three pass bands. Prior to the laboratory experiment a modest literature review was conducted. After the archival search one of the better definitive studies on an airborne oil surveillance system was that of the Office of Naval Research (1975). The multi-sensor system described consisted of a SLAR (side-looking airborne radar), passive microwave imager, low light level TV and a multichannel IR line scanner similar to the NOAA-APCL IR imager. Reported total cost of instrumentation was \$360,000. By way of contrast, the NOAA fixed field IR radiometer employed in this study has a total value of ∿ \$6000. The Navy study involved deliberate 500 gallon spiles in the eastern Pacific but without laboratory control. This study involved laboratory-simulated oil spills contained in limited size tanks by floating plastic containment rings. The NOAA imager, operating in the same IR pass bands as the referenced NOAA fixed field radiometer has a total value of \sim \$36000. It might have been used downstream in this study if further limited funding had been available. Both units have and will be flown on NASA jet aircraft for similar research in conjunction with NASA projects. One may summarize, perhaps even in an introduction, by stating that to our knowledge no similar study as this involving fixed field radiometry in a precise laboratory calibration mode has come to our attention. The results directly applicable to the IR scanner show that the radiometer (or IR scanner) system can reliably detect and map oil spills as to extent and general oil type identification. Results on oil thickness determination were inconclusive. However, the overall results strongly suggest that a better base funded study with an IR sprectrometer or interferometer, such as possessed by NOAA-APCL, could produce more detailed results even extending into possible restrahlen IR signatures for specific oil types and possibly thicknesses. Preliminary results obtained so far show that there may well be characteristic oil-type absorption spectra initially only identifiable by an interferometer or spectrometer. This, then, would enable the proper choice of pass band filters for later used airborne IR imagery. However this would be a six to nine month study at a base cost minimum of \$60,000. Such figures for an in-house project were arrived at after consultation with SRI whose figure, incidentally, was \$120,000 for one year. From the point of view of physical oceanography, we suggest that it would be well worth while and urge its implementation as a dedicated project. #### RADIOMETER CHARACTERISTICS The radiometer employs a 100 Hz gold plated optical chopper system alternately directing the signal impinging on the detector from the reference Helmholtz cavity to the target. This results in an AC wave suitable for amplification and signal processing via the preamplifier and main frame electronics. The equation reducing the radiometer observed output voltage to radiance (w cm $^{-2}$ sr $^{-1}$) is (see symbol table) $$N_{T}^{\dagger} = k \left(G[V_{o} + a_{o} + a_{1}^{T} + a_{2}^{T}] - V_{E}\right) + N_{R}$$ (1) The target radiance ideally is that radiance emitted directly from the oil or water surface. However this equation is general and does not involve surface emissivity. It is further assumed that the target fills the field of view (2° to 1/2 power points; 4.5° to the 95% power points) of the radiometer. N†_T is a direct function of the spectral pass band employed (i.e. 10-12 μ m, 8-14 μ m,). The radiometer radiance minimum detectable signal (N.E. Δ N) is 7.0 x 10⁻⁷ w cm⁻² sr⁻¹. To convert radiance to calibrated equivalent black body temperature, T, we extract the target temperature from the Planck function in the expression for observed target radiance. $$N_{T}^{\dagger} = B(v, T) \phi(v) \sigma(v) dv, \qquad (2)$$ where $\mathrm{N}^{\uparrow}_{\,T}$ in Eq. (1) and (2) are identical. The radiometer minimum detectable temperature change is approximately \pm .17C at a target temperature of 7C. This is directly related to the N.E. Δ N cited above. · Calibration is normally accomplished by determining the system transfer coefficient, k, after observing a known source of radiation. #### LABORATORY OIL SLICK INFRARED SIGNATURES #### EXPERIMENTAL SET-UP To avoid oil-water mixing in this pilot project radiometric observations of the infrared oil signatures were conducted in the laboratory. Fig. 1 illustrates the experimental set-up. The blackened tray contains the "simulated" sea water, and two oil samples enclosed by floating plastic containment rings. One also sees the analog and digital data recording system as well as the modified single channel radiometer. The experimental tray and radiometer instrument platform appear in Fig. 2. In Fig. 3 a filter wheel radiometer (eight channels) is in position on the instrument platform. The platform is moved to scan the contained oil and water alternately. Radiometer output is available in real time via analog and digital output. Fig. 1 Fig. 2 Fig. 3 Computer calibrations giving voltage output versus equivalent black body temperature (Eq. 2) are displayed in Figs. 4, 5, and 6. The labels indicate the spectral pass bands and voltage range. To complete the relationship between voltage output and equivalent black body temperature (Figs. 4, 5, and 6) and equivalent black body temperature and radiance tables 1 and 2 are appended. #### RESULTS Four oil samples (Bunker-C, Kuwait Crude, Louisiana Crude and Fuel Oil No. 2) were temperature stabilized at room temperature (~20.0C) in containment rings over sea water at the same temperature for the radiometer scans. The equivalent black body temperature of the overhead laboratory ceiling averaged a steady 23.5C. This is important due to oil reflection of the ceiling (sky) radiance into the radiometer system. To summarize the test method, four OCSEAP furnished oil samples were scanned over two widely separated "sea" temperatures in three spectral pass bands. Oil samples were scanned immediately following a synthetic spill of room temperature oil and 24 hours after the spill. In each case an observation termed the "delta factor" was the output of the tests. Simply put, the delta factor is the oil temperature minus the sea temperature. It is a measure of the temperature variation of different types of oil from the sea temperature and reflects the emissivity and thermal capacity of the oil on water. 283 DEG = 2 284 Figure 7 displays the delta factor obtained in the 8-14 µm scans of the four types of oil. Singular is the large positive delta factor for Bunker-C oil over a "sea" surface of about 2C. Kuwait Crude also exhibits a moderately large factor at a "sea" temperature of 2C. The other two fuels do not evidence a significant change from water temperature especially when one realizes that real time observations at 1.0 km or more would mask delta factors that do not reach ± 1.0 degree. Reference to the same figure evidences the fact that a warm "sea" temperature of 19C results in an inconspicuous delta factor for Louisiana and Kuwait Crude and # 2 fuel oil. In fact, Bunker-C is only 1.6 C above the "sea" temperature. A 24 hr hold before a repeat scanning reduced the delta factor of the four oils even more. Low-volatile-absorbing oil slicks such as formed by Bunker-C (heavy oil) display a delta factor much higher than the lighter more volatile oil type spills. This effect is certainly enhanced when the sea temperature becomes cold, approaching 2 to 4 C (Fig. 7). In fact the delta factor is 4 times as great for Bunker-C at 2C than at 19C. This effect is undoubtedly related to the higher absorptivity and thermal capacity of the heavy
crudes over the lighter oils. To check this hypothesis, at least relative to absorptivity, the calculations from observations of the absorptivity (emissivity) over the 8-14 μm pass band are outlined. Combs, Weickmann, Mader, and Tebo (1965) demonstrated a simple technique for determining the emissivity of various surfaces with a single-channel, fixed-field radiometer of an earlier type than that employed in this research. If radiometer observations over the oil are conducted without an integrating hemisphere shield and then with the shield, the effects of reflection of upper hemisphere or sky radiation are eliminated and one may define the oil emissivity by, $$\varepsilon_{\Delta V} = \frac{N_{\rm T}^{\uparrow} - N^{\downarrow}}{N_{\rm C}^{\uparrow} - N^{\downarrow}} \pm 0.15 \tag{3}$$ where Δv covers the 8-14 μm pass band. Observed temperatures averaged over several scans for insertion in Eq. 3 follow: $N_m^+ = .0035143$ (8.2 C black body temp.) $N \neq .0044632$ (23.0 C black body temp.) $N_0 \uparrow = .0034906 \ (7.8 \ C \ black body temp.)$ A solution of Eq. 3 with these inputs results in an emissivity for Bunker-C of .976 \pm .02. A similar solution for "sea" water resulted in an emissivity over the 8-14 μ m band of .945 \pm 015. The random 10 error limit of .015 makes these results somewhat tentative. However if one considers a standard error of estimate defined as one 0 divided by the square root of the 10 observations the emissivity values are significant. In the 10-12 μ m pass band (Fig. 8) at approximately 19C, the delta factor for all oils is identical resulting in no type differentiation. However, at 2C Bunker Crude and # 2 fuel display large delta factors suggesting that the 8-14 μ m spectral range would be a satisfactory pass band for identification of Bunker-C and possibly Kuwait Crude while the 10-12 µm band could be used for identification of # 2 as well as Bunker-C. Further review of these two figures suggest that it may be difficult to determine the extent of the Louisiana crude oil spill in view of the small delta factor at the 2C "sea" temperature. Fig. 9 presenting results in the 10.5-11.5 μm band displays the largest delta factor again for both Bunker-C and # 2 fuel. In some contrast to the Navy Report previously cited, our results do show a fair correlation of the radiometer delta factor with certain oil types in the two channels. Figures 7 and 8 suggest that the $10-12~\mu m$ pass band better identifies Bunker-C and Fuel No. 2 at ~ 2 C while the 8-14 μm band better identifies Bunker-C and Kuwait crude at ~ 2 C. These same two figures clearly show that the $10-12~\mu m$ pass band is far superior to the 8-14 μm pass band in identifying a No. 2 fuel oil spill or slick. The results indicate a future more comprehensive and detailed interferometer or spectrometer study to determine the line structure of various oil types and thicknesses. This could possibly provide the pass bands or channels best suited to a particular oil type. A singular feature (Fig. 9) became evident in the use of a "tighter" and cleaner pass band in the window region, namely 10.5 to 11.5 μm . This pass band increases the delta factor at a sea temperature of 2C suggesting strong emission in this band or a possible restrablen effect. However, an interferometric laboratory search from 3.0 to 45.0 μm is again suggested for perhaps, 2C, 5C, 8C, 12C. Average thicknesses for the tests were 1 mm. Doubling and slightly exceeding the thicknesses (2 to 2.5 μm) resulted in virtually no change in the delta factor. #### RESULTS SUMMARY - 1. Laboratory tests indicate clearly that an oil spill area is easily distinguished as to extent from the non-contaminated sea. This is certainly not an original conclusion. - 2. There is a strong suggestion that unique IR signatures can be found for various oil types to enable good oil type identification. - 3. Time after spill does not change the results as to identification of oil type. Obviously surface diffusion at the far boundaries of a spill will change this conclusion. The samples of this research represented more the "core" of the spill in a time series. The core area did not produce IR signature changes with time under the conditions imposed. - 4. A thickness change of from 1 mm to 2.5 mm did not affect the IR signatures appreciably. ## RECOMMENDATIONS - 1. It would be very promising to conduct spectrometer or interferometric passive IR signature identification of various oil types. This could be a precise laboratory experiment followed by sea tests. Adequate 60K to 100K funds for proper equipment and filters are required. Surely this test will eventually be accomplished. - 2. Continue on a larger scale and with IR imagery oil slick extent observations in the mixing conditions of the sea on targets of - opportunity or on a small lake. Ground truth is essential in a thickness to extent relation. - 3. Thickness observations do not appear overly productive and seem to be outweighed by extent and oil type identification research. ``` SYMBOL TABLE ``` ``` quadratic coefficients for voltage correction based on the temperature effect on chopper blade a₁ a₂ В Planck function radiometer electronics gain G system response factor (w cm^{-2} sr^{-1} volt^{-1}) k sky radiance N true black body radiance of oil interface under integrating sphere. N reference cavity radiance N_{R} oil target black body radiance without integrating sphere N_T temperature offset voltage \mathbf{v}_{\mathbf{E}} output voltage analog wave number ν transmission through lens and filter transmission through detector σ emissivity ε spectral interval (wave) Δν ``` ## REFERENCES - Development of a prototype airhorne oil surveillance system, Final Report No. CG-D-90-75, Task No. 4204.4/1, U. S. Navy, Office of Research and Development, 1975. - Combs, A. C., H. K. Weickmann, C. Mader and A. Tebo: Application of Infrared Radiometers to Meteorology, J. Appl. Meteor., Vol. 4, No. 2, 1965. # FISCAL SECTION # Available Transfer Funds - OCSEAP TO APCL | CONVAIR 990 IMAGERY | 3500 | |--|--------| | IR-UV LAB TEST | 15000 | | | 18500 | | Funds Expended by 9-30-76 | | | CONVAIR 990 IMAGERY | 3500 | | ALASKA (LIFITED) TMACEDY OUT OF | | | IR-UV LAB TEST 15000 Funds Expended by 9-30-76 CONVAIR 990 IMAGERY 3500 ALASKA (WELLER) IMAGERY OUT OF BARROW 9500 13000 Funds Expended by 7-31-77 ON IR-UV 3500 3500 Actual Received from OCSEAP | 9500 | | | 13000 | | Funds Expended by 7-31-77 | | | ON IR-UV 3500 | 3500 | | | 16500 | | Actual Received from OCSFAP | | | | 12100 | | COST TO APCL | - 4100 | ### FIGURE LEGEND - Laboratory set-up including oil spill in confinement trays, radiometer head and console, digital and analog recorders. The four sample containers of the OCS oil furnished for the experiment are shown in the right background. - 2. Laboratory set-up to measure oil spill temperature including experimental tray described in Fig. 1, radiometer platform and recorder. - 3. Same as Fig. 2 with 8 channel radiometer on platform. - 4,5,6. Computer calibrations, voltage output versus black body temperature for selected ranges and spectral pass bands of radiometer. - 7. Delta factor, $8 14 \mu m$ - 8. Delta factor, $10 12 \mu m$ - 9. Delta factor, 10.5 11.5 μm ### **TABLES** - 1. $8 14 \mu m$ black body tables - 2. 9.5 11.5 μ m black body tables Table 1 | ST | Α: , | TAG | Ε, | · | | 1 | • | CALCULATE |), MM/YY | PAGE | |---------------------------------------|------------|---|----------------------|----------------------|---------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------|-------------| | WA | | H REGION FROM | | 38 MIČROVS WITH | FILTER = F | PRT-5 8-14 | | | | | | | KAVE | NUMPERS FROM | 650.00 TO 1320. | 00 BY 13.60 | | • | BB CALIB RA | DIANT POWER FOR | ULAYERS | | | PR | ESSURE | TEMP. MI | X RATIO DELU | IRRADIANCE | ANGLE | RADIANCE | | Н20 | | | | · · · · · · · · · · · · · · · · · · · | EMP. | IRPADIANCE | RADIANCE | W/SQ CM
RADIANCE | | W/SQ CM SR | GM/SQ CM | GM/SQ CM | | | | | | W/SQ CM | W/SQ CM SR | (NORMAL) | | | | | | | | | . 0 | £. | .0331468 | .8090581 | | | - | | | | | •• | •2 | : | .0,33577 | -6003684 | | | | | | | | | . 4 | 0. | .0333687 | .0000685 | | | | | | | | | •6 | | -3130796 | .0000689 | | - | | | | | | | - 8 | [. | .0.31905 | .000591 | | | | | | | | | 1.6 | £ . | .0531016 | . 660 693 | | | | | | | | | 1.4 | 0. | .0031127
.0031237 | .000696 | | ··· ··· · · · · · · · · · · · · · · · | | · | | | | | 1.6 | 0.
0. | .0331237
.0331348 | .0000698 | | | | | • | | | | 1.8 | - <u>; </u> | .0.31459 | 16 96 3 7 9 3 | | | | | | | | | 2.0 | , 0. | .0331571 | .00G:705 | | | | | | | | | 2.2 | ι | .J.31682 | .0635763 | | | | | | | | • | 2.4 | € • | .0331794 | .0000711 | | , | | | | | | | 2.6 | t . | .0331936 | .0000713 | ···· | | | | | | | | 2.8 | Û• | %JU32018 | • C 000 716 | | | | | | | | | 3.0 | 9. | .0.32131 | .0000719 | | : . | | | | | | | 3.2 | G • | •0032244 | .0000721 | | 1 | | | • | | | | 3.4 | 6 | -3032357 | .0838723 | | 1 | | | | | | | 3.8 | [| .003247u
.0032554 | .0030726
.0000729 | | | | | · | | | | 4.0 | 8. | .0032697 | •600u725 | | | | | ÷ | | | | 4.2 | - <u>;</u> - | 8032811 | 0000734 | | | | | | | | N | 4.4 | 0. | .0032926 | • 0 CJJ 736 | | | | | | | | - 1 298 | 4.6 | €. | • 3 = 3 3 1 4 9 | .0000739 | | | | | | | | - | 4.8 | C . | .0033155 | .9033741 | | ' | | | | | | | 5.0 | C. | .0033270 | .0603744 | | | | · · · · · · · · · · · · · · · · · · · | | | | · · | 5.2 | . Ç • | .0033385 | .0006746 | | | | | |
| | | 5.4 | ύ • | .033501 | .000749 | | | | | | | | · | 5.6
5.8 | θ • | • Ú • 33616 | •0000/52 | | | | · | | | | | 5.0
6.u | 0.
0. | .0033732
.0033849 | .0000754
.J000757 | | | | • | | | | | -6.2 | -: | -3.33965 | -0.000759 | | | | | | | | | 6.4 | 0. | .0334982 | .0000762 | | | | | | • | | | 6.6 | -6: | .0334199 | .0000765 | | | | | | | | | 5.8 | 0. | .0334316 | .0 000 757 | | | | • | | | | ···· | 7.5 | Ü • | • 0 = 3 = 4 3 3 | •0000770 | | | | | | | | | 7.2 | C • | .0334551 | . u ce c 773 | | | | | | | | | 7.4 | 6. | .0034669 | • 0 COC 775 | | | | | , | | | | 7.6 | | .0034787 | .0003778 | | | | | | | | | 7.8 | 6. | -0134916 | 0505783 | | | | | | | | | 8.2 | <u> </u> | .0335024
.0335143 | .0630783 | · | · | 1.1 | | | | | | 8.4 | | .0135262 | .0000785
.0000788 | | | | | | | | | 8.6 | -0: | .0335382 | .0000791 | - | | | | | · | | | 8.8 | 6. | .0135531 | .0036794 | | | | | | | | | 9.0 | -:: | .0335621 | | | | · · · · · · · · · · · · · · · · · · · | | | | | | 9.2 | ۥ | .035741 | .8638799 | | | | | | | | | 9.4 | ₹. | • 0 239852 | .0003832 | | | | | | | | ~ | 9.6 | €. | .9335982 | • G G G G S G 5 | | | • | | | | | | 9.4 | 5. | 10036153 | .0000 407 | | | | | | | | | H REGION FROM NUMBERS FROM | | .38 MICRONS WITH
.80 BY 10.80 | FILLER = P | KI-> 8-14 | 88 CALIS R | ADIANT POWER FOR | G LAYERS | | |----------|----------------------------|---------------------|----------------------------------|------------|-------------|--|------------------|---------------------------------------|-------------| | PRESSURE | TEMP. M | IX RATIO DELU | | ANGLE | RADIANCE | CO 2 | H20 | | | | | | | W/SQ CM | • | W/SQ CM SR | GM/SQ CM | GM/SQ CM | | | | TEMP. | IRFADIANCE | RADIANCE | RADIANCE | · | | | | · | | | | W/SQ CM | W/SQ CM SR | (NOFMAL) | | | • | , | | | | 10.6 | 6. | .0036225 | .0000310 | | | | | | · | | 10.2 | G. | •JJ35346 | .0000813 | | | | | | | | 15.4 | —-ŏ. | •0136468 | .0 000 815 | | | | | | | | 13.6 | 0 | .0:35589 | .0000818 | | | | | | | | 10.8 | Č. | .0036712 | .0003821 | | | | | | | | 11.0 | 0. | .0435834 | .0000924 | | | | | | | | 11.2 | 7. | •957 • 36957 | .0000825 | | | | | | | | 11.4 | 01 | <u>#0137379</u> | .0500829 | | | ······································ | | · · · · · · · · · · · · · · · · · · · | | | 11.6 | C , | .0337203 | •0 60 0 832 | | | | | | | | 11.8 | G • | 0J37326 | 0 G00835 | | | | - <u></u> - | | | | 12. | G• | .0137450 | .0000837 | | | | | | | | 12.2 | _ ; . | .0037573 | • 0 Gù 6 8 4 0 | | | | | | | | 12.4 | 4 • | .0.37698 | .0000843 | | * | | | | • | | 12.6 | _ 0. | .0037822 | .00003846 | | | | | | | | 12.5 | 0. | •úu37946 | • 6 6 9 0 8 4 8 | | | | | | | | | | .0038371 | 0633851 | | <u> </u> | | | | | | 13.2 | C • | • 6 J3 o 1 3 6 | .000:854 | | | | | | | | 13.4 | <u> </u> | .0039322 | .0003857 | | | <u>`</u> | | | | | 13.6 | û • | •0333447
•038573 | .ŭ 00 3 85 3
.000 86 2 | • | | | | | | | 13.8 | <u> </u> | .0238699 | | | | | | | | | 14.2 | J. | .0038826 | .0000868 | | | | | | | | 14.2 | 5. | • 0 338952 | .0001871 | | 1 | | | | | | 14.6 | 0. | .0039079 | .0000874 | | | | | <u>.</u> | | | 14.8 | <u> </u> | .0037206 | .0003877 | | | <u></u> | · | | | | 15.3 | S • | .0333334 . | .6000879 | | | | | | | | 15.2 | | .0:39461 | .0600882 | | | | | | | | 15.4 | 3. | .0339589 | .000:885 | | | | | | | | 15.6 | | .0339717 | . v 030 d88 | | | | | | | | 15.8 | 3 . | .0139845 | .0005891 | | | | | | | | 16.0 | . U. | .0039974 | • u Cú C 894 · | | | | | | | | 16.2 | S • | 0346163 | 0000897 | | | | | | | | 16.4 | C. | .0341232 | • G 000 93 G | | | | | | | | 16.6 | 3 | .0049361 | 0000902 | | | | | | | | 16.8 | C. | .0043491 | .0000905 | | | | | | | | 17.0 | S • . | .3343621 | .0000908 | | | | | | | | 17.2 | G • | .0343751 | .0000911 | | • | | | | | | 17.4 | | .0343851 | 0.000 91 4 | | | | | | | | 17.6 | ŗ. | .Ju41012 | • 6 00 6 91 7 | | | | • | | | | 17.8 | <u> </u> | .0041143 | - 6 00 a 92 0 | | | | | | | | 18.0 | Ç. | .0041274 | •0 000 923
•0 000 925 | | | | | | | | 18.2 | <u> </u> | .0041405 | .0003929 | | | | | | | | 18.4 | 2 • | .u41537
.0041668 | .0000929 | | | | | | | | 18.6 | | .0041880 | .0000935 | | | | | | | | | 6 •
∂ • | .0041933 | .0303938 | | | | | | | | 19.0 | | .0.42065 | .0000941 | | | ··· | | · · | | | 19.4 | ε. | .0042198 | . 0 50 L 344 | | | | • | | | | 19.5 | - C • | .0342331 | .0000344 | | | | | | | | 19.8 | 0. | .6642465 | 0000949 | | | • | | | | TMOTE T CALLULATED, PMMZ in DATE . STA 15.38 MICFONS WITH FILTER = PRT-5 8-14 7.58 TO HAVE LENGTH REGION FROM BE CALIB RADIANT POWER FOR TTTAYERS 650.03 10 1320.00 BY 13.00 WAVE NUMBERS FOOK C0_5_ H20" RADIANCE IPRADIANCE ANGLE MIXTRATIO DELU PRESSURE TENP. W/SQ CM SR GM/SQ CM GM/SQ CM 4/30 CM FADIANCE RADIANCE IRPADIANCE TEMP. (NORMAL) W/SQ CM SR W/SQ CM .0342598 .0000952 28.4 .0000995 .0342732 20.2 .0006958 .0342866 20.4 .0003951 .3343000 20.6 .0000954 .0343135 20.6 0. 0 000 957 .0343270 0. 21.3 .0001970 .0343405 21.2 G. T.014354û 160000974 Ğ., 21.4 .0006977 .0343676 21.5 .0001980 .0043812 21.8 .6800983 .0343948 22.6 C. .0344084 22.2 · · . 8 56 0 98 9 .0044221 22.4 T. 0 00 (99 2) **1**8844358 22.6 .0000995 ..9344495 22.8 û. Ti cu i 998 .0144632 23.0 G. .0061301 .0344770 C . 23.2 .0051504 .1,449,8 23.4 ₹. .0001497 .JJ45046 23.6 9. .0061016 .0045184 23.5 ι. 300 .0001613 .0345323 24.6 .0001316 .0.45462 24.2 ٥. .0001020 .0045601 24.4 0. .0001123 .0345748 24.6 Ü. .0GE1025 .J.4538ú 24.3 .0001029 .0046020 25.0 . 6061832 .0346160 25.2 û. .0001635 25.4 .0346300 .0601038 .CJ45441 25.5 0. .0001042 .0345582 25.8 .9346723 .0061045 26.1 Ş., . G GC1 C48 13345864 26.2 .0001951 .0347636 26.4 .0001054 .0147148 26.6 .6061657 .0047290 25.8 .0001351 .0347432 27.0 Û. .0001064 .0347575 27.2 0. 10547718 .0001367 27.4 .0001670 .0347861 27.6 .6348004 .0001073 C. 27.8 .0001077 .0348148 28.5 0. .0001080 .0048292 28.2 ۰ تا .0001093 .0643436 28.4 С. .00:1086 .0148583 28.6 .0011089 .0043725 - G 34 3875 .3043015 •0.4316J .0049386 10743452 .0001193 .6081195 .00.1139 .0001102 .0001105 J. Ţ. Э. J. ů. 28.3 29.3 29.2 69.4 29.6 29.8 Table Z JALCULALED, . STAT DATE MMZ.. WAVE LENGTH REGION FROM 9.25 TO 11.90 MICRONS WITH FILTER = BELICKA + DET WAVE NUMBERS FROM 840.00 TO 1080.00 BY 10.00 BB CALIB RADIANT POWER FOR TTAYERS PRESSURE TEMP. MIX RATIO DELU IRRADIANCE ANGLE RADIANCE CO 2 H20 W/SQ CM SR GM/SQ CM W/SQ CM GM/SQ CM TEMP. IRRADIANCE PADIANCE RADIANCE (NOPMAL) W/SQ CM W/SQ CM SR .3306229 . 6 00 6 70 .0356252 .0030673 0. .0356275 .0633675 С. ·0006299 .0003678 . 8 C. .0006322 .0000680 1.5 ζ. · CJL 5345 .0011683 .0005359 1.2 6. .0000685 1.4 t . .0006392 .0000588 1.6 .0083598 . Oūlo416 û. 1.8 C . - 6 Ju 644 b .0000693 2.0 0. .0006463 .0033695 2.2 0. .0006487 .0000658 2.4 û. .0006511 .0000730 2.6 **.**0306535 .0000703 2.8 0. ·0305558 .0690706 3.0 ์ (-0006582 **.**0000708 3.2 ε. .0006696 .0000711 3.4 0. .0305630 .0025713 3.6 Ĺ. .U.L6654 .00Ju716 3.8 .0006679 .0000719 4. 5 ε. .0386703 .0000721 4.2 C. **.**0006727 -0000724 .33.6751 4.4 .0011726 4.6 · Lui 6776 .0000729 Ų. 4.8 .0006800 .0000732 5.0 Û. .0006824 .0000734 5.2 5 . .0306849 -0000737 5.4 G. .0006874 .0000739 5.6 0. ·0006898 .0000742 5.0 .0006923 .600.745 6.0 .0006948 .0000747 6.2 .0365972 .0 001750 5.4 C. .0306997 .0000753 6.6 œ. .0307622 .0000755 6.8 0. .0387047 .0000758 7.0 .0007372 .0000761 O. 7.2 .0307097 .8630754 7.4 .0007122 .0000755 7.6 Ū. .0007147 .0000769 7.8 ΰ. .0007173 .0006772 8.0 0. .03u7198 . 5 636774 8.2 C. .0167223 .0303777 8.4 0. .3357249 .0000780 8.6 ú. .0367274 .0001733 8.9 .0307299 .00003785 ٥. .0007325 .0000788 9.2 C. .0307351 .0000791 9.4 0. .0357376 .0000794 9.6 0. .3307402 .0003796 9.8 .0000799 ---UJL7428 15.0 0. .0008116 .66600e73 .0008143 .0000875 15.2 C. 15.4 0. .5069171 .0001879 15.6 0. .0003195 .0000382 .0000885 15.8 .û.u8225 C. 16.0 G. .0008253 .00000638 16.2 €. .00038280 .60000891 16.4 0. .0000394 .0003338 15.6 .0009335 .2636897 G. 16.8 ΰ. .0008363 .6003900 :7.0 .00.8391 . 6 66 6 93 3 C. 17.2 0. 0005419 .0000935 17.4 Э.3446 .0000.919 17.6 .0008474 .036.912 S. .0008502 .3 600 915 17.8 C. .0308530 .0000918 18.0 ŵ. 18.2 .0023558 .00005921 18.4 .⊍304586 .0000024 18.6 €. .0008614 • G G G G 927 18.8 C. .0308643 ..000930 •8 Ju 3671 .00000933 19.0 t. .3333699 .0003727 .0008756 .0308784 . 0 600 935 .0000939 .0000942 .0000945 19.2 19.4 19.6 19.8 0. ũ. ٥. C. lable 2 STATIC DATE. LCU D. Pi WAVE LENGTH PEGION FROM 9.25 10 11.90 MICRONS WITH FILTER = BELICKA + DET WAVE NUMBERS FOOT 840.00 10 1030.00 BY 10.00 BB CALIB RADIANT POWER FOR T LAYERS PHESSURE TEMP. MIX RATIO DELU TRRADIANCE ANGLE RADIANCE CO Z H20 WYSQ CM W/SQ CM SR GM/SQ CM GM/SQ CM TEMP. IRPADIANCE EADIANCE RADIANCE W/SQ CM W/SC OM SR (NORMAL) 26.6 .0368813 .0000948 20.2 ٥. .0008841 .00003951 20.4 0. .0003870 .060.954 20.6 .01LA899 .4000957 20.8 .030A928 .00003950 21.1 TJ554956 Tabaca 9541 21.2 е. .0003945 .00003987 21.4 îû. .0800976 .2369014 21.6 .3567643 5050973 21.8 ٦O. .0003372 · J 000 575 22.0 û. .00003101 .8000979 22.2 Ĉ. T0.09130 .0036982 22.4 G. .6JUB159 .0330985 22.6 ٠. • 890 at 59 .0000 989 22.8 .0J29218 · 0 000 902 73.0 î. .035 9247 . 0 000 995 23.2 · J JU9277 . UCIC 938 23.4 τ. ~3553356 . 0 0011101 23.6 **.**0369336 .3601334 9. ٠. نا 23.8 ·03t 9365 0001008 24.0 0. .0309395 . u GC 1 . 1 1 24.2 Έ. .0003425 .0001014 24.4 .300,7454 ٤. .0001317 24.6 -, ---u . .0303484 .6601625 · 24.8 .3039514 .0 C51 J24 ű. د5.4 Ë. .0309544 .. 0011127 25.2 .0303574 .0001030 25.4 .0359604 .0001033 U . 25.6 .0303634 .0001335 25.8 ์ไม่มิสลิกษ . . 0 . 1 . 4 6 25.5 [. .03.3694 +0001043 25.2 i. . €939724 .0001045 26.4 .0303755 -CC-1049 26.6 .CJC9735 .6001353 26.8 .JJU3815 • u 05 1 5 5 5 27.5 -0001059 ĺ. . 00003346 27.2 .3009876 27.4 Û. .0349907 · C Jul J 55 27.6 .0009937 ι. .0001169 27.8 .JJL3968 ů. .0631372 23.5 Ů.
.0333939 .0001075 28.2 .001:030 . 0 uù1579 28.4 ů. -0313060 .0301082 28.6 .0017591 .. 0011685 28.8 .6613122 .0661589 ்29. ∪ .0010153 .0001032 29.2 5. .0u16184 .0161.95 29.4 .0010215 3. 29.6 ů. .0010246 .0001132 29.7 .0311278 .0001136 # Modeling Algorithms for the Weathering of Oil in the Marine Environment ## Quarterly Report RU #499 1 February - 1 July 1977 Ъу James S. Mattson Center for Experiment Design and Data Analysis Environmental Data Service National Oceanic and Atmospheric Administration 3300 Whitehaven Street, N. W. Washington, D. C. 20235 (202) 634-7379 Date Submitted July 1, 1977 # I. Highlights of Quarter's Accomplishments Drafts of the first two topical reports called for under RU #499, entitled "An Empirical Approach to the Interaction of Oil with Suspended Sediments" and "Spreading, Fractionation, and Evaporation of Surface Slicks," were finished. Both reports were submitted to Dr. Jerry Galt, P.I. of RU #140, and to our consultant in the field, Dr. R. L. Kolpack of the University of Southern California, for review. As a major "customer" of data obtained by the NOAA-USCG Spilled 0il Research Team, along with RU #140, investigators from RU #499 participated in the Argo Merchant oil spill response, including co-editing the Preliminary Scientific Report released in April 1977, the Bouchard-65 oil spill in frozen Buzzard's Bay, Massachusetts, and the Ethel-H oil spill in the Hudson River in early March 1977. RU #499 investigators also spent two weeks in May and June with other Spilled 0il Research Team members in Santa Barbara, California, testing methods for rapid deployment of subsurface water sampling gear and in-the-field extraction and storage of such samples and training an additional seven SOR Team members. ## II. Task Objectives RU #499 has no regular milestones as such, but is required to submit five topical reports on related oil spill "weathering" processes during its first twelve months. During the first five months, covered by this report, drafts of the first two of the five topical reports have been finished, and they are currently under review by our "client," RU #140, headed by Dr. Jerry Galt, and by an outside expert, Dr. Ronald L. Kolpack of the University of Southern California. The two major processes that have been addressed in these reports are a) interactions with suspended sediments, and b) evaporation and other chemical fractionation processes at the surface. ## III. Field or Laboratory Activities RU #499 personnel have participated in and/or directed field activities of the Spilled Oil Research Team, including: 12/15/76 - 1/9/77. The Argo Merchant oil spill. 1/31/77 - 2/10/77. The <u>Bouchard-65</u> oil spill in sea ice, Buzzard's Bay, Massachusetts. 2/5/77 - 2/7/77. The <u>Ethel-H</u> oil spill in freshwater ice, Hudson River, New York. 4/29/77 - 5/1/77. A mystery spill, Marathon, Florida. 5/15/77 - 5/19/77. Field experimentation on subsurface sampling under natural oil slicks, Santa Barbara Channel, California. 6/4/77 - 6/11/77. Training of seven new SOR Team personnel, using natural oil slicks, Santa Barbara Channel, California. ## IV. Results Data from the Argo Merchant experience were reported in a preliminary state in "The Argo Merchant Oil Spill. A Preliminary Scientific Report," Ed. by P. L. Grose and J. S. Mattson, U. S. Gov't. Printing Office, Washington, D. C., March 1977. The data collected at the Bouchard-65 and Ethel-H oil spills have been turned over to a MESA contractor, Arctec, Inc., and their report is not yet available. No data were obtained at the Florida spill. Data obtained on 5/15-19/77, using sterile bag samplers, and extracting water samples in the field, were very encouraging for SOR Team purposes. Total hydrocarbon levels 1 m beneath natural seepage slicks (~ 1 cm thick) ranged from 60 to 85 parts per billion (ppb), while "background" values obtained several miles to the east of the slicks ranged from 15 to 25 ppb. Differences between pairs of simultaneously-taken samples were about 2ppb, with a maximum of 3ppb difference. Differences between replicate samples from the same bag were immeasurable except in one instance, where the difference between replicates was 2ppb. The sampling techniques employed in the Santa Barbara Channel experiments have been incorporated into the standard operating plans for the SOR Team at future accidental spills. # V. Preliminary Interpretation of Results These will not be presented at this time, as far as the weathering algorithms are concerned. The first modeling tests will not take place until August, after some time has been allowed for review of the proposed algorithms. ### VI. Auxiliary Material Oral presentations have been made on the Argo Merchant experience, as follows: - 2/23/77. James S. Mattson addressed the OCS Advisory Board in Atlanta, Georgia. - 3/28/77. James S. Mattson addressed the scientific community at Woods Hole, Massachusetts in an evening seminar, attended by about 250-300 people. - 4/29/77. Elaine I. Chan and Peter L. Grose addressed the scientific community at a half-day seminar at Narragansett, Rhode Island, sponsored by the Environmental Protection Agency. # VII. Problems/Changes Recommended The late approval of RU #499 (February 1, 1977) has extended the completion date of the first year's work (as initially proposed) to February 1, 1978. # VIII. Estimate of Funds Expended Original Funds Allocated \$75,000 Expended to July 1, 1977 \$30,000 Anticipated Expenditures by September 30, 1977 \$45,900 # QUARTERLY REPORT Contract: 03-5-022-67T011 Research Unit: 519 Reporting Period: 1 April-30 June 1977 Number of Pages: 2 COASTAL METEOROLOGY OF THE ALASKAN ARCTIC COAST Frank Carsey Research Scientist Polar Research Center Division of Marine Resources University of Washington Seattle, Washington 98195 30 June 1977 # I. Task Objectives The objectives of this research are to measure local wind and pressure fields in the Prudhoe Bay area and to examine the data so taken for local effects due to orography and thermal differences, to prepare a pressure analysis for comparison with NWS regional analysis and to evaluate data sources for secondary source archived data. The underlying purpose for this work is to model from archived data nearshore winds and stability for estimating the air stress forcing on surface currents and sea ice. ## II. Field and Laboratory Activities A. Field Trip Schedule A field trip was taken from 26 April to 2 June 1976. B. Scientific Party The scientific party was composed of F. D. Carsey and R. Andersen. Carsey spent one week and Andersen spent the entire period at the Prudhoe Bay OCS billet. - C. Methods, and D. Sample Localities - 1. Atmosphere pressure and instrument space temperature were recorded at Prudhoe Bay, Happy Valley, Umiat, Narwhal Island and Oliktuk, Alaska for the entire period except for a few days lost to helicopter schedule difficulties. Atmospheric pressure was measured to 1/4 millibar with Weather Measure B211 microbarographs. - Winds and temperature at 10 m height were measured at Tolaktuvut Point at the mouth of the Colville, Cottle Island in Simpson Lagoon and Brownlow Point in the Beaufort Sea with MRI model 701 weather stations. A Climet weather station was installed on Narwhal Island. - E. Data Collected, 8 August 2 September 1976 - 1. Atmospheric pressure, 5 sites - 2. Wind speed and direction at 10 meters, 4 sites # III. Results The data is now being reduced. IV. Preliminary Interpretation of Results None V. Problems Encountered and Recommended Changes NOAA helicopter support was exceptionally valuable. Quarterly Report June 30, 1977 Page two # VI. Estimate of Funds Expended As of 1 July 1977, expenditures under this contract will come to \$13,400 out of an allocation of \$25,647. # QUARTERLY REPORT CONTRACT 03-5-022-56 RESEARCH UNIT #526-77 REPORTING PERIOD 1 March 1977 to 30 June 1977 Characterization of the Nearshore Hydrodynamics of an Arctic Barrier Island-Lagoon System PRINCIPAL INVESTIGATOR J. B. Matthews Geophysical Institute University of Alaska Fairbanks, Alaska 99701 ## I. Task Objectives - A. To review estuarine lagoon hydrodynamics - B. Summarize knowledge of Simpson Lagoon - C. Produce numerical predictions of Simpson Lagoon circulation under various environmental conditions - D. Plan and execute a field program to verify the numerical model computations - E. Produce circulation, flow, flushing and water quality estimates for use by the ecological modeling group ## II. Field and Laboratory Activities Dr. Matthews and Dr. Murgall attended two OCSEAP-sponsored modeling workshops at the University of British Columbia, Vancouver B.C. as part of the planning and formulation of research strategy for this project. Our contribution to the ecological model, preliminary current estimates, appreciably modified the research plan for the first field season. Dr. Matthews attended the RV Alumiak Cruise-planning meeting in Seattle and reserved time for setting and retrieving instruments and taking oceanographic stations offshore of the Barrier Island of Simpson Lagoon. The first cruise of 5 days will be at the beginning of August or immediately after ice recession and the second cruise will be at the end of August. Plans have been coordinated with Dr. Murgall of Texas A & M, Dr. Paskansky of ONR, Dr. Carsey of University of Washington and Dr. Jayaweera at the University of Alaska as well as with the LGL research personnel a small protable deck-readout temperature and salinity sensor has been borrowed and three current meters and a tide gauge have been ordered for use in the field in summer 1977. Some program conversion and programming associated with the numerical modeling effort have been initiated. However funding was received too late to complete the proposed model runs before the field season. Preparation for the field season have been initiated. ### III. Results No results are availabe at this time IV. Preliminary Interpretation of Results
Not applicable ## V. Problems Encountered/Recommended Changes Lateness in funding the project has caused the actual activities to be re-sequenced from that originally proposed. Great efforts have been made to conduct the field program but difficulty in obtaining equipment on time has been encountered. The modeling effort is not as far advanced as had been anticipated. It may be necessary to request a carry-over of funds to the next fiscal year starting 1 October 1977 although the need for this is not confirmed at this date. ## QUARTERLY REPORT Contract 03-5-022-56 Research Unit #529-77 Reporting Period 5/1/77-6/30/77 Number of Pages: 4 # SEDIMENT CHARACTERISTICS, STABILITY, AND ORIGIN OF THE BARRIER ISLAND-LAGOON COMPLEX, NORTH ARCTIC ALASKA A. S. Naidu - Principal Investigator Assistant Professor in Marine Science Institute of Marine Science University of Alaska Fairbanks, Alaska 99701 June 30, 1977 ## I. Task Objectives - A. To gather basic data on the grain size distributions of sediments of the barrier islands, coastal beaches and the Simpson Lagoon along the continental margin of the north arctic Alaska. - B. To gather baseline data on the concentrations of organic carbon, phosphorus, nitrogen and a few biologically "critical" heavy metals (e.g., Cu, Ni and Zn). - C. To define the long-term alongshore sediment transport directions. - D. To define the mineral characteristics, source, migratory pathways, and depositional sites of clay and sand-size sediment particles. - E. To assess the origin, development and stability of the barrier islands over the last three decades, through geomorphological and geological studies. ## II. Field and Laboratory Activities A. Field trip schedules. Dr. Naidu has participated in two OCSEAP sponsored modelling workshops held at the University of British Columbia, Vancouver, Canada during the last one year as a precurser to the development of this project. These workshops were held in order to ensure the proper coordination and interfacing of the efforts of all principal investigators that most likely would be involved in the OCS barrier island-lagoon ecosystem study in the Alaskan arctic. During the second meeting, the geological field trip schedules and sediment sampling plans were presented by Dr. Naidu. It was decided that during the first two weeks of August 1977, ten days will be spent in collecting bottom sediment samples from the West Simpson Lagoon, extending from the Oliktok Point to the Milne Point. According to the current plans, five samples will be obtained along six equally-spaced longitudinal traverses extending from the mainland coast to the Jones Islands. To avoid any statistical bias a few random samples inbetween the traverses will also be collected. In order to test sampling precision, it has been planned to retrieve at least five replicate samples from a few sample locations. During the third week of August, 1977, sediment samples will be collected from the two chains of barrier islands, extending from the Oliktok Point to Prudhoe Bay. Depending on the size of the islands, between 1 to 5 surficial sediment samples will be hand picked up from each of the islands. Presumably this sampling will be accomplished in 4 days, and would involve going from one island to another using float planes or a helicopter. During the last 3 days of the third week of August, 1977, it has been planned to collect fluvial sediment samples from the channel bottoms of the Canning and Putuligayuk Rivers. These samples will be collected at 10-mile intervals along the main channels and will extend up to 50 miles upstream from the river mouths. Again this sampling will be accomplished using either a fixed wing float plane or a helicopter. The logistic support for this field program will be provided by the LGL Co., Inc. (Texas), and the OCS Arctic Project Office. Plans have been tentatively called for to emplace an array of graduated stakes on the seaward beach of the Pingok Island, to quantify the erosional-depositional pattern along that beach stretch for six weeks. The beach levels on this island will be monitored at least once in every week. Steps have already been taken to obtain splits of vibro-core samples from Dr. Peter W. Barnes of the U.S. Geological Survey. Several core samples have been collected by Dr. Barnes from the continental margin of the North Slope of Alaska, and these samples should be suitable for our stratigraphic studies. B. Laboratory activities. No analysis has been conducted as yet, because funding of this study was formally approved only a week ago. However, a few laboratory and field supplies have either been ordered or procured during the last week. C. Methods Not applicable at this point of time. III. Results None obtained as yet. IV. Preliminary Interpretation of Results Not applicable at this point of time. V. Problems Encountered/Recommended Changes Because of the late funding of this program, it could be difficult to find a suitable graduate student to work on this project by the time the summer field season commences. The project has been funded effective from the 1st of May, 1977. However, no formal approval of the funding came through until June 2nd, 1977. Obviously, this would incur in some extension of the project beyond September 1977. With the exception of the above, no specific problems are anticipated at this point of time to accomplish the proposal objectives. ## Quarterly Report Contract #03-5-022-56 Research Unit #530 Task Order #34 Reporting Period 5/1 /77 - 6/30/77 THE ENVIRONMENTAL GEOLOGY AND GEOMORPHOLOGY OF THE BARRIER ISLAND - LAGOON SYSTEM ALONG THE BEAUFORT SEA COASTAL PLAIN FROM PRUDHOE BAY TO THE COVILLE RIVER Dr. P. J. Cannon University of Alaska Fairbanks, Alaska 99701 ## QUARTERLY REPORT FOR QUARTER ENDING JUNE 30, 1977 Project Title: The Environmental Geology and Geomorphology of the Barrier Island - Lagoon System Along the Beaufort Sea Coastal Plain from Prudhoe Bay to the Coville River Principal Investigator: Dr. P. Jan Cannon #### I. Task Objectives - 1. To determine the origin and evolution (geomorphic history) of the barrier islands and the coastal lagoons. - 2. To determine the source(s) of the gravel size materials that make up the barrier islands. - 3. To determine the stability of the barrier island lagoon system in respect to natural processes and man induced effects. - 4. To determine the magnitude of the geomorphological relationships between the barrier island lagoon system and the landforms of the coastal plane such as the various streams, dune fields, ground patterns, thermokarst features, deltas, pingos, lugs, and lakes. - 5. To construct a spatial and temporal model of the environmental geology of the region. #### II. Activities - 1. Obtained pre-break-up radar imagery of field area. - 2. Performed search for existing remote sensing data of field area. - 3. Made low-altitude reconnaissance flight of study area and adjacent coastal areas to observe the effects of break-up on the barrier islands. #### III. Results Gravel is brought from the near shore sea bottom and added to the islands by the effects of ice movement during break-up. The amount of gravel appears small but the process occurs along all of the seaward side of the islands. The amount of debris brought down and deposited on the ice at the mouth of the riversis considerably greater than heretofore suspected. # OCSEAP Research Unit #531 Oceanographic Processes in a Beaufort Sea Barrier Island-Lagoon System: Numerical Modeling and Current Measurements > Progress Report #1 20 July 1977 Principal Investigator: J. C. H. Mungall Department of Oceanography Texas A&M University College Station, Texas 77843 (713) 845-1443 ## Introduction The first month of the 1977 funding period has primarily been spent in ordering equipment for use during the August 1977 field season, in assembling needed parts, and in testing equipment. Numerical modeling experiments are scheduled to start in August. Due to the late start of the project, I have been fortunate in obtaining the modeling services of Dr. R. E. Whitaker for a month; this will speed up the production of modeling results, although it may not be possible to have the predictions for Simpson Lagoon ready before the end of the August 1977 field season. ## August 1977 Field Season Preparations - a) A Beckman model RS5-3 in situ salinometer (modified to read down to -2°C) and associated conductivity cell has been ordered. Due to the 6-week delivery date, the salinometer is scheduled to reach Texas A&M a mere 5 days before we leave for Alaska. If necessary, we may have to pick up the salinometer from Cedar Grove, New Jersey. - b) Three ducted current meters have been ordered from General Oceanics, Miami. The current meters, which have been designed in cooperation with Dr. Shale Niskin of General Oceanics, are of a novel design aimed at obtaining current information which will be as free from wave-induced current rectification as possible. A mechanical system is used in which the clockwise and counter-clockwise rotation of two propellers are counted -- the duct containing the propellers being stabilized so that the duct will not rotate through 180° with the passage of a wave as is often the case when using a fin. Unlike the other common alternative, a vector averaging current meter, the meters are relatively inexpensive. The meters will be picked up in Miami. - c) A tripod for supporting the current meter string in shallow water thus reducing contamination due to vertical movement has been constructed and tested in a lake. Considerable care will have to be exercised when deploying and recovering the tripod in choppy, cold water. The associated hardware (rope, pulleys, etc.) has been purchased. - d) Miscellaneous equipment (poles for flags, navigation instruments, safety clothes,etc.) have been procured and prepared for shipping. - e) Two deck readout current meters have been checked and crated ready for shipment to
Alaska. One will be shipped to Dr. J. B. Matthews for use at the start of his field season. - f) A composite chart of Simpson Lagoon is being prepared from the two charts of the region. Spare blue-line copies will be made available upon our arrival at Simpson Lagoon. # 1977 Field Season Dates Dr. Roy Hann (responsible for logistics) will be at Simpson Lagoon between the approximate dates of 4th August and 10th August, while C. Mungall and D. Horne will be present between the dates of 7th August and 25th August. A familiarization flight is planned for 8th August, during which hand-held aerial photos will be taken for planning and other purposes, probable entrances at the eastern end of the lagoon will be identified, and the LGL Pingok Island Camp will be visited so as to optimize hydrographic and biological measurement plans. Daily visits to the eastern end of the Lagoon will commence on the 9th of August. Three flights for the purpose of taking samples along the axis of Simpson Lagoon are provisionally planned for the dates of August 12th, 18th, and 24th. We hope that a biologist will be present. # Numerical Modeling Numerical 3-dimensional modeling will be started at the beginning of August under the control of Dr. R. E. Whitaker. He will concentrate on the interior of Simpson Lagoon. J. C. H. Mungall will apply a second 3-dimensional model to the region surrounding and including Simpson Lagoon upon his return from Alaska. > Christian Mungall 20 July 1977 | , | | | | |---|--|--|--| # HAZARDS # HAZARDS | Research
<u>Unit</u> | Proposer | <u>Title</u> | <u>Page</u> | |-------------------------|---|--|-------------| | 59 | M. O. Hayes
U. of South
Carolina | Coastal Morphology of the Northern Gulf of
Alaska | 329 | | 87 | S. Martin
U. of Wash.
Dept. of Ocean. | The Interaction of Oil with Sea Ice in the Beaufort Sea | 407 | | 88 | A. Kovacs
W. F. Weeks
CRREL | Dynamics of Near Shore Ice | 411 | | 98 | N. Untersteiner
U. of Wash. | Dynamics of Near Shore Ice | 425 | | 99 | P. J. Cannon
U. of Alaska
Dept. of Geol. | The Environmental Geology and Geomorphology of
the Gulf of Alaska Coastal Plain and the
Coastal Zone of Kotzebue Sound | 428 | | 105 | P. V. Sellman
CRREL | Delineation and Engineering Characteristics of
Permafrost Beneath the Beaufort Sea | 432 | | 204 | D. M. Hopkins
USGS | Off Shore Permafrost Studies, Beaufort Sea | 441 | | 205 | P. Barnes
et al.
USGS | Geologic Processes and Hazards of the Beaufort
Sea Shelf and Coastal Regions | 449 | | 206 | J. V. Gardner
T. L. Vallier
USGS | Areas of Faulting and Unstable Sediments in the
St. George Basin Region, Southern Bering Sea | 570 | | 210 | J. C. Lahr
R. A. Page
USGS | Earthquake Activity and Ground Shaking in and
Along the Eastern Gulf of Alaska | 589 | | 212 | P. R. Carlson
B. F. Molnia
USGS | Faulting, Instability, Erosion and Deposition of
Shelf Sediments, Eastern Gulf of Alaska | 596 | | 251 | H. Pulpan
J. Kienle
U. of Alaska | Seismic and Volcanic Risk Studies - Western Gulf
of Alaska | 614 | | 253 | T. E. Osterkamp
W. D. Harrison
U. of Alaska
Geophys. Inst. | Off Shore Permafrost: Probing, Thermal Regime, and Data Analysis | 637 | # HAZARDS | Research
Unit | Proposer | <u>Title</u> | Page | |------------------|--|--|------| | 271 | J. C. Rogers
J. L. Morack
U. of Alaska | Beaufort Seacoast Permafrost Studies | 646 | | 290 | C. M. Hoskin
U. of Alaska | Benthos - Sedimentary Substrate Interactions | 649 | | 327 | M. A. Hampton
A. H. Bouma
USGS | Shallow Faulting, Bottom Instability, and Movement of Sediments in Lower Cook Inlet and Western Gulf of Alaska | 650 | | 429 | H. Nelson
D. Thor
USGS | Faulting, Sediment, Instability, Erosion and
Deposition Hazards of Norton Basin Sea Floor | 652 | | 430 | D. A. Cacchione
D. E. Drake
USGS | Bottom and Near-Bottom Sediment Dynamics in
Norton Basin | 654 | | 483 | N. N. Biswas
L. Gedney
U. of Alaska
Geophys. Inst. | Evaluation of Earthquake Activity Around
Norton and Kotzebue Sounds | 664 | | 516 | M. Vigdorchik
U. of Colo.
Inst. of Arctic
& Apline Res. | A Geographic Based Information Management
System for Permafrost in the Beaufort and
Chukchi Seas | 666 | #### PROGRESS REPORT July 1, 1977 Research Unit - 59 Coastal Morphology of the Northern Gulf of Alaska Miles O. Hayes - Principal Investigator Christopher H. Ruby - Co-investigator Coastal Research Division University of South Carolina Columbia, S. C. 29208 Contract No. 03-5-022-82 #### Task Objectives The major emphasis of this project falls under Task D-Y, which is to: evaluate present rates of change in coastal morphology, with particular emphasis on rates and patterns of man-induced changes and locate areas where coastal morphology is likely to be changed by man's activities; and evaluate the effect of these changes, if any. The relative susceptibility of different coastal areas will be evaluated. I. Summary of objectives, conclusions and implications with respect to OCS oil and gas development. This report details the coastal morphology of the Northern Gulf of Alaska. Recent shoreline changes, trends and hazards are discussed. Sediment types and transport directions are given for each subdivision within the coastal classification. Shoreline development of the different subdivisions is also detailed. #### II. Introduction This report will be expanded and included in a Final Report which will also include section, on Sedimentology and Oil Spill Vulnerability. The Final Report will be mailed before the end of this quarter. #### III. Current state of knowledge Discussed in the body of the report. #### IV. Study area Located in Figure 1 of the report. #### V. Results The results are discussed very briefly in a Conclusions section at the beginning of the report, and in greater detail in the body. #### VI. Needs for further study This will be discussed with the submission of our Final Report. #### X. Summary of the 1st quarter operation All emphasis has been placed on report writing and preparing for this summer's field work on the Beaufort Sea coast. #### CONCLUSIONS With regard to shoreline development for OCS related work, the following has been determined: - 1) The entire study area, from Hinchinbrook Island to Dry Bay, is subject to severe storm generated waves and surges where the shoreline faces the open Gulf. The only protected areas are the fjords, Icy Bay and Yakutat Bay, and the western shore of Kayak Island, and the eastern shore of Wingham Island. Therefore, any development of these exposed shorelines will necessitate the determination of reasonable set-back lines with special attention to storm surge flooding. - 2) The spits within the study area show dramatic historical changes, both erosional and depositional. Spit breaches by confined rivers behind them are common and unpredictable. Many of the spits are completely overwashed during storms and subject to storm surge flood or storm surge ebb breaching. - 3) Erosion at the mouth of Icy Bay and downdrift (west) to Cape Yakataga is extreme (37 m/y maximum at Point Riou). This area should be avoided. - 4) The shoreline immediately downdrift (west) of Cape Yakataga is relatively stable due to the protection and sheltering of the Cape to SE storm waves. - 5) The inner eastern shoreline of Yakutat Bay has the most stable beaches within the study area. These shorelines are well protected from storm wave approach from directions other than the SW. They are generally composed of mature well-sorted pure gravels. - 6) The inner eastern shoreline of Icy Bay is also protected from storm waves from directions other than the SW. Its beaches are less mature with considerably more sand. Additionally, the bay has a number of outwash streams depositing fan deltas which modify the shoreline and infill the bay. Sediment transported along Riou Spit also poses infilling problems for adjacent downdrift shorelines. In general, the Moraine Harbor and shorelines to the Kettle Hole Delta are stable and should not be severely altered unless Riou Spit progrades enough to close Riou Bay (not predicted for at least 20 years). - 7. The Yakutat Foreland beaches are mildly erosional but given adequate set-back lines, the area would be a preferred location for development. - 8. Western shorelines of both Icy Bay and Yakutat Bay are subject to relatively high wave energies should be avoided. #### INTRODUCTION The northern Gulf coast of Alaska from Dry Bay to Hinchinbrook Island is an exceptionally dynamic area. Intense tectonic activity, large waves, strong tidal currents, high and variable winds and active glaciation interact to produce one of the most rugged, geologically resplendent and variable coastlines in the world. To provide various governmental agencies with critical environmental geologic and geomorphic information to permit sensible development of this area, field studies were begun in the summer of 1975. This report presents the results of these baseline studies, as they pertain to coastal morphology. Fronting the Chugach and Elias mountains, the northern Gulf coast is manifest as a narrow coastal plain consisting primarily of glacial and fluvial deposits undergoing active modification by tectonic, aeolian and marine processes. This coastal plain varies in width from a mere ½ km in areas fronting the Robinson Mountains to as much as 40 km at the Yakutat Foreland. The primary geomorphic landforms are beach ridge plains developed downdrift of major
outwash streams, sandurs and deltas with various forms developed by outwash streams and rapidly eroding glacial margins projecting into the Gulf. Additionally, two major highly modified glacial fjords (Icy Bay and Yakutat Bay), the Copper River Delta and a number of bedrock islands add to the complexity of the study area. The numerous glaciers and their related drainage systems provide large volumes of sediment to the coastal zone. These glaciers and their outwash streams tend to be unstable even over short periods, and, to a large extent, this variability is responsible for much of the dynamics of the shoreline. Changes in glacial drainage as well as glacial retreat or advance result in rapid and dramatic shoreline responses. Numerous areas have undergone considerable deposition and/or severe erosion within the past few hundred years. The gross orientation of the coastline is controlled by the Chugach and Elias mountains, which are an extension of the Cordilleran Mountain system. A traverse across these mountains from the Alaskan interior would cross several foldbelts of successively younger and less deformed rock and terminate in mildly deformed tertiary rocks at the coast (Henry, 1970). These coastal mountains, formed in response to the subduction of the Pacific Plate along this collision type coastline (Inman and Nordstrom, 1971) are still undergoing rapid uplift. Numerous fault systems and associated frequent earthquakes result in large ground displacements. A single earthquake in 1899 uplifted the head of Yakutat Bay 47 feet. The entire coastal zone has been subject to considerable modification resulting from this rapid tectonic activity. Finally, the marine environment in the northern Gulf is extreme. Violent storms are common, especially during the fall and winter. These storms generate hurricane velocity winds with associated storm surges and wave heights. Gravel storm berms are common on gravel beaches. Storm debris lines are found in some areas many kilometers behind the normal active beachface. These marine processes (described in detail in an earlier report, Nummedal and Stephen, 1976) place a considerable limitation on any development along this stretch of coast. The end result of these conditions is 1000 km of shoreline continuously changing in response to changing process parameters. Equilibrium beach forms are rare due to the rapid alteration of these process parameters and variations in the sediment supply. Events which on other shorelines might be considered catastrophic are not unusual in this area. This variability makes the area extremely interesting, but also rather difficult to quantify accurately or to develop predictive models for future development. Any development of this area will have to consider the possibility of extreme events (earthquakes, glacial surges or retreats, river course changes, extreme storms, seismic waves, etc.). #### FIELD METHODS To accomplish the study of such a large and remote area, special methods of data collection were employed by the members of the Coastal Research Division field team. Major segments of geomorphologically similar shoreline were first studied between 1969 and 1971, under the sponsorship of ONR (Contract #N00014-67-0230-0001), at which time, 18 zonal sites were established (Fig. 1). These sites, representative of 18 shoreline types, were studied in detail at that time. Base maps were constructed detailing bedforms and bedform orientations, sediment size, shape and sorting characteristics. Samples were also selected for compositional analysis. During the summer of 1975, these zonals were revisited, and comparative studies were made. Permanent profile sites were also set up during the 1969-1971 field seasons (Fig. 1). These profiles were measured in various representative environments to permit the delineation of depositional and erosional trends over a period of years. During the 1975 field season, the profile sites were relocated and measured to assess changes over that 6 year time period. They were also remeasured at the conclusion of the 1975 field season to determine shorter term variability. Fig. 1 Study area. Note distribution of Holocene coastal plain (max. width = 40 km). Wind rose for Yakutat shows dominance of easterly winds. In order to assess regional trends in beach morphology and transitional beach forms from one environment to another, profiles were measured in 1975 at a 3 km interval on the shoreline between Dry Bay and Cape Yakataga. The location of these profiles is given in Figure 2. These profile sites consisted of a line transit of the active beachface, sketches of the beachface and back beach areas, and a tape recorded description of the site. In addition, sediment samples were collected. Fig. 2 Locations of DBC profile sites measured during the summer of 1975. These sediment samples were collected at each of the 99 profile sites between Dry Bay and Cape Yakataga as well as the permanent profile sites. The samples were taken using a 15 cm coring tube employing the method illustrated in Figure 3. Where the sediments were too coarse to acquire a representative sample with the tube, photographs were taken using a standard scale. Selected samples were also taken in areas of special interest. In total, 401 core samples and 152 photo samples of the gravels were collected. All samples were analyzed at the sedimentology laboratory at the University of South Carolina. The results of the grain size analysis have been synthesized by computer to yield mean grain size, standard deviation, skewness parameters, kurtosis and graphs of grain size vs. weight percent and grain size vs. cu- mulative weight percent. The photo samples were visually analyzed for gravel sorting, relative grain size, gravel to sand ratio and roundness. The results of this synthesis were presented in our April 1977 Annual Report. ## BEACH ZONE SAMPLING PLAN # SPRING HIGH TIDE SWASH LINE A-D SAMPLING LOCATIONS Fig. 3 Sediment sampling plan employed at profile sites. Samples A, B and C are taken on the active beachface. A dune sample (D) is taken on backbeach dunes, if present. Approximately 10,000 ground and aerial photos were taken during the study. These photos have been compared to photos taken during the 1969-1971 studies and also compared with vertical photos from various sources. These comparative studies have permitted a more accurate delineation of erosional-depositional trends in the area. Finally, process parameters were measured at a number of permanent and non-permanent stations in the Malaspina Foreland area. The analysis of these data in conjunction with a synthesis of weather data and SSMO data permitted the detailed discussion of the marine processes in the Nummedal and Stephen (1976) report. #### COASTAL MORPHOLOGY The primary purpose of this study has been to provide descriptive baseline data regarding the coastal morphology of the Gulf of Alaska shorelines. The division of the study area into the different geomorphic units is based on analysis of changes in the permanent profiles and zonal sites established during the 1969-1970 field seasons (Fig. 1) and on the more detailed profile network, process zonals and sampling done during the summer of 1975 (Fig. 2). In addition, aerial photographs from various sources have been used. In previous progress reports, and in a number of publications (Hayes et al. 1976; Stephen et al. 1976), a geomorphic classification was devised for the 300 km stretch of coastline between Cape Yakataga and Dry Bay. The classification which follows has been expanded to include the entire shoreline between Cape Hinchinbrook on Hinchinbrook Island and Dry Bay. This shoreline comprises 896 kms. Furthermore, the classification scheme described previously has been revised into a less complex form. The coastal zone has been classified into three primary classes: erosional, neutral and depositional. These major classes are then subdivided into subclasses based on finer distinctions of morphology, recent history, sedimentology and active process parameters. Of the total 896 kms of shoreline within the study area, neutral shorelines were the most common, representing 58% of that total. Erosional and depositional types were a distant second and third with 23% and 19% respectively. This classification is based on recent sedimentologic trends and geomorphic evidence and cannot consider such phenomenon as tectonic movements or long-term changes in glacial drainage, glacial retreat or surge. These processes are all common to the study area and are discussed as they apply; however, we are not in a position to predict future events with regard to these phenomena. • For the purposes of this classification, neutral shorelines are defined as those shores not subject to recent horizontal or vertical changes in a single direction (i.e. progradation or erosion). In some cases, changes of tens of meters take place on a random or cyclical basis as a response to random or seasonal changes in process parameters, without resulting in long term changes. Therefore, a classification of neutral does <u>not</u> necessitate stability. For example, most of the spits within the study area have been classified as neutral; however, dramatic short term changes can severely alter them. Erosional shorelines are those sections of the coast undergoing continuous retreat. These trends are due to natural processes and are expected to continue. Retreat rates can be extremely rapid (estimated retreat rate for Point Riou is 37 m/y; Molnia, 1977). Depositional shorelines are those which have shown a recent continuous positive horizontal and/or vertical growth. These areas are expected to continue to prograde unless their sediment sources are altered. The five most abundant subclasses, representing 79% of the shoreline, are listed below in order of decreasing abundance. A complete inventory is given in Table 1.* | Coastal Subclass | | Total km | % of total |
------------------|---|--------------|------------------| | 1. | Neutral shorelines of sand and gravel, downdrift of glacial outwash streams, eroding glacial deposits and, rarely, bedrock. Classification - NEUTRAL | 225 | 25 | | 2. | Neutral embayment beaches of sand and gravel, and pure gravel. Classification - NEUTRAL | 172.5 | 19 | | 3a. | Depositional barrier islands of fine sand fronting
the Copper River Delta. Classification -
DEPOSITIONAL | 110 | 12 | | 3ъ. | Low erosional scarps in glacial deposits, bedrock
or older beach deposits, also sediment starved
beaches eroding by overwash. Classification -
EROSIONAL | 110 | 12 | | 4. | High to moderate erosional scarps in bedrock, often with pocket beaches and wave-cut platforms. Classification - EROSIONAL | 100
717.5 | <u>11</u>
79% | ^{*} A set of 63,360 topographic maps has been included with this report. These maps have been used as a base to display the various coastal subclasses depicted in Table 1. #### EROSIONAL SHORELINES Representing 23% of the study area, these shorelines show a dominance of erosional morphology over depositional morphology. Scarps into bedrock and unconsolidated deposits are common as are overwash terraces and fans. In some areas, the erosion has cut off gravel roads. Heavily vegetated relict beach ridges are also being severely eroded in a number of places. The erosion of these shorelines is not considered to be a short term trend. It is caused, for the most part, by an inadequate source of sediment supply and is expected to continue unless that supply is altered. Rates of erosion in the area range to a maximum of 37 m/yr at Point Riou, which has receded 1.3 km in a 32 year period (Molnia, 1977). Most rates are considerably lower, especially where scarps are in bedrock. There are two subclasses within this class: 1) lower scarps in bedrock or unconsolidated deposits, and beaches eroding by overwash (subclass A1) and 2) high to moderately high scarps in bedrock (subclass A2). Subclass Al - Low erosional scarps and beaches eroding by overwash Subclass Al contains a variety of erosional shoreline types. Low scarps in bedrock and unconsolidated deposits make up the majority of the subclass, but it also accounts for sediment starved beaches generally migrating landward by overwash. These overwash terrace shorelines are usually found to be transitional forms between erosional and neutral areas. Inadequate sediment supply is primarily responsible for their form. The shoreline downdrift (west) of Icy Bay falls into Subclass Al. In order to understand the severe erosional problems on that shoreline, it is necessary to examine the recent patterns of glacial movement in the area. A detailed description is presented by Molnia (1977). In 1794, the explorer Vancouver surveyed parts of the Gulf of Alaska. At that time, the Guyot Glacier, a lobe of the Malaspina Glacier system, projected out to sea occupying what is now Icy Bay. Just to the east of the Guyot Glacier, in the position of the present-day abandoned Yahtse River outwash, there was a large bay (Vancouver's Icy Bay). Tebenhof (1848), using data from Russian explorers between 1788 and 1807, agreed with Vancouver's Icy Bay position. This bay was infilled with glacial and alluvial deposits by 1837 (Belcher, 1843). Molnia (1977) calculated that 0.5 km³ of sediment were required to fill that bay. This infilling was accomplished in about 30 years (from 1807 - 1838). Also, in 1837 when Belcher made his observations, the Guyot Glacier had receded, opening up part of the present Icy Bay. The glacier then advanced, and by 1887, it was more than 10 km seaward of the present (1977) shoreline (Setan-Karr, 1887). This last advance is probably responsible for the submerged terminal moraine at the mouth of Icy Bay. The ice front remained at that location until about 1904 (Tarr and Martin, 1914). Then the glacier began a very rapid retreat which continues today. The glacier has receded more than 40 km in the past 74 years. In 1913, Tarr and Martin named the developing bay, Icy Bay. Figure 4 from Molnia (1977) shows ice front positions since 1904. Calculation of the retreat rate for the 1904 and 1916 ice front positions indicates an extremely rapid rate of approximately 1.5 km/yr. The movements of the Guyot Glacier have resulted in drastic changes in the sediment supply to the adjacent beaches. Fig. 4 Positions of the ice front of the Guyot Glacier, Icy Bay. (from Molnia, 1977; many ice front positions from unpublished files of A.S. Post). In 1904, when the Guyot glacier fronted on the Gulf of Alaska, large volumes of sediment were supplied directly to the coast. Outwash streams were active on both sides of the glacier. Thus, to the west of the glacier, a beach ridge plain developed. Some of the relict beach ridges are still present. To the east of the glacier, a smaller outwash system was developed, just east of Point Riou. The retreat of the glacier into Icy Bay since 1904 has resulted in a loss of sediment to the adjacent shoreline. What we find today at Icy Cape, just west of Icy Bay, is an eroding scarp of basal till with a counterpart, Point Riou (Fig. 5), on the east side of the bay. The entire coastal section from Icy Cape to Cape Yakataga, except a very small area at Umbrella Reef, is now experiencing strong erosion. Heavily forested beach ridges are now being actively cut back (Fig. 6). The shoreline is littered with thousands of Sitka Spruce logs with root systmes intact, eroded from the beaches updrift. There are areas of broad overwash terraces and fans (Fig. 7) and, in places, gravel roads have been cut by the erosion (Fig. 8). The beach profiles are generally rather flat with concave-upward upper beachfaces and eroding scarps at the spring high tide swash line. The profile locations measured in this area are shown in Figure 2. The profiles cover the coast from just west of Icy Cape, profile DBC-79, to just east of Cape Yakataga, profile DBC-92, including Point Riou, profile DBC-70. Five representative profiles are shown in Figure 9. Erosional scarps are present in all of them. Ridge-and-runnel systems were sometimes present; however, this may be a fair weather feature only. Analysis of internal structures in the scarps often shows plane beds overlain by dune cross beds, indicating an old beach ridge, developed during the period of progradation prior to the retreat of the glacier. Figure 10 shows profile site DBC-79. There is a well-developed washover terrace at this location. The beachface is flat and featureless. At spring high tide, the waves break onto the small scarp on the upper beachface. This scarp exposes rooted muds which have been overridden by the sand fill and later exposed at the beach. During storms, sands and gravels are washed back over the scarp and out onto Fig. 5 Till scarp at Point Riou. This is a low tide photo; at high tide, the waves break directly on the scarp. Sand on the narrow beachface is partly locally derived, but most is bypassing to beaches downdrift. Fig. 6. Forested beach ridge being eroded near profile site DBC-89. The climax Sitka Spruce forest has been heavily salt-pruned by ocean spray. High tide waves break directly on scarp fronting forest. Sand and gravel beachface is relatively flat and featureless. Fig. 7 Overwash fan at profile site DBC-89. The erosion along this stretch of shoreline has cut through a relict beach ridge (remnant is visible in the upper center of photo) and is now washing debris and overwash sediments into low inter-ridge swale. Note the narrow flat character of the beach. Fig. 8 Gravel roads near the White River have been cut by the strong erosion along this shoreline. There is a sharp scarp down to the beachface, exposing sands and clays. Fig. 9 Five representative profiles from the erosional shoreline downdrift of Icy Bay. Note the scarps and very flat beach faces. Fig. 10 Profile site DBC-79 just west of Icy Cape. A. Aerial view looking west showing the overwash terrace. The beachface is flat except for the low ridge-and-runnel at its base. Overwashed sand and gravel, covered with oriented logs makes up the terrace which migrates landward under the influence of storm waves. There is a small scarp just seaward of the terrace. B. Detail of the seaward edge of the overwash terrace showing highly oriented logs. Icy Cape is visible in the background. C. Beach sketch and computer plot of DBC-79. the low vegetated flat behind the active beachface. Numerous Sitka Spruce logs with roots intact are oriented on the terrace. Washed up during storms, the root structure is grounded first; while the tapering tops are oriented in the direction of wave overwash. With an inadequate sediment supply, the overwash terrace will continue to migrate landward. The entire coastal section from profile DBC-79 to DBC-92 is undergoing erosion. Figure 11 shows profile site DBC-87. The back beach area is a beach ridge heavily vegetated with Sitka Spruce trees. The scarp, slightly more than 4 m high, exposes planar bedded sands, dune crossbedding and smaller scale sets of rippled sands, all remnants of the relict beach ridge. The beach ridge had been developed directly on top of bedrock (the Robinson Mountains lie only 1 km behind the beach) which is now exposed on the beachface. This bedrock is the source for the gravels at the base of the scarp. Seaward of the gravel, there is a low ridge of sand perched on the bedrock. Further seaward, the bedrock is swept clean, and a boulder rampart lies about 30 m offshore. This profile is highly erosional. During storms, waves break directly on the scarp. The only depositional feature is the low sand ridge which is simply bypassing the sand to the beaches downdrift. Figure 12 shows profile DBC-70. This profile was measured at the high
erosional scarp at Point Riou. This scarp (Fig. 5) is composed of basal till and glacial margin lake muds overlain in places by fluvial sands and gravels. Comparison of aerial photographs indicates approximately 1.3 km of erosion has occurred since 1941 (average of 37 m/yr, Molnia, 1977). During one relatively small storm (max. wave height, 4 m), this scarp was observed calving large blocks of till, as the waves broke directly onto the scarp face. Later inspection revealed large mats of forest mosses hanging down over the scarp where the till blocks had been removed by the wave erosion (Fig. 13). We can only speculate as to the scale of erosion at this area during large winter storms. Overwash sands and gravels were observed on the top of the scarp, some 7 m above mean high water. As the till scarp at Point Riou erodes back, the beaches adjacent to the coast in front of the abandoned Yahtse Fig. 11 Profile site DBC-87 an erosional shoreline (type Al). A. Aerial view looking west, with Cape Yakataga in background. Relict vegetated beach ridge is being cut back; trees are visible falling off scarp. Gravel upper beachface is perched on bedrock which is exposed on lower beachface, where a low sand ridge partly covers it. B. Detail of internal structures in scarp. Planar crossbeds at the base could be relict ridges, overlain by smaller scale ripple sets, which are capped by plane beds. C. Beach sketch and computer profile plot (LHTS - Last High Tide Swashline; WL - Water Line). Fig. 12 Profile DBC-70. Note high vertical scarp behind the featureless profile. The wedge of sediment at the base of the scarp is composed of bypassing sand. River outwash are also eroding back. The recent history of the Yahtse River is detailed in the section on Spit Analysis in this report. Briefly, the river source has been diverted, and the old spit has been migrating landward by overwash into the old river channel which was behind the spit. The old outlet for the Yahtse River on the Gulf has been completely closed. A permanent profile site, MAL-1, was lost because of the severe erosion. There is only one minor exception to the erosional character of the beaches between Icy Bay and Cape Yakataga. Umbrella Reef is a projection of bedrock striking parallel to the shoreline about 24 km east of Cape Yakataga. During the 1969-1970 field work, a permanent profile station (YKG-3) was set up there. Fig. 14 shows a comparison of a profile measured on 2 March 1970 with one measured on 31 May 1975. They are remarkably similar. The primary difference is the position of a relatively large ridge at the base of the beach face, but ridges are ephemeral features, and, thus, cannot be used to make long term interpretations of shoreline behavior. The bedrock projection at YKG-3 acts as a natural breakwater, reducing the wave energy reaching the beach. This causes sediment to accumulate behind the reef. At present, Fig. 13 Point Riou. A. Waves breaking on the scarp at high tide. B. Scarp at low tide showing overhanging forest mats where larger blocks of the till scarp have been removed. there is a balance in the sediment budget for this area, resulting in local stability on an otherwise erosional shoreline. Enough sand is trapped behind Umbrella Reef to maintain the profile. Fig. 14 Comparison of permanent profile YKG-3. Note that the profiles are very similar except for the position of a ridge-and-runnel at the toe of the beach. This profile remains relatively stable despite the adjacent erosion because of a natural bedrock breakwater which causes sand to accumulate behind it. The beaches adjacent to Icy Bay demonstrate clearly the dramatic shoreline responses to changes in glacial position and drainage characteristics. The glaciers and their outwash systems are the primary sediment sources for the Gulf beaches. As the glaciers advance and retreat, the shoreline responds by deposition or erosion. The shoreline fronting Sitkagi Bluffs has been classified as Al. Sitkagi Bluffs, located on the southernmost terminus of the Malaspina Glacier, is an eroding scarp of glacial till jutting into the Gulf of Alaska. At the Bluffs, the Malaspina Glacier is less than ½ km from the sea. Figure 15 shows the vegetated glacier, fronted by ice cliffs, glacial margin lakes and morainal deposits. The very narrow beach is composed of sediments ranging in size from sands to large erratics left by the retreating scarp. Fig. 15 Actively eroding glacial margin of the Malaspina Glacier at Sitkagi Bluffs. The unvegetated glacier is visible in the background. Fronting that is a broad vegetated section ending in oblating ice cliffs with marginal lakes. The shoreline is extremely steep, composed of sediments ranging from sand to large erratics. The glacier margin itself is extremely unstable. Although vegetated, ice collapse is evident everywhere. Vegetated sections are visible at various angles of tilt caused by the ablating ice cliffs. Glacial margin lakes repeatedly fill and empty, flooding surrounding areas. Kames and kame terraces are built and destroyed by the rapidly changing active processes. Fountains and short outwash streams dot the glacial margin, supplying abundant sediments. However, the position of the Bluffs (at a nodal point for sediment transport direction, see Nummedal and Stephen, 1976) causes this sediment to be rapidly transported away from the area, resulting in continued erosion. The beaches just in front of this glacial terrain have the steepest profiles of the entire study area. Fig. 16 shows profile MAL-5. The beachface is so steep that it is difficult to see the change in slope between it and the till scarp just behind it. Beach material ranges from sand to erratics. Sorting is therefore extremely poor. The majority of the upper part of the beachface is covered by cob- Fig. 16 Profile site MAL-5 located on Sitkagi Bluffs. A. Ground view of the beach face. Note the extremely poor sorting of the sediments ranging from sand to erratics. The till scarp is visible in the background. The boulders on the lower beachface show considerably better rounding than those just in front of the scarp. B. Beach sketch and plot of MAL-5. Note the extreme steepness of the plot. bles and boulders. This very large grain size results in the extremely steep beachface. There is a pronounced increase in sediment rounding with increased distance from the scarp. The sediments lower on the beachface were probably eroded from the scarp at an earlier date and have, thus, been exposed to marine processes longer, which has resulted in a higher rounding value. The third area classified as Al is the shoreline on the western edge of the Yakutat Forelands from the Dangerous River inlet, west to the end of the Phipps Peninsula. In the April 77 Annual Report, an analysis of sediment samples was used to support the hypothesis that the Alsek River is the prime sediment supplier for the shorelines from Dry Bay to Yakutat Bay. There is a transition from slightly depositional beaches through neutral to erosional beaches with increasing distance from the Alsek River. The glaciers in the area have been retreating for some time. This, in conjunction with the relatively broad coastal plain in this area, modifies the sediment suite carried by the rivers to the coast. The outwash streams draining the glaciers usually have glacial margin lakes as sources. These lakes act as traps for coarse sediments. Additionally, the relatively long river length further removes coarse sediments. These streams therefore supply only sands to the coast. The broad beach ridge plain just west of Dry Bay (Fig. 17) is truncated to the west by the well-developed outwash of the Dangerous River. These two features indicate periods, in the past, of considerably greater sediment loads for these rivers. Presently, the Alsek River, flowing into Dry Bay, is the only river on the Yakutat Foreland which supplies enough sediment to maintain the beaches immediately downdrift. The beaches from Dry Bay to the Akwe River inlet show multiple ridge-and-runnel systems and well-developed berms. Dune fields and dune ridges are often found behind the beachface. The beaches are generally convex upward as a result of the depositional features. As the distance is increased from Dry Bay, the beaches become flatter and the berms become lower. Ridge-and-runnel systems are lower and less complex. Dunes are also less developed. These beaches are probably in equilibrium. Fig. 17 Beach ridge plain downdrift of Dry Bay. Note the well-developed ridge and swale topography. The ridges, which are higher, are vegetated by climax Sitka Spruce forests. The intervening swales are marshy and covered mostly by grasses. The Yakutat Glacier is visible in the background with Harlequin Lake fronting it. The Dangerous River outwash plain truncates the beach ridge plain at the left of the photo. Finally, from Blacksand Spit, just west of the Dangerous River, to Yakutat Bay, the beaches become erosional. The beachface is flat and featureless; scarps are often found at the spring high swash line. Where ridges are present, they are low and rarely found in multiple sets. Figure 18 shows profile site DBC-21 located on Blacksand Spit. The back beach area is covered with low vegetated dunes and truncated by a sharp scarp. Old logs are exposed in this sand scarp. Spring high tide waves break onto the scarp, causing it to retreat. The active beachface is flat except for a low ridge-and-runnel at the base of the beach. These low ridges give this section of coast a character-istic rythmic topography (Fig. 19). The profiles further downdrift show similar erosional features. A permanent profile site established on the beach just in front of the Yakutat airport was lost due to this erosion sometime between 1971 and 1975. Fig. 18 Profile site DBC-21 on Blacksand Spit (type Al). A. Oblique aerial view landward. A ridge-and-runnel occupies the foreground. The "X"'s on the beachface are
sample sites. There is a prominent scarp behind the active beachface. This scarp is backed by blow-out dunes, developed by bimodal wind direction (opposed winds). There is a large wash-through to the right on the photo. B. Ground view of DBC-21. Note flat character of beach and height of scarp. C. Beach sketch and computer plot of profile. Fig. 19 Mildly erosional beaches on the Yakutat Foreland. The complex sets of ridge-and-runnels give the shoreline a rythmic topography. The vegetated plain behind the beach is being slowly cut back by the erosion along this shoreline. There are a number of small areas on Hinchinbrook Island and Kayak Island which have also been classified as Al. For the most part, these two islands are uplifted bedrock with high sheer rock cliffs dropping to the sea. There are, however, a few places where the scarps are considerably lower. The majority of the shorelines on both of these islands are erosional. The distinction between Al and A2 shorelines is made with regard to the height of the scarps or cliffs. The areas designated as Al will generally have scarps no more than 10 m in height. The Martin Islands are also classified under Al. They are located just south of the abandoned town of Katalla on the eastern margin of the Copper River Delta. They are characterized as low rock cliffs with gravel accumulations at their bases and a partial development of a wave cut bedrock platform. There are a number of small sea stacks and sea caves associated with them. # Subclass A2 - High to moderately high erosional scarps Subclass A2 contains those shorelines which are characterized by high rock scarps often with well-developed pocket beaches and bedrock platforms. These high rock cliffs are found on Hinchinbrook Island, Kayak Island, Wingham Island and at Point Martin. All four areas have bedrock cliffs generally higher than 10 m. At Cape St. Elias, there is a near vertical drop of over 1600 feet to a broad rock platform at sea level. Fig. 20 shows part of Kayak Island. There is a prominent cliff with considerable stabilized debris at its base. This area has been uplifted by a number of earthquakes. The Good Friday quake of 1964 uplifted the area about 2.5 m (Plafker, 1971). There are a number of uplifted storm swash lines, manifest as log accumulations on the back beach area. The present beachface has a log storm berm, mixed sand and gravel beachface and a broad wave cut platform of bedrock. Hinchinbrook Island also falls primarily into Subclass A2. There are numerous pocket beaches at the base of sheer rock cliffs. These pocket beach locations are generally controlled by bedrock structure. Sediments in the pocket beaches range from sands to boulders. There is usually a fining of the sediments toward the middle of the pocket beaches. There are a number of rock platforms on Hinchinbrook Island. Waves wash across these platforms and break onto the cliffs behind them at high tide. Fig. 20 Part of the western shore of Kayak Island. This area was uplifted 2.5 m by the 1964 Good Friday earthquake. The log lines indicate old storm swash areas prior to uplift. Behind the beach is a scarp in bedrock and Holocene deposits. A broad wave cut platform extends to the water. In the background, high vertical rock scarps are visible. #### NEUTRAL SHORELINES Shorelines have been defined as neutral if they do not show consistent horizontal or vertical changes in a single direction (i.e. consistent progradation or erosion). The shorelines of the study area are extremely active due to the intensity of the processes there. However, there are stretches of coastline that have shown very little change over the past 8 years. Additionally, they show no dominance of either depositional or erosional morphology. A classification of neutral does not require stability, it implies only that the changes are not consistent. Seasonal variation in process parameters cause periods of erosion and deposition on these shorelines. Storm surge, high waves, increased river discharge and numerous other factors can cause severe erosion and/or deposition; however, these random and cyclical changes are generally counter-acted within a relatively short period of time. Thus, for purposes of shoreline development, these areas are to be preferred, pro- vided adequate set-back lines are adhered to, and provisions are made to avoid those areas particularly subject to large short term changes. Each subclass under this category will be considered in detail below. There are five subclasses with a neutral classification. These subclasses account for 58% of the total shoreline (Table 1). Subclass Bl - Neutral shorelines downdrift of glacial outwash streams. Subclass B1 is the single largest subclass, comprising 25% of the total shoreline. It includes most of the beaches formed downdrift of glacial outwash streams. It also includes beaches downdrift of eroding glacial deposits and rarely bedrock. These beaches can be very variable over short time periods, but generally show no consistent trend of either deposition or erosion. The glacial outwash streams, so common to this area, are quite variable with regard to discharge, total length, number of distributaries, velocity, gradient and river pattern. Therefore, the size, composition, maturity and amount of sediment load is quite variable. This variability in the sediment supply results in morphological differences on adjacent beaches. Where outwash streams have a high discharge, high sediment load ranging in size from sands to gravels, and have a well-defined single distributary mouth, a beach ridge plain generally develops downdrift; provided there is a relatively high value of net longshore sediment transport. Examples of this are the Alsek River, Kaliakh River, and Fountain Stream. Figure 17 shows the excellent development of the beach ridge plain downdrift of the Alsek River. The beaches downdrift of these rivers have a distinctive morphology. They are composed of sands and gravels which generally decrease in size with increased distance from source. Concommitant with this fining is a reduction in beach slope and general beach complexity. They have an intermediate steepness and often well developed berms, especially near the mouths of the rivers. At river mouths, the beaches often exhibit multiple berms which are absent further downdrift. Fig. 21 shows profiles DBC-5, DBC-8 and DBC-11 from the Alsek River area and DBC-59 and Fig. 21 Trends of profiles along the Yakutat Foreland downdrift of Dry Bay and along the Malaspina Foreland downdrift of Sitkagi Bluffs. DBC-5, 8, and 11 show a decrease in beach complexity, a trend to flatter profile with lower development of the berms. These changes are duplicated by profiles at DBC-59 and 61. and DBC-61 from the Fountain Stream area. Note the reduction in beachface complexity and beach slope as the distance from the river mouth is increased (Refer to Fig. 2 for profile locations). Ridge-and-runnel systems are also common. The beaches downdrift of Dry Bay have been discussed in the section under Erosional Shorelines. There is a trend from slightly depositional through neutral to erosional beaches as distnace from the sediment source (Alsek River) is increased. Fig. 22 shows profile site DBC-7, which is 14 km west of Dry Bay. This profile has a well developed spring berm with a neap berm on its lower face. Behind it, there is a large dry berm runnel, active only during spring tides. Further landward, the beachface slopes up onto a storm berm and then back onto a flat overwash area, active only during large storms. Overall, this profile appears to be slightly progradational. However, the storm overwash area behind the beachface attests to the vulnerability of this area to violent storms; thus, it has been given a neutral label. In addition, we have no data which indicate a present continuing trend of progradation. Furthermore, the Alsek River is probably carrying a constantly reducing sediment load, the result of glacial retreat, which will affect the adjacent beaches. Fig. 23 shows profile site DBC-11, which is 12 km further downdrift. The berm is lower, and the berm runnel is smaller. The entire beachface is flatter than DBC-7. There is a storm accumulation of logs backed by a low dune ridge. Finally, Fig. 24 illustrates profile DBC-13. Note the very flat nature of the beachface. The profile is located on a protuberance between two low ridges. There is a prominent log accumulation on a very low storm berm. The three profiles discussed above (DBC-7, DBC-11, and DBC-13) show some of the changes in beach morphology with increased distance from primary sediment source. In the April 77 Annual Report, this same area was used to show sedimentological changes resulting from increasing distance from source. Both of these studies support the Alsek River, discharging through Dry Bay, as the primary sediment source for the Yakutat Foreland area. The beaches immediately downdrift of Dry Bay dis- Fig. 22 Profile site DBC-7 downdrift of Dry Bay. This profile shows a high broad berm and berm runnel backed by a high overwash berm. The profile is convex upward indicative of progradation. At the bottom of the sketch is a computer plot of the profile. Fig. 23 Profile site DBC-11 located downdrift of Dry Bay. A. Aerial view looking west showing large low berm at the base of the beach. The berm was formed by the migration of a ridge onto the beachface. The Akwe River is visible behind the spit. A dune field has been developed behind the active beachface; dunes oriented NW-SE by the SE storm winds. B. Ground photo of the beachface. Dark linear feature across the center of the photo is the berm runnel. The storm swash of logs is visible with low dunes behind it. C. Beach sketch and computer plot of DBC-11. Fig. 24 Profile site DBC-13 downdrift of Dry Bay. A. Aerial view looking west. The profile was measured between the two ridges which form a broad beach protuberance. The beachface
is very flat and featureless. A prominent storm swash of logs and aeolian sand is present behind the active beachface. A dune ridge is developed well behind the beach. B. Detail of the storm berm composed of logs carried in during storms and wind blown sand (wind-shadow dunes). C. Beach sketch and computer plot of DBC-13. play many depositional features. These features become less developed as distance from Dry Bay is increased. Finally, the beaches become erosional in character from the Blacksand Spit to Yakutat Bay, as discussed in the section on Erosional Shorelines. These changes are very gradual, occurring over a 90 km stretch of coast. The exact location of the line between erosional and neutral shorelines is therefore somewhat subjective. The east and west Malaspina Foreland is another major area of outwash stream coast classified Subclass Bl. This includes the beaches downdrift of Yana, Manby, Alder, Fountain, Esker, Sudden, Oscar and Kame streams. It encompasses two primary areas: 1) from the western margin of Sitkagi Bluffs to the erosional shoreline fronting the abandoned Yahtse River and 2) from the pure gravel beaches downdrift (east) of the eastern margin of Sitkagi Bluffs to the Grand Wash. These streams carry an abundant sediment supply ranging in size from clay to gravels. The beaches adjacent to the streams usually have one or more berms and often a higher storm berm. Variability of beach slope is partly a function of sediment grain size which generally decreases with increased distance from source. Although some of these areas appear to be depositional, the very high wave energies and the unreliability of the outwash streams have prompted a neutral label. Short term variability on these beaches is great. Severe storms generating large waves can erode the beaches back many 10's of meters. Overwash of the numberous spits associated with the streams is also common. Profile site DBC-47, located at the end of Manby Stream spit, is illustrated in Figure 25. The spit is completely overwashed during storms; thus, there is no vegetation. Landward of the stream is a climax Sitka Spruce forest with a log accumulation just in front of it. This is the result of severe winter storms which top and overwash the spit bringing the logs back to the landward side of the stream. The spit is built on a till or morainal platform. This platform is associated with an earlier position of the Malaspina Glacier. This implies that the coast has retreated from an earlier position further seaward. The platform is manifest as a Fig. 25 Profile site DBC-47 on Manby Stream spit. A. Aerial view looking east. The boulder rampart is clearly visible jutting out from under the spit. Storm waves have swept the spit clean and washed a log debris line onto the beach landward of the stream. B. Ground view of large boulders in Manby Stream with a storm swash of logs on the landward side of the stream. C. Beach sketch and computer plot of DBC-47. boulder rampart, which projects from under the spit. Additionally, large boulders are visible in Manby Stream. These were left by the Malaspina Glacier. Sands and gravels make up the spit which has a low broad berm and associated runnel and a higher berm which is formed during high spring tides. This two berm system, with the upper berm being active and often overwashed during higher tidal levels, is common at the ends of outwash stream spits. Fig. 26 shows profile site DBC-57 located just west of Sitkagi Bluffs. The sediment source for this beach is the eroding glacial till at the Bluffs. The Malaspina Glacier is visible just behind the beachface. A narrow vegetated zone separates the glacier from the active beach. A small storm scarp has been cut into that zone. The active beacface is characterized by two broad low berms of sand and gravel. As the bluffs continue to erode back, the erosion will spread to this area, but presently, the beach appears to be neutral. During the 1969-1971 field studies, two permanent profile sites were established on the Malaspina Foreland outwash beaches. Profile MAL-2 located just west of Fountain Stream and profile MAL-3, located on the Manby Stream spit, both show relatively strong progradation which may be misleading (Fig. 27). MAL-2 is only 3 km downdrift of Fountain Stream. This stream has a spit associated with it which is periodically breached during periods of high discharge (generally during the summer). When this happens, the breached spit migrates landward by wave overwash and then downdrift (see section on Spit Analysis). This causes rapid progradation as that package of sediment moves across a profile. The May 31, 1975 run of profile MAL-2 occurred just before a spit breach (July 4, 1975) which may account for its lower form when compared to the June 11, 1971 measurement of the profile. Profile MAL-3 also shows progradation. This is, at least partly, due to storm activity. The March 1, 1970 profile was run just after a storm (Feb. 28, 1970); thus, part of the difference in the two profiles is due to storm erosion. Additionally, the profile is backed by a low vegetated area behind the storm berm. At some time between 1970 and 1975, a storm overwashed the spit 100 m to the west Fig. 26 Profile site DBC-57 on the Malaspina Foreland. A. Aerial view looking west. Note the broad convex upward shape of the beachface. A storm scarp is visible behind the active beachface. B. Ground view showing mixed sand and gravel beach sediment. C. Beach sketch with computer plot. Fig. 27 Changes at permanent profile sites MAL-2 and MAL-3 located on the Malaspina Foreland. The profiles indicate a general progradation, but because of the dynamics of the area (see text), they have been labeled neutral. of the profile. This resulted in a low, broad wash through channel stripped of vegetation. If the washover had occurred at the profile site, it would have washed it out. Profiles MAL-2 and MAL-3 both appear depositional; however, this may be the result of the timing of profile measurements relative to storms (severe storms can erode as much as 50 m from the beachface, (Hayes, 1967; Hayes and Boothroyd, 1969). There are short term changes on these beaches which might be partly responsible for their depositional appearance. Finally, even where the depositional forms are manifest, there are sometimes equally strong erosional forms adjacent to them. The beaches have been labeled as neutral because of this potential variability. The third area falling into Subclass Bl is the Bering Glacier Foreland. This area stretches from Cape Yakataga to Cape Suckling. There are four major outwash streams draining this area: 1) Duktoth River, 2) Kaliakh River, 3) Tsivat River, and 4) Seal River. These rivers have many similarities to the Malaspina Foreland streams. The Kaliakh is the largest. It has developed a large outwash fan and a broad beach ridge plain very similar to the beach ridge plain downdrift of the Alsek River. The streams carry abundant sediment, ranging in size from clays to gravels. Beaches are composed of mixed sand and gravels. Multiple berms and storm berms are very common, as is rythmic topography (Fig. 28). Back beach areas usually have well developed dune fields and sometimes large dune ridges. Fig. 28 Highly-developed rythmic beach topography on the Bering Glacier Foreland. The dunes behind the active beachface are strongly oriented NW-SE due to the SE storm wind direction. Also note the deflection of the outwash streams to the west (direction of dominant longshore sediment transport). Cape Suckling is visible in the background. During the 1969-71 study, three permanent profiles were established in the Bering Foreland area. Fig. 29 shows two of these profiles: SEA-1 and YKG-2. The third profile, YKG-1, was located on the Tsivat River spit. Downdrift ends of spits are very unstable. Sometime between 1971 and 1975, the profile was lost, probably due to a winter storm. There are numerous logs on the beachface which would oscillate back and forth across the beach during a storm. It is likely that the profile markers were struck by one or more of these logs. The beach does not show erosional characteristics. Profile SEA-1 is located downdrift of the Tashalick River on the western border of the Bering Foreland. Figure 29 shows that the storm berm has increased in height since 1970, but the remainder of the profile is almost identical in form from 1970 to 1975. Fig. 29 Changes at permanent profiles SEA-1 and YKG-2, located on the Bering Foreland. SEA-1 shows a moderate vertical progradation of the storm berm but no change of the beachface. YKG-2 shows dramatic progradation which may be misleading given the position of the profile, near an active breach point on the Duktoth River spit. Profile YKG-2 shows very pronounced progradation. This is probably misleading. The March 2, 1970 profile was run 4 days after a large storm and thus would show only a partial recovery from the erosion of that storm. The Duktoth River often breaches the spit just west of profile YKG-2. This causes short periods of deposition and erosion as the adjacent beaches adjust to the breach and then seal the breach with longshore movement of sand. There is no basis to assume that this profile will continue to prograde. The dynamics of the spit breakthroughs and storm activity can drastically alter this profile; thus, it is classed neutral. The Bering Foreland is similar to the Malaspina Foreland. It has numerous outwash streams with their related spits and sand and gravel beaches. The area is more mature than the Malaspina. The glacial margin geomorphology indicates that the Bering Glacier has receded considerably more than the Malaspina Glacier, and the outwash plains are, therefore, considerably wider. The beaches are quite similar although the Bering beaches contain generally finer sediment and are not as steep, because of their greater distance from the source. #### Subclass B2 - Neutral embayment
beaches The beaches on the eastern sides of Icy Bay and Yakutat Bay are generally stable. The Icy Bay shoreline is very young (see explanation under Erosional Shorelines) and therefore not as stable as the more mature Yakutat Bay shorelines. This is especially evident in the sediment types. The Yakutat Bay shores are composed of mostly wellsorted and rounded gravels; whereas the Icy Bay shorelines have considerable sand. Figure 30 demonstrates the maturing process. These three profiles were set up at the base of the Chaix Hills. This area is close to the head of the bay and thus has only recently been exposed. Analysis of aerial photos indicates that the area was still covered by the Tyndall Glacier in 1948. The profiles are one kilometer apart with DBC-97 being closest to the glacier and, thus, the most recently exposed. DBC-95 is the furthest from the glacier with DBC-96 in between. The tills, kames, outwashes and moraines of this area are composed of sediments ranging in size from clay to erratics. After they are exposed to marine activity, these sediments are selectively sorted by the waves and tidal currents. Profile DBC-97 has more sand than DBC-96 or DBC-95; the gravels are angular to subangular. Profile DBC-95 has gravels that are subangular to subround and considerably less sand than DBC-97 or DBC-96. This This increased gravel to sand ratio results in an increase in the beach slope from DBC-97 to DBC-95. The beaches of Yakutat Bay (Fig. 31) all show very steep slopes. They often have vegetated storm berms, indicative of infrequent storms. They are composed of almost pure gravel. Yakutat Bay has been open longer than Icy Bay. The abandoned glacial terrain on the Yakutat Foreland is now covered by a climax Sitka Spruce Fig. 30 Inner Icy Bay profiles. Note the change in beach slope from DBC-97 through DBC-95. This is partly the result of an increase in mean grain size from DBC-97 through DBC-95. The increase in the grain size is the result of long exposure to marine processes which selectively remove the finer sediments. forest. Stagnant ice and associated features are not present, as they are on the east side of Icy Bay. The beaches on the inside east shoreline of Yakutat Bay, including the numerous islands appear to be the most stable in the study area. The Icy Bay shoreline is still being modified to resemble the Yakutat Bay shores; however, this process is slow, and the Icy Bay shorelines can be considered neutral within the framework of this classification. Figure 32 shows profile site DBC-104, a typical mature beach inside of Yakutat Bay. The beachface is composed of pure well-sorted and rounded gravel formed into multiple cuspate berms. Behind these is a storm berm and a storm scarp with some overwashed gravels thrown on top of it. The profile is very short and steep with vegetation covering the back beach to the face of the scarp. There is often a small Fig. 31 Representative Yakutat Bay profiles. Note that they are all steep and short. They are composed of mostly mature gravels. Fig 32 Profile site DBC-104 in Yakutat Bay. A. Aerial of gravel beach showing multiple cuspate beachface, backed by Sitka Spruce forest. B. Beach sketch and computer plot. step at the toe of the beachface and less often a boulder cobble low tide terrace (Fig. 33). Fig. 33 Boulder-cobble low tide terrace at DBC-106. These terraces are common in Icy Bay and Yakutat Bay. They consist of reworked glacial sediments, from which much of the finer material has been removed. The beaches within the bays are subject to considerably less marine energy than their counterparts on the exposed coast. Since most of the severe storm waves approach from the SE (Nummedal and Stephen, 1976), the waves reaching the inner eastern shorelines of Icy and Yakutat Bays are dramatically attenuated. Wave heights observed on these beaches rarely exceeded 50 cm. Furthermore, these shorelines are not subject to the variability introduced by outwash streams and their associated spits. These factors contribute to the relatively higher stability of the beaches. ### Subclass B3 - Neutral embayment high bedrock scarps The moderate to high bedrock cliffs within the low energy environments of Icy Bay and Yakutat Bay comprise 7% of the study area and are designated neutral. These rock cliffs are found in the inner parts of the bays where the marine energy is the least. Since they are subject to such low energies, they have been given a neutral label. Their retreat rates are considerably slower than the exposed rock cliffs in Subclass A2. Wave cut platforms and pocket beaches are very unusual; most of these cliffs plunge nearly vertically into deeper water. Figure 34 shows the inner part of Icy Bay with the numerous glaciers and bedrock cliffs. Fig. 34 Inner Icy Bay. Yahtse Glacier and Tyndall Glacier are visible at the upper left and right respectively. There is considerable drift ice and a long drift ice tongue in the bay. High bedrock cliffs occupy most of the shoreline within the inner bay. Claybluff Point, a depositional spit, is visible in the left foreground. ## Subclass B4 - Neutral beaches with an equilibrium sediment supply There are a number of beaches in the Controller Bay area which have remained relatively stable during the study period (1969-1975). These beaches are composed mostly of sand and have a sediment supply which maintains them in a state of equilibrium. Included in this subclass are: 1) Okalee Spit, 2) Kanak Island, 3) beaches on Katalla Bay and 4) two isolated areas on Hinchinbrook Island. Permanent profile OK-1 was established on Okalee Spit during the 1969-1971 field studies. Figure 35 shows the profile as it appeared on 27 February 1970 and 24 June 1975. The primary difference in these profiles is the position of the ridge and runnel at the lower beachface. These ridge-and-runnel systems migrate up the beachface to weld to it or are removed by subsequent periods of erosive wave activity. Thus, they cannot be used to interpret longer term beach behavior. The spit receives sediment moving west around Cape Suckling. This sediment moves along the beach and is deposited at the end of the spit. The end progrades while the remainder of the spit remains relatively stable. Okalee Spit is protected by Wingham Island and Kayak Island from waves approaching from the west, SW or south; thus, the only waves of any size which can reach the spit are from the east or SE, which will move sediment along the spit to the west. Fig. 35 Changes at permanent profile site OK-1. The primary change has been the position of a ridge at the base of the beachface. Most sediment at this profile is bypassing downdrift. Kanak Island shares a number of similar features with Okalee Spit. They are both composed of fine sand, backed by low vegetated dunes, have very flat profiles and multiple ridge-and-runnel systems. Like Okalee Spit, Kanak Island is quite stable. In 1969, a permanent profile, KNK-1, was established on the island. Sometime between 1969 and 1975, the profile markers were lost. This loss was not due to erosion but probably from logs being washed onto the beach by storm waves. Analysis of aerial photos indicates that the island has not changed significantly despite the loss of the profile. The beaches bordering Katalla Bay are in the same system as Kanak Island and Okalee Spit and thus have been included in Subclass B4. These beaches are also composed mostly of sand with some gravels from local erosion of bedrock scarps (Subclass A1). Finally, there are two short beaches on Hinchinbrook Island which are classed B4. One is downdrift of Hook Point and the other is downdrift of Point Steele. These beaches receive their sediment from adjacent eroding bedrock cliffs (Subclass A1) discussed earlier in this report. These beaches are composed mostly of sand with some locally derived gravels. Subclass B5 - Neutral pure gravel beaches downdrift of eroding glacial margins The pure gravel beaches immediately downdrift to the east of Sitkagi Bluffs are the only beaches classed as B5. Figure 36 illustrates profile site DBC-51. The beachface is composed of pure gravel, which is well rounded and sorted. There is a promonent development of multiple berms, the result of the diurnal inequality of the tides. These berms are often highly cuspate in character, depending upon wave approach direction. The backbeach area has a log storm swashline backed by low vegetation. This is backed by a climax forest. Figure 37 shows profiles DBC-50, DBC-51 and DBC-52. These profiles are 3 km apart with DBC-52 closest to Sitkagi Bluffs, the source of the gravels on these beaches. There is a strong trend toward reduced beach slope with increased distance from sediment source. This is the result of the trend in gravel grain size. DBC-52 is composed mostly of coarse gravels, cobbles and boulders which are subangular to subround. DBC-50 is composed of mixed gravels which are subround to well rounded. There appears to be a one to one relationship between grain size and beach slope. This same process is discussed in an earlier section of this report dealing with the inner shores of Yakutat and Icy Bays and is well supported in the literature (Shepard, 1973; Bagnold, 1940; Bascom, 1951). These profiles also support the well-known principle that grain size decreases with increased distance from Fig. 36 Profile site DBC-51 on the east Malaspina Foreland. A. Aerial view looking west. Multiple gravel berms appear as lineations. Beach is backed by a vegetated storm overwash area, which is backed by a Sitka Spruce forests. B. Ground view of the nearly pure gravel beach face. C. Beach sketch and computer plot of DBC-51. Fig. 37 Profiles immediately downdrift of Sitkagi Bluffs. DBC-52 is closest, followed by DBC-51, then DBC-50. Note the decrease in beach slope with distance. This is the result of a fining in the gravels on the beach with increased distance from source. source (Bascom, 1951; Neate, 1967;
Carr, 1969). #### DEPOSITIONAL SHORELINES Depositional shorelines account for 19% of the study area. Most of them, 12%, are comprised of the Copper River Delta barrier islands. The remainder are smaller deltas and spits in the sheltered environments of Yakutat and Icy Bays. These areas all show a continuous progradation during the study period. This progradation is expected to continue. #### Subclass Cl - Depositional barrier islands The barrier islands of the Copper River Delta have undergone dramatic changes since 1969. These changes have occurred in response to recent tectonism and normal shoreline processes active along barrier island shorelines. The sediments which make up the Copper River Delta are distinct when compared to those of the outwash plains. Most sediments which occur between Dry Bay and Hinchinbrook Island are supplied by braided outwash streams with glacial sources. The outwash streams introduce to the coast a variable and diverse sediment suite ranging in size from clay particles to very coarse gravels and cobbles. The Copper River Delta, on the other hand, is fed by the Copper River, whose sediments are considerably more mature. Copper River Delta sediment mean grain size is finer than outwash stream samples. They plot in the litharenite class of Folk's (1974) sandstone classification (Fig. 38). Compositionally, they are more mature with a greater percentage of quartz than the outwash stream samples (Fig. 39). On March 28, 1964, the delta uplifted approximately 10 feet by the Good Friday Earthquake (Fig. 40). The uplift is still apparent today in the form of elevated storm swash log lines on Kayak Island (Fig. 20) and raised marshes and tidal flats behind the barrier islands. This uplift has accelerated and modified the local morphologic response to normal processes which act on the barrier system and initiated a dramatic reorientation and progradation of the delta barrier islands. Fig. 38 A. Copper River delta sediment grain size parameters compared to outwash stream sediments. Note the finer size and better sorting of the Copper River delta sediments. B. Compositional comparison of Copper River delta sediment with outwash stream sediments. Fig. 39 Comparison of Copper River delta sediments with samples from outwash streams. Note the higher percentage of quartz for the Copper River samples. Fig. 40 Uplift contours from the Good Friday Earthquake of 1964. The permanent profiles designated EG are located on Egg Island, which is the westernmost barrier on the delta. This island has been studied in detail. Egg Island is prograding along its bulbous eastern shorefront at the expense of the far eastern side which is severely erosional. It is also prograding by spit accretion along its western end (Fig. 41). Fig. 41 General depositional-erosional model for Copper River Delta barrier islands. A major erosional area occurs at the east end of the island. Depositional areas are located just west of the inlet and on the western end of the island. The middle of the island is generally stable. Numbers are real values of sorting and mean size for Egg Island beach sampling stations. In general, sediments of the erosional and stable areas are slightly coarser than the sediments of the depositional areas. Profile EG-1 is located on an erosional scarp adjacent to the inlet channel on the eastern end of the island (Fig. 42). Figure 43 shows that there has been large scale erosion at EG-1. The scarp has retreated 56 meters since 1970. Sediment eroded from EG-1 has been transported downdrift and deposited at profile EG-4. Over 400 meters of accretion have taken place since EG-4 was originally measured in 1970. The central portion of the island is relatively stable as indicated by profile EG-8. The western end of the island has prograded rapidly by spit accretion. Comparison of aerial photos taken in 1970 with those taken in 1975 indicate progradation on the order of 2 km. Egg Island has almost doubled in size since 1964 (Fig. 42). # EGG ISLAND DEPOSITIONAL HISTORY Fig. 42 Shoreline changes on Egg Island between 1964 and 1975. The 1964 shoreline was derived from vertical aerial photographs taken 10 days after the Good Friday Earthquake of 1964. Note the locations of permanent profiles EG-1, EG-4 and EG-8, established in February, 1970. Permanent profile SOF-1 was originally located on the erosional inlet side of Softuk Island. This is approximately equivalent to the position of EG-1 on Egg Island. The erosion at SOF-1 was so severe that the profile has been lost. In general, Softuk Island is behaving in a manner similar to Egg Island, with a general progradation dominating the erosion which is localized at the updrift channel. # EGG ISLAND PROFILES —FEB. 1970 —MAY. 1975 EG-1 EG-4 Fig. 43 Changes at three permanent beach profiles on Egg Island between February 1970 and May 1975. Scarp erosion of 56 m occurred at EG-1, and the shoreline prograded over 400 m at EG-4. Permanent profile SR-1 is located east of the center of Strawberry Reef. This island is also responding in a manner similar to Egg Island, although at a slower rate. The gradual reduction to the east in the rate of morphologic readjustment corresponds to a similar reduction in tidal prism. Ebb tidal delta size magnitude of downdrift offset and inlet width, all decrease west to east (Fig. 44). Concomitant with the decrease in ebb-tidal delta size is a reduction in the intensity of wave refraction induced by the ebb delta shoals. This reduction causes a less concentrated area of progradation at the shoreline immediately downdrift of the ebb delta as on Egg Island. Instead, the entire shoreline of Strawberry Reef has prograded. Figure 45 shows the general upward progradation of profile SR-1 from Feb. 27, 1975 to May 26, 1975. Note also that it has prograded seaward approximately 60 meters. Analysis of Figure 44 indicates a general progradation of the barrier islands on the Copper River Delta. These islands often have areas of deposition, erosion, and stability. The ebb tidal delta configuration and size is a strong controlling factor with regard to these areas and the intensity of the changes. The downdrift ends of the barriers generally prograde by spit accretion. For the most part, de- Fig. 44 Copper River Delta, Alaska. Lower graphs show a general increase in downdrift offset, ebb-tidal delta size, and inlet width in a westerly direction. Black shading shows island shape and size in 1959; outer line delineates shape in 1975, indicating that all the islands have prograded. Fig. 45 Changes at permanent profile SR-1 on Strawberry Reef. There has been a general overall progradation of the profile site. positional areas are considerably more widespread than the erosional areas. #### Subclass C2 - Minor depositional fan deltas in neutral embayments There are a number of small streams which empty into Icy Bay and Yakutat Bay. Because of the very low wave energies in the bays, these streams generally build small fan deltas into the deeper water. These deltas have steep foreslopes which tend to be unstable. Jon C. Boothroyd found a number of slump areas on the delta fronts, using a fathometer (Annual Report, April 1976). The Yana River and the Caetani River have built small fan deltas into the inner eastern shore of Icy Bay. Esker Stream and Calahonda Creek have built small deltas into Yakutat Bay. These deltas account for only 2.5% of the study area. ## Subclass C3 - Major depositional deltas in neutral embayments. There is one major delta prograding into Yakutat Bay. Kwik Stream has built a broad outwash fan (The Grand Wash) on the inner west side of the bay. Fronting this fan is a complex system of prograded spits. At this location, inside Yakutat Bay, there is little net longshore transport. As a result, spits prograde in two directions. Progradation here is rapid due to the heavy sediment load of sands and gravels carried by Kwik Stream. Extensive sediment plumes are developed at the mouth of the stream. The high sediment load of sand and gravel, lower wave energy in the sheltered Yakutat Bay area and the low values for net longshore transport result in a distinctive beach profile. Profiles often have well developed berms, large ridges and high storm berms with overwash deposits behind them. They are generally convex upward, indicative of progradation and of intermediate steepness because of their sand and gravel sediments. Figure 46 shows profile site DBC-38 on one of the Kwik Stream outwash beaches. There are two primary berms on the lower beachface. Seaward, there is a very large ridge, covered with landward oriented megaripples. The ridge is migrating landward, eventually to weld to the beachface. The back beach is a broad Fig. 46 Profile site DBC-38 on a Kwik Stream outwash spit. A. Oblique aerial showing a number of the spits associated with the Kwik Stream delta. Note that the spits prograde in two directions. DBC-38 is located on the spit in the foreground. There is a prominent ridge just off the lower beachface. The ridge has a slip face indicating strong landward migration. The spit has been swept clean by wave overwash. Inner Yakutat Bay is visible in the distance. B. Beach sketch and computer plot of DBC-38. area of sand and gravel swept clean by occasional wave overwash. This is a highly progradational profile even though it is very close to the end of the spit. A permanent profile, MAL-4, was established on a spit fronting the Grand Wash in 1969. Spits, throughout the study area, are very unstable. MAL-4 was lost sometime between 1971 and 1975 because of the continuous reorientation, progradation and breaching of the spits in that area. Visual analysis of the Grand Wash (Fig. 47) documents the complex migration of the Kwik Stream inlet and its associated confining spits. The large sediment volume of Kwik Stream causes rapid progradation of these spits. When the inlets breach the spits and begin to build new ones, large scale erosion of the
old, breached spits can occur. Some combination of spit breaching, inlet migration, variation in sediment supply and marine coastal processes, has obliterated profile MAL-4. The Grand Wash area, in general, is progradational, as indicated by the system of relict spits. There are, however, areas of strong but short term erosion on this prograding delta. #### Subclass C4 - Prograding sand spits in Icy Bay There are two spits at the mouth to Icy Bay. Riou Spit (Fig. 48) is prograding into the bay from the eastern bay mouth while Claybluff Point (Fig. 49) is prograding from the western side. The sediment supply for these spits is the erosion of the till deposits at the mouth of Icy Bay. Molnia (1977) calculated an average growth rate for Riou Spit of 92 m/yr. It has grown to a length of 6.6 km since the bay opened in 1904. Profile site DBC-72, located on Riou Spit, is illustrated in Figure 50. The profile shows well-developed berm and berm runnel and an offshore bar. There is a washover terrace covered with storm wave oriented logs. Behind the beach is a low vegetated flat which continues to the quiet waters of Riou Bay. Molnia (1977) predicts that the spit will continue to prograde and close Riou Bay within 20 years. The sediment moved along Riou Spit will then begin to fill in Moraine Harbor, the proposed site for harbor development in the Bay. Fig. 47 Two views of the Kwik Stream outwash and the system of prograded spits fronting it. Note that the spits prograde in two opposed directions, the result a very low net longshore transport. Fig. 48 Riou Spit on the eastern side of Icy Bay. This spit is presently prograding at approximately 92 m/y (Molnia, 1977). Fig. 49 Claybluff Point on the western side of Icy Bay. Note the set of prograded low beach ridges with intervening swales. Fig. 50 Profile site DBC-72 on Riou Spit. A. Aerial view looking east toward Point Riou. The spit is extremely narrow in the distance and is often completely overwashed during storms. The profile shows a high depositional berm on the beachface and waves breaking on the off-shore bar. Back beach area is littered with logs and storm overwash sediments. B. Detail of the oriented logs on the storm berm, looking west toward Claybluff Point. Note the sheer bedrock cliff on opposite side of Icy Bay (type A2). C. Beach sketch and computer plot of profile DBC-72. #### REFERENCES CITED - Bagnold, R. A., 1940, Beach formation by waves: Some model experiments in a wave tank: Jour. Inst. Civ. Eng., Vol. 15, p. 27-52. - Bascom, W. A., 1951, The relationship between sand size and beach face slope: Trans. Am. Geophys. Un., Vol. 32, No. 6, p. 866-874. - Belcher, Capt. E., 1843, Narrative of a voyage round the world, performed by H.M.S. Sulphur during the years 1836-1842: London, Henry Colborn, Vol. 1, p. 79-80. - Carr, A. P., 1969, Size grading along a pebble beach: Chesil Beach, England: Jour. Sed. Pet., Vol. 39, No. 1, p. 297-311. - Folk, R. C., 1974, Petrology of sedimentary rocks: Hemphills, Austin, Texas, 117 p. - Hayes, M. O., 1967, Hurricanes as geological agents: Case studies of Hurricanes Carla, 1961, and Cindy, 1963: Bur. Econ. Geol. Rept. Invest. #61, Un. Texas, 54 p. - Hayes, M. O., and Boothroyd, J. C., 1969, Storms as modifying agents in the coastal environment: <u>in</u> Coastal Environments: NE Massachusetts and New Hampshire: Contr. No. 1-CRG, Dept. Geol., Un. Mass., p. 245-265. - Hayes, M. O., Ruby, C. H., Stephen, M. F., and Wilson, S. J., 1976, Geomorphology of the southern coast of Alaska: abstract 15th Inter. Conf. Coastal Eng., Hawaii, July, 1976, p. 530. - Hayes, M. O., Ruby, C. H., Stephen, M. F., and Wilson, S. J., 1976, Geomorphology of the southern coast of Alaska: Proceedings 15th Inter. Conf. Coastal Eng., Hawaii, July, 1976 (in press). - Henry, R. L., 1970, Morphology of wave formed spits, Cape Suckling to Icy Bay: unpublished Senior Honors Thesis, Un. Mass. 61 p. - Inman, D. C., and Nordstrom, C. E., 1971, On the tectonic and morphologic classification of coasts: Jour. Geol., Vol. 79, No. 1, p. 1-21. - Molnia, B. F., 1977, Rapid shoreline erosion and retreat at Icy Bay, Alaska A staging area for offshore petroleum development: 9th Annual OTC, Houston, Texas, May, 1977, p. 115-126. - Neate, D. J. M., 1967, Underwater pebble grading of Chesil Bank: Proc. Geol. Assoc., Vol. 78, p. 419-426. - Nummedal, D., and Stephen, M. F., 1976, Coastal dynamics and sediment transportation: Northeast Gulf of Alaska: Tech. Rept. No. 9-CRD, Un. S.C., 1976, 148 p. - Seton-Karr, H. W., 1887, Shores and alps of Alaska: London, Low, Marston, Searle, and Remington, 248 p. - Shepard, F. P., 1973, Submarine geology: Harper & Row, Publ., N.Y., 518 p. - Stephen, M. F., Hayes, M. O., and Ruby, C. H., 1976, Littoral processes and geomorphic variability on a storm dominated, glacial shoreline, Malaspinia Foreland, Gulf of Alaska: abstract Am. Assoc. Petrol. Geol. Annual Meeting, New Orleans, La., May, 1976, p. 119-120. - Tarr, R. S., and Martin, L., 1914, Alaskan glacier studies: Washington Nat. Geog. Soc., 498 p. - Tebenkof, Capt. M., 1848, Hydrographic atlas and observations, with 48 charts: St. Petersburg. TABLE 1 SHORELINE MORPHOLOGY - NORTHERN GULF OF ALASKA | Sub | class (Description) | Total
Shoreline (km) | % of total shoreline | Examples | | |---------|--|-------------------------|------------------------|--|--| | - | Low erosional scarps in glacial deposits, | Diolettic Lan | DATE OF TAXABLE PARTY. | | | | AI. | Low erosional scarps in gracial deposits, | 110 | 12 | Point Riou; Icy Cape and beaches
immediately downdrift; old Yahtse
River spit; Sitkagi Bluffs | | | A2. | High to moderately high erosional scarps in bedrock; often with pocket beaches and wave cut platforms | 100 | 11 | Hinchinbrook Island, Kayak Is. | | | LASS B. | NEUTRAL SHORELINES (58% of shoreline) | - | | | | | | class (Description) | | | | | | | Neutral shorelines of sand and gravel, down-
drift of glacial outwash streams, eroding
glacial deposits and rarely bedrock | 225 | 25 | Most of the Malaspina Foreland
beaches; beaches downdrift of the
Alsek River; most of the Bering
Foreland beaches | | | в2. | Neutral embayment beaches of sand and gravel or pure gravel | 172.5 | 19 | Eastern shore of Icy Bay; Eastern shore of Yakutat Bay | | | вз. | Neutral embayments with high to moderately high bedrock scarps | 64 | 7 | Inner bay heads in Yakutat and Ic | | | В4. | Neutral beaches composed mostly of sand with an equilibrium sediment supply | 53.5 | 6 | Yakutat Foreland beaches; beaches fronting Controller Bay | | | В5. | Neutral pure gravel beaches downdrift of actively eroding glacial margins | 11.25 | 1 | Beaches just east of Sitkagi Bluf | | | LASS C. | DEPOSITIONAL SHORELINES (19% of shoreline) | | | | | | Sut | oclass (Description) | | | | | | C1. | . Depositional barrier islands of fine sand
fronting the Copper River Delta | 110 | 12 | Copper River Delta barriers | | | C2. | . Minor depositional fan deltas in neutral
embayments | 17.5 | 2.5 | Deltas in Icy and Yakutat
Bays | | | C3 . | . Larger depositional deltas in neutral embaymen | ts 17.5 | 2.5 | Kwik stream delta in
Yakutat Bay | | | C4 . | . Prograding spits of sand and gravel in Icy Bay. | 13.75 | 2 | Riou Spit; Clay Bluff Pt. | | | | TOTAL | 896.0 | 100 | | | #### QUARTERLY REPORT Contract # 03-5-22-67, Task Order 6 Research Unit #87 Reporting Period: 1 April 1977 - 30 June 1977 Number of Pages: 3 #### THE INTERACTION OF OIL WITH SEA ICE IN THE BEAUFORT SEA Seelye Martin Department of Oceanography, WB-10 University of Washington Seattle, Washington 98195 20 June 1977 I. <u>Task Objectives</u>: To understand the small scale interaction of petroleum and sea ice in the Beaufort Sea. Our eventual aim is to predict how an oil spill or well blow-out would interact with the mobile pack ice of the Arctic Ocean. #### II. Field or Laboratory Activities - II-1. Laboratory Activities: During the past quarter, we have rebuilt our existing oil-and-ice wave tank with a much more powerful paddle, which our tests show works very well in warm water. During the coming quarter, we plan to use this tank and paddle to carry out a series of experiments on oil dispersion in a field of nearly circular ice floes. - II-2. Field Activities: (Because our annual report was submitted before we left for our field trip to Prudhoe Bay, we will summarize that research here.) - A. Field Trip Schedule: - 1. Dates: 13-29 March 1977 - 2. Aircraft: Bell 205 helicopters both supplied by NOAA and chartered from ERA Helicopters - B. Scientific Party Seelye Martin, University of Washington, chief scientist. Peter Kauffman, University of Washington, had responsibility for electronics and photographic equipment. Thomas Grentell, University of Washington, assistant. - C. Methods: Sampled ice properties in the vicinity of Prudhoe Bay. We analyzed ice cores for their salinity, temperature, and crystal structure. - D. Sample Localities: See attached map. - E. Data Collected or Analyzed: - 1. Numbers and types of sample/observations: 18 ice cores. - 2. Number and types of analysis: we measured the temperature and salinity profiles of the ice cores as well as photographed their crystal structure. - 3. Miles of trackline: 40 nautical miles. - III. Results: A formal data report will be submitted by 5 July 1977 to the OCSEAP project office. #### IV. Preliminary Interpretation of Results: The attached map shows the location of our ice core stations. The stations are identified by the numbers 1-19 and the letter N, where the stations originally numbered 15 and 16 were not occupied. The stations divide into three categories. First, we pulled 12 cores, numbered 1-12 on the chart, running
approximately down the center of the channel between the barrier islands and the coast in an attempt to look at changes in ice structure as we moved up the wind fetch. From our preliminary analysis, we do not see specific fetch-related changes. Second, we pulled three cores, numbers 17-19, off the mouth of the main channel of the Sagavanirktok River, where station 8 was also intended to be part of this array. The purpose of these stations was to look at the effect of river run-off on the sea ice. From our preliminary analysis, only the inner-most core, station 17, shows the influence of the river. This core consisted of about 0.5 m of sea ice overlying fresh water ice, which implies that the river continued to flow out under the ice after the sea ice began to grow. This observation also suggests that oil spilled in the Sagavanirktok River in the fall may also run out under the sea ice. Third, we pulled a total of 10 cores from the stations 14, 15 and N, which are located in the passes between the barrier islands. The purpose of these cores was to see if the water flow through the passes organized the crystal structure of the ice into parallel platelets. The cores from N showed no such organization; however, in three cases at stations 14 and 15, the platelets were approximately parallel to the sides of the pass. The ice also had some interesting small-scale features. Some of these were caused by the presence or absence of snow-cover. At stations 10 and 12, for example, the ice surface consisted of bare patches of ice which were approximately 5-15 m in diameter and set in a shallow snow field. At each site, the area of the patchy ice measured about 0.5 km in diameter. Our cores showed that the upper 0.3 m of this ice was very nearly fresh ice, so that the warm weather of the winter and the exposure to solar radiation had desalinated the upper part of the ice. At two other stations, where the snow cover was thin but still in existence, we observed large brine or air pockets in the upper part of the ice, which may also be a solar radiation effect. As previous field work has shown, these pockets can fill with oil released under the ice. At all stations, we also observed many brine channels in the interior of the ice, extending up to a height of about 0.4 m from the ice surface. This was in spite of the cold weather during the traverse; further, there were many more channels than were observed by our traverse of last February. Again, the growth of these channels may be associated with the warm winter weather. - V. Problems Encountered/Recommended Changes: None. - VI. Estimate of Funds Expended: 70% expended. #### QUARTERLY REPORT R.U. #88: Dynamics of Near-Shore Ice P.O.: 01-5-022-1651 Reporting Period: April 1977-June 77 Number of Pages: 6 ## DYNAMICS OF NEAR - SHORE ICE Principal Investigators: A. Kovacs and W. F. Weeks Cold Regions Research and Engineering Laboratory Hanover, New Hampshire 03755 10 June 1977 #### I. Task Objectives #### 1. Narwhal Island - a. Collect quantitative information on the movements (velocities, directions, accelerations, and deformation rates) of the nearshore pack ice and the fast ice along the southern coast of the Beaufort Sea. - b. Make observations on major ice deformation features that occur near the edge of the fast/pack ice boundary. - c. Utilize an air-borne radar system for measuring variations in the thickness of sea ice. - d. Document the nature of the internal crystal structure of the fast ice in the vicinity of Narwhal Island. #### 2. Bering Strait Obtain ice-lapse photographs of an X-band radar display of sea ice movement through the Bering Straits. #### 3. Remote Sensing Continue analysis of SLAR imagery and laser profiles of the near-coastal sea ice. #### II. Field and/or Laboratory Activities #### 1. Narwhal Island During the complete time period covered by this report, the Narwhal Island program has been in the field. Some difficulties were encountered during installation of the equipment due to component failures and breaks in the communciations line connecting the two master units on Cross and Narwhal Islands. Once these difficulties were corrected, our systems have worked well and a large quantity of ice motion data has been collected. Project personnel in the field include A. J. Gow, J. Kelly, A. Kovacs, W. B. Tucker and W. Weeks. Satellite data (LANDSAT) was also selected so that we can make a retrospective study of ice conditions near Narwhal Island. #### 2. Bering Strait Problems were encountered during the conversion of the radar unit from 15 KW to 50 KW. These include component failures due to variations in the site power supply interference between the camera relays and the site radios, interference between the radar unit itself and the site radios, problems with the exposure settings and data box on the time-lapse camera. M. Frank visited Tin City and these problems are gradually being corrected. Preliminary examination of the imagery indicates striking ice motions through the Strait. Project personnel were M. Frank and W. Weeks. #### 3. Remote Sensing Analysis of the laser records is continuing. Arrangements were made for the Fort Huachuka "Mohawk" to obtain SLAR imagery along the coast of the Chukchi and Beaufort Seas. These flights were completed in April and the resulting imagery is of excellent quality. Project personnel are S. Fungcharoen, W. Tucker, and W. Weeks. # III. Results (DB indicates available in data bank) #### 1. Published reports - a. Kovacs, A. (1976) Grounded ice in the fast ice zone along the Beaufort Sea coast of Alaska. CRREL Report 76-32, 21 pp (DB) - b. Kovacs, A. and Gow, A. J. (1976) Some characteristics of grounded floebergs near Prudhoe Bay, Alaska. CRREL Report 76-34, 10 pp (DB) #### Reports Completed and In Press - a. Weeks, W. F., Kovacs, A., Mock, S. J., Tucker, W. B., Hibler, W. D., and Gow, A. J. (1977) Studies of the movement of coastal sea ice near Prudhoe Bay, Alaska. <u>Journal of Glaciology</u>, Vol. 19, No. 81 (DB, available in xerox copy only). - b. Kovacs, A. (1977) Sea ice thickness profiling and under-ice oil entrapment. Offshore Technology Conference (DB, available in xerox copy only). - c. Schwarz, J., and Weeks, W. F (1977) Engineering properties of sea ice. <u>Journal of Glaciology</u>, Vol. 19, No. 81 (DB, available in xerox copy only). - d. Gow, A. J. and Weeks, W. F. (1977) The internal structure of fast ice near Narwhal Island, Beaufort Sea, Alaska. CRREL Report. - e. Sodhi, D. S. (1977) Ice arching and the drift of pack ice through restricted channels. CRREL Report. #### Reports in Preparation - a. Kovacs, A. (1977) The origin of rock debris found on sea ice north of Narwhal Island, Alaska. CRREL Report. - b. Tucker, W. B., Weeks, W. F., Kovacs, A., and Gow, A. J., (1977) Near shore ice motion at Prudhoe Bay, Alaska. AIDJEX Sea Ice Symposium. (Abstract inclosed). - c. Weeks, W. F., Tucker, W. B., Frank, M. and Fungcharoen, S. (1977) Characterization of the surface roughness and floe geometry of the sea ice over the continental shelves of the Beaufort and Chukchi Seas. <u>AIDJEX Sea Ice Symposium</u>. (Abstract inclosed). d. Gow, A. J., and Weeks, W. F. (1977) Preferred crystal orientations in the fast ice along the margins of the Arctic Ocean. AIDJEX Sea Ice Symposium. (Abstract Inclosed) #### IV. New Results #### 1. Narwhal Island - a. The fast ice around Narwhal Island shows more evidence of movement this year than last. Active cracks (up to 3 m wide) have developed just north of Narwhal and extensive fracturing can be found all throughout the "fast" ice. It is believed that a strong offshore wind might well take the fast ice out to sea with a flaw lead developing just north of the outer islands. Also there are very few grounded floebergs along the 18 m depth line that would help anchor the fast ice. The radar system shows many small motions in the offshore pack ice (a few hundred meters). However, as in 1976 there has been little net motion along the coast. - Island shows the development of a strongly aligned fabric. It is now believed that the c-axes are oriented parallel to the prevalent current direction and that this type of ice will be found anywhere where fast ice thicknesses exceed %50 cm and there are appreciable currents. This oriented ice is expected to show major changes in its compressive strength as a function of orientation (by a factor of 3). Also this oriented ice absorbs the most oil of all the ice types studied by S. Martin. The observations of Russian investigators working in the Kara Sea are also in good agreement with our hypothesis of current control for the oriented fabric. #### 2. Bering Strait - a. The X-band radar unit at Tin City is now operating at 50 KW (as contrasted with 15 KW when it was initially installed). - b. Preliminary analysis of the radar images indicates extremely rapid ice movements through the Strait with all sorts of of complex interactions occurring between the ice floes. #### 3. Remote Sensing The SLAR flights by the Fort Huachuka "Mohawk" have been completed. The resulting imagery is of a very high quality. #### V. Estimate of Funds Expended (Figures as of 4 May 1977) #### a. Carry-over 7T funds 1. Narwhal Island | Total | \$1,229.29 | |-----------|------------| | Spent | 1,229.29 | | Remainder | \$ 00.00 | 2. Bering Strait | Total | \$6,935.98 | |-----------|------------| | Spent | 6,935.98 | | Remainder | \$ 00.00 | #### b. FY77 Funds 1. Narwhal Island | Total | \$161,930.00 | |-----------|--------------| | Spent | 71,858.61 | | Remainder | \$ 90.071.39 | 2, Bering Strait | Total | \$75,335.00 | | | |-----------|-------------|--|--| | Spent | 23,756.07 | | | | Remainder | \$51,578.93 | | | # 3. Funds for Fort Huachuka Remote Sensing Total \$22,735.00 Spent 22,735.00 Remainder \$ 00.00 #### Summary Total Initial Funding (including FY7T Carryover) \$268,165.27 Funds Expended 126,514.95 Funds Remaining \$141,650.32 47% of funds expended #
CHARACTERIZATION OF THE SURFACE ROUGHNESS AND FLOE GEOMETRY #### OF THE SEA ICE OVER THE CONTINENTAL SHELVES OF THE #### BEAUFORT AND CHUKCHI SEAS bу W.F. Weeks, W.B. Tucker III, M. Frank and S. Fungcharoen Cold Regions Research and Engineering Laboratory Hanover, N.H. 03755 #### ABSTRACT Starting with the winter of 1975-76 and continuing until the present, remote sensing data have been collected that allow preliminary assessment of spatial and seasonal variations in roughness of the upper surface of the sea ice in the coastal zones of the Beaufort and Chukchi Seas. The primary instruments used were a laser profilometer and a X-band side-looking airborne radar (SLAR) system. Standard aerial photographs were also obtained along parts of the sample tracks. The replicate laser flights were made into the Chukchi Sea from land points at Point Lay, Wainwright, and Barrow. In the Beaufort Sea flights originated at Lonely, Cross Island (Prudhoe Bay), and Barter Island. At each site information was collected from the coast line to a turning point located 200 km offshore. Then the flight essentially retraced its course back to the coast allowing for a slight offset. The heaviest ridging was found at Barter Island and there was a general decrease in the intensity of the ridging as one moved further west into the Chukchi Sea. The individual frequency profiles fell off in an exponential manner as ridge height increased. There was no decrease in frequency at low ridge heights as has been suggested from examining sonar profiles of the bottom surface of sea ice. There was also a gradual decrease in ridging intensity as one moves away from the coast. This is clearly shown when comparisons are made between the number of ridges near the coast and the number of ridges found in the vicinity of the AIDJEX camps located further to the north. In fact SLAR imagery shows that the decrease in the area of ridged ice is gradual as one moves away from the coast and that there is no sharp demarcation to the so-called shear zone. The largest ridge sail observed was 6.4 m high. During the summer there was a decrease in the number of ridges and particularly in the frequency of the smaller ridges. Based on the present data, projections are made giving the frequencies of very large ridges as a function of location. SLAR imagery is also used to study the size and shape of multiyear floes in the coastal zone. The most common shape was nearly circular. The largest length to width ration observed was just over 5. The distribution of floe diameters also showed an exponential drop off as floe size increased. The largest flow diameter observed was 3600 m. #### NEAR SHORE ICE MOTION AT PRUDHOE BAY, ALASKA Ъу W.B. Tucker III, W.F. Weeks, A. Kovacs and A.J. Gow Cold Regions Research and Engineering Laboratory Hanover, N.H. 03755 #### **ABS TRACT** Shorefast and nearshore pack ice motions in the vicinity of Prudhoe Bay, Alaska have been monitored for the spring seasons (March-June) of 1976 and 1977. From the base camp on Narwhal Island, a barrier island 25 km northeast of Prudhoe Bay, a ranging laser was used to measure distances to targets located on the fast ice within a 7 km radius of the island. Net motion in the spring of 1976 was on the order of 1 m, generally perpendicular to the coast, and presumably caused by thermal expansion of the ice. Ice temperatures at several depths are being continuously monitored in 1977 and correlations will be made with the motions observed in the fast ice to verify this interpretation. In addition to these spring measurements, detailed strain triangles were surveyed in the fall of 1976 and again during the spring of 1977 to give a general picture of the net deformation occurring during a winter. In addition, a radar ranging system, with master tracking units located on Narwhal and Cross Islands to provide a 20 km fixed baseline, was used to study the motions of transponders located on both the fast and pack ice at distances as large as 40 km to the north of the barrier islands. This system had a resolution of ±3m. The 1976 results showed short term pack ice motions of up to 2.7 km, but overall net motions in any direction were nonexistent. Also there was a systematic increase in the observed motions of the fast ice measured parallel to the coast as the distance from the shore to the measurement site increased. The fast ice-pack ice boundary was found to be located in 30-35 m of water, rather than at the 18 m depth as has been observed at points further west. Time series of the drift and significant deformation rates of the ice have been analyzed. Comparisons of these data with local meteorological variables (namely wind) gives no significant correlation. Spectral analysis of the fast ice motions shows peaks at 24 and 12 hours. The 24-hour cycle is attributed to the diurnal temperature cycle while the 12-hourly peak may be caused by the tidal cycle. Comparisons between the pack ice and the fast ice motions, again demonstrated little significant correlations suggesting that pack ice motions have little impact on short term motions of the fast ice. The lack of correlation between all ice motion and local wind when the ice is in a tightly packed condition, suggests that models for predicting nearshore dynamics must be part of larger scale regional models that allow for the lateral transfer of stress through the ice. # PREFERRED CRYSTAL ORIENTATIONS IN THE FAST #### ICE ALONG THE MARGINS OF THE #### ARCTIC OCEAN bу A.J. Gow and W.F. Weeks Cold Regions Research and Engineering Laboratory Hanover, New Hampshire 03755 #### Abstract Field observations of the growth fabrics of the fast and near-fast ice along the coast of the Beaufort Sea in the vicinity of Cross and Narwhal Islands have shown that the orientations of the ice crystals in the ice sheet change systematically with depth. At the time these observations were made (March-April-May 1976, 1977) the ice studied was roughly 2 m in thickness. The characteristic orientations were as follows: - a) Upper layer c-axes nearly random (the thickness of this layer ranges up to 25 cm and is largely controlled by the amount of slush present in the sea just prior to freeze-up). - b) Intermediate layer c-axes randomly distributed in the horizontal plane (this layer develops from the overlying random orientation because in ice the direction of most rapid growth is in the basal (0001) plane). - c) Lower layer c-axes strongly aligned in the horizontal plane. The structures of the upper and intermediate layers have commonly been observed in sea ice and were expected. The presence of the lower layer structure has been noted by Peyton and by Cherepanov in studies of near-coastal ice. However, little was known about the characteristics, extent, and origin of this fabric. We found the c-axis horizontal and aligned fabric to always be discernable by 60 cm depth and in one case it was clearly developed by 15 cm; therefore, the majority of the ice column is composed of this type of ice. The degree of preferred orientation is striking with the standard deviation from the mean c-axis direction (as measured in the horizontal plane) commonly varying between $5^{\,0}$ and $15^{\,0}$ at depths of 160 cm. The mean c-axis direction remains constant throughout the lower layer, therefore, simplifying sampling; it is not necessary to obtain samples from the bottom of the sheet to determine mean c-axes directions. Invariably the strongest orientations were observed at the bottom of the ice sheet. The 19 sites that were sampled were spaced throughout an area with dimensions of 60 km (along the coast) by 25 km (off the coast). Samples were taken both seaward and landward of the barrier islands. Ice at all sites showed strong development of the aligned structure. In general the c-axes of the crystals were aligned parallel to the main coastline (roughly E-W). In the vicinity of islands the alignment roughly parallels the outlines of the islands. In narrow passes between islands c-axes are oriented parallel to the channel. We suggest that the c-axes orientation directions indicate the directions of the currents beneath the ice. The fabric develops via selective crystal growth with the favored crystals being those with their basal planes oriented normal to the direction of flow. The mechanics of this process are discussed in the paper. Both our observations as well as Cherepanov's observations on ice in the Kara Sea can be explained by this hypothesis. We believe that these aligned fabrics will occur in any fast ice area where the ice reaches thicknesses in excess of 50 cm and where there are appreciable currents. The development of this type of preferred orientation causes the ice to assume properties similar to those of a giant single crystal even though the individual crystals that comprise the oriented ice mass do not show appreciable changes in size with depth. The effects of the development of this oriented structure are quite varied. The resulting ice shows variations of a factor of 3 in its compressive strength as a function of the orientation of the force; fast ice commonly has its maximum tensile strength oriented normal to the coast (i.e. it grows in the strongest possible orientation); and the oriented ice absorbs more oil than other ice types that have been studied. #### QUARTERLY REPORT Contract: 03-5-022-67 Research Unit: 98 Reporting Period: 1 Apr - 30 Jun 1977 Number of Pages: 3 DYNAMICS OF NEAR SHORE ICE Norbert Untersteiner Professor of Atmospheric Sciences and Geophysics AIDJEX Project Director > Max D. Coon AIDJEX Research Coordinator Division of Marine Resources University of Washington Seattle, Washington 98195 #### I. TASK OBJECTIVES The University of Washington under Task Order No. 5 of NOAA Contract 03-5-022-67 agreed to deploy ice buoys to gather data on ice movement and atmospheric conditions in the nearshore areas of the Beaufort and Chukchi Seas. In addition to this field program,
the University agreed to process data and do model calculations. #### II. FIELD AND LABORATORY ACTIVITIES - A. Field Trips Scheduled None. - B. Scientific Party None. #### C. Methods All buoys mentioned in this report are sampled by the Random Access Measurement System on board Nimbus VI satellite. # D. Sample Locations The sites of the buoys at deployment and after drifting are as follows: | Buoy | Da te | Lat. | Long. | Date | Lat. | Long. | |------|--------------|---------|----------|-----------------|---------|----------| | 1064 | 3/2 | 67.08°N | 168.00°W | Expired
4/25 | 67.12°N | 168.16°W | | 1035 | 3/2 | 68.83°N | 168.98°W | 6/16 | 70.55°N | 167.89°W | | 1052 | 3/2 | 70.67°N | 165.67°W | 6/16 | 72.21°N | 168.72°W | | 1617 | 3/7 | 72.33°N | 166.00°W | 6/16 | 73.42°N | 173.91°W | | 1023 | 3/13 | 69.67°N | 173.67°W | 6/16 | 70.47°N | 174.95°W | | 1305 | 3/13 | 70.92°N | 173.75°W | Expired
5/3 | 71.16°N | 174.36°W | | 0632 | 3/22 | 70.62°N | 147.25°W | Expired
5/30 | 70.74°N | 146.91°W | | 1601 | 3/22 | 70.83°N | 147.00°W | 6/16 | 70.52°N | 147.26°W | # E. Data Collected or Analyzed - The buoys mentioned in D above were tracked during this quarter. - Data from the first quarter of 1977 has been forwarded to the NOAA data bank. # III. RESULTS As can be noted from the two positions for the buoys that are shown under II-D, there had been very little motion of the ice during this period. During the first few days when buoys were put out there was a rather large motion and there has been little subsequent motion. ### IV. PRELIMINARY INTERPRETATION OF THE RESULTS There has been no detailed analysis of the motion of the buoys. However, it is clear that there was no large transport of ice from the Chukchi to the Bering Sea during this period. # V. PROBLEMS ENCOUNTERED AND RECOMMENDED CHANGES There have been no problems encountered during this quarter. It is recommended that OCSEAP consider retrieving Buoy 1601 near the end of its life (in early September) if it is still functional at that time. This is based on the premise that it will still be in the very nearshore area and it will be easy to retrieve. # VI. ESTIMATE OF FUNDS EXPENDED As of May 31, 1977, actual expenditures under this contract totaled \$210,854. The estimated obligations for June are anticipated to be approximately \$14,073. # Quarterly Report Contract #03-5-022-56 Research Unit #99 Task Order #6 Reporting Period 4/1/77 - 6/30/77 Number of Pages THE ENVIRONMENTAL GEOLOGY AND GEOMORPHOLOGY OF THE GULF OF ALASKA COASTAL PLAIN AND THE COASTAL ZONE OF KOTZEBUE SOUND Dr. P. Jan Cannon Geology Department University of Alaska Fairbanks, Alaska 99701 # QUARTERLY REPORT FOR QUARTER ENDING JUNE 30, 1977 Project Title: The Environmental Geology and Geomorphology of the Coastal Zone of Kotzebue Sound Contract Number: 03-5022-56 Task Order Number: 6 Principal Investigator: Dr. P. Jan Cannon ## I. Task Objectives A. To produce three maps, with explanations, which will display certain baseline data necessary for an environmental assessment of the regions. The maps will be constructed from various types of remote sensing data. - 1. Environmental geologic map of the entire forelands from Cape Prince of Wales to Cape Lisburne which will include the lowlands of the Kobuk Delta, the Noatak Delta, and the Kotzebue Moraine. - 2. A coastal landforms map of the region identifying and describing important geomorphic features. - 3. A map which indicates potential tectonic and geomorphic hazards. - B. To produce a report on the unique geologic setting of the Kobuk Delta indicating the possible effects (beneficial and adverse) of petroleum related development in the area. - C. Direct the acquisition of remote sensing data of the area for Cannon, Hayes and other investigators. - D. Construct a mosaic of the area of sequential LANDSAT data for Cannon, Hayes, and other investigators. - E. Construct an annotated mosaic of the area from SLAR imagery. #### II. Activities Made a field trip to Kotzebue Sound to study pre-break-up conditions in the coastal zone. #### III. Results Documented two important processes which are adding materials to the beach. - 1. Mud flows and debris slides are adding materials to the beach zone prior to break-up. - 2. Gravel from the near shore sea bottom is pushed by ice movement towards and onto the beach. # IV. Preliminary Interpretation of Results An important amount of materials are being added to the beach area by processes other than stream action. Materials taken from the sea bottom by ice action can be deposited in the beach zone. Some of these sea bottom materials (mostly gravels) are being picked up from places which are nearly three kilometers from shore. ### V. Problems Encountered/Recommended Changes The effects of freeze-up on the beach have not been fully studied. It is recommended that the effects of freeze-up be closely studied in the study area this coming September and October. #### OCS COORDINATION OFFICE # University of Alaska # ENVIRONMENTAL DATA SUBMISSION SCHEDULE DATE: June 30, 1977 CONTRACT NUMBER: 03-5-022-56 T/O NUMBER: 6 R.U. NUMBER: 99 PRINCIPAL INVESTIGATOR: Dr. P. Jan Cannon No environmental data are to be taken by this task order as indicated in the Data Management Plan. A schedule of submission is therefore not applicable. Data Management Plan has been approved by M. Pelto; we await approval by the Contract Officer. Contract no. - 01-50-22-2313 Research Unit no. - 105 Reporting period - 1 April 1977 30 June 1977 Number of pages - 8 Quarterly Report to U.S. Department of Commerce National Oceanic and Atmospheric Administration Arctic Projects Office Fairbanks, Alaska DELINEATION AND ENGINEERING CHARACTERISTICS OF PERMAFROST BENEATH THE BEAUFORT SEA Principal Investigator: P.V. Sellmann Associate Investigators: - J. Brown - S. Blouin - E. Chamberlain - I. Iskandar - H. Ueda June 30, 1977 CORPS OF ENGINEERS, U.S. ARMY COLD REGIONS RESEARCH AND ENGINEERING LABORATORY HANOVER, NEW HAMPSHIRE Approved for public release; distribution unlimited. #### I. TASK OBJECTIVES The emphasis of this program is on quantifying the engineering characteristics of permafrost beneath the Beaufort Sea, and determining their relation to temperature, sediment type, ice content and chemical composition. These data will be used in conjunction with those from the other OCSEAP marine and subsea permafrost projects to develop a map portraying the occurrence and depth of permafrost under the Beaufort Sea. The drilling program is providing subsurface samples and other controls for the other programs. It is also designed to test drilling, sampling, and in-situ measurement techniques in this offshore setting where material types and ice conditions make acquisition of undisturbed samples extremely difficult. Our current activities are being jointly undertaken with the USGS program RU204, and Dr. Robert Lewellen's ongoing ONR project that was previously based at Barrow. We are also working closely with the University of Alaska OCS projects. #### II. FIELD OR LABORATORY ACTIVITIES # A. Ship or Field Trip Schedule: Our 1977 field program in the Prudhoe Bay area was carried out during this quarter. The activities started at Prudhoe Bay on March 22 with mobilization of equipment for the spring drilling and sampling program. The first hole was started on 30 March and the last hole was completed on May 1, with demobilization and final field operations completed on May 5, 1977. ### B. Scientific Party: Project individuals in the field during the 1977 effort: | | Individual | <u>Organization</u> | <u>Time</u> | <u>Activity</u> | |------|-------------------|---------------------|---------------------|---| | 1. | Scott Blouin | USACRREL | 23 March - 19 April | Probe Study | | 2. | Edwin Chamberlain | USACRREL | 23 March - 5 May | Sample Logging, Processing and Thermal Logging | | 3. | Allan Delaney | USACRREL | 21 March - 1 April | Mobilization | | 4. | Donald Garfield | USACRREL | 23 March - 19 April | Probe Study | | 5. | Roger Hartz | USGS | 15 April - 4 May | USGS Sample Logging and
Analysis | | 6. | Dave Hopkins | USGS | 29 March - 16 April | USGS Sample Logging,
Analysis, and Interpretation | | 7. | Robert Lewellen | Contract-USGS | 27 March - 5 May | Drilling and Sampling | | . 8. | Vaughn Marshall | USGS | 15 April - 6 May | Thermal Observations | | 9. | Fred Page* | USACRREL | 10 April - 10 May | Sample Processing(Fairbanks) | | 10. | Paul Sellmann | USACRREL | 21 March - 5 May | Drilling and Sampling and
General Field Operations | | 11. | Herb Ueda | USACRREL | 21 March - 5 May | Drilling and Sampling | ^{*} Jerry Brown and Fred Page visited the field activities on April 23; Page processed samples for chemical analyses in CRREL's Fairbanks lab (Ft. Wainwright). #### C. Methods: All laboratory, field, and sampling methods have previously been discussed in the 1976 Operational Report (Sellmann, et al., 1976), as well as in quarterly OCSEAP progress reports under research unit 105. The only methods and procedures not covered to date are the techniques and equipment items employed for installing the larger diameter casing used this season, and details concerning the new probe equipment. Installation of a large diameter, heavier-duty casing was intended to reduce casing failure problems and permit greater depth of penetration. The casing used was heavy-duty, flush-joined drive casing (3 3/4" I.D. and 4 1/2" 0.D). This casing was driven with a McKiernan Model #5 air pile driving hammer. The hammer produced 1000 ft/1b blows at a maximum rate of 300 blows/min. at 100 psi. A removable guide rack was constructed for our drilling unit to center the hammer over the hole and permit safe and easy handling of the hammer. The hammer's air supply was provided by a 250-CFM, 100 psi Davey air compressor. The casing setting employing this equipment was a substantial improvement over last year's
operation, since it was essentially trouble-free and considerably more efficient. The probe equipment used this year was designed and developed at CRREL. The equipment was completely housed in a small 5 x $8\frac{1}{2}$ ft building mounted on a heavy skid frame. The skids also acted as a parking pad for the large TD-25 tractor that provided reaction force for the static testing, thereby eliminating timeconsuming anchor setting. The TD-25 also was used to move the probe rig between sites. Waste heat from an externally mounted diesel generator was used to heat the small house which contained equipment for electrical data acquisition. Static penetration resistance of the probe and external casing was continuously recorded as a function of depth on a X-YY recorder. Temperature data were obtained through the probe string after the sediment and probe rod came to equilibrium. generally took about 5 to 6 hours, although usually the probe was left in the sediment overnight. If temperature data were not obtained, up to three probe resistance profiles, 12-13 meters deep, could be obtained in a day. Usually two sites were occupied per day, one of which was thermally logged. Additional details concerning the probe equipment and results will be covered in this year's operational report. # D. Sample Localities: Five sites were selected for drilling and sampling in the Prudhoe Bay area. They were located in areas where obvious gaps in data existed from previous drilling activities. The locations of the holes PB 5-9 are shown in Figure 1. Additional data concerning the deep holes are provided in Table I. The probe sites examined PH 1-27 are also shown on Figure 1. Their locations were selected in an attempt to obtained data from most of the geological and depositional settings in the Prudhoe Bay area. Additional detail concerning these sites is given in Table II. ** Sellmann, P.V., R.I. Lewellen, H.T. Ueda, E.J. Chamberlain, and S.E. Blouin, 1976, 1976 USACRREL-USGS Subsea Permafrost Program, Beaufort Sea, Alaska - Operational Report, USACRREL Special Report 76-12. Figure 1. Map of site locations in Prudhoe Bay, Alaska. PB indicates location of drill holes (open circles were drilled during 1977 season, PB 5-9; closed holes during 1976 season, PB 1-4). PH indicates probe hole. 43 TABLE I DATA FOR 1977 PRUDHOE BAY CRREL-USGS DRILL LOCATIONS | <u> Hole</u> | General Location | Longitude | Latitude | Ice
Thickness
(m) | Water
Depth
(m) | Hole Depth(from ice (m) surface) | |--------------|------------------------------|------------------------|------------------------|-------------------------|-----------------------|----------------------------------| | PB-5 | 2.8 km NE of Gull Island | 148 ⁰ 19.7' | 70°23.3' | 1.50 | 1.75 | 11.8 | | РВ-6 | 1.0 km NE of Discovery Well | 148°30.6' | 70°23.05° | 1.80 | 1.85 | 8.2 | | РВ-6а | 1.0 km NE of Discovery Well | 148°30.6' | 70 ^o 23.05! | 1.80 | 1.85 | 30.6 | | PB-7 | 3.5 km NE of Discovery Well | 148 ⁰ 28.5' | 70 ⁰ 24.251 | 1.81 | 2.86 | 68.0 | | PB-8 | 1.3 km SW of Reindeer Island | 148°21.6' | 70 ⁰ 28.51 | 2.18 | 6.98 | 32.4 | | PB-9* | 0.3 km SW of Discovery Well | 148°31.6' | 70 ⁰ 22.55¹ | land | land | 19.1 | ^{*} PB-9 was drilled and sampled by R&M Engineering and is on land. TABLE II DATA FOR 1977 PRUDHOE BAY CRREL PROBE LOCATIONS | Probe
Nole | General Location | Longitude | Latitude | Ice
thickness
(m) | Water
depth
(m) | Maximum penetration (m) | |---------------|-----------------------------|-------------------------|------------------------|-------------------------|-----------------------|-------------------------| | | 2.8 km NE of Gull Island | 148 ⁰ 19.7' | 70°23.3' | 1.83 | 1.98 | 11.8 | | PH-1 | | | | | | | | PH-2 | 3.7 km NE of Gull Island | 148 ⁰ 19.8' | 70°23.85' | 1.83 | 3.15 | 12.3 | | РН-3 | 4.7 km NNE of Gull Island | 148 ⁰ 19.85' | 70 ⁰ 24.4 | 1.52 | 3.23 | 12.9 | | PH-4 | 1.9 km NE of Gull Island | 148 ⁰ 19.7' | 70 ⁰ 22.7' | 1.52 | 1.52 | 13.3 | | PH-5 | 1.4 km E of Gull Island | 148 ⁰ 19.6' | 70°21.9' | 0.90 | 0.90 | 7.5 | | рн-6 | 3.3 km SSE of Gull Island | 148 ⁰ 19.7' | 70°20.71 | 1.75 | 2.93 | 14.1 | | PH-7 | 2.6 km SSE of Gull Island | 148 ⁰ 19.5' | 70°20.3° | 1.60 | 2.43 | 15.1 | | РН-8 | 2.6 km SE of Gull Island | 148 ⁰ 19.3' | 70°21.2' | 1.50 | 1.69 | 10.3 | | РН-9 | 2.2 km SE of Gull Island | 148 ⁰ 31.9' | 70 ^o 22.55' | 1.28 | 1.28 | 15.4 | | РН-10 | 1.0 km NE of Discovery Well | 148 ⁰ 30.6' | 70 ⁰ 23.05' | 1.68 | 2.12 | 11.3 | | PH-11 | 0.8 km NE of Discovery Well | 148°30.8' | 70°22.95' | 1.68 | 1.73 | 12.3 | | PH-12 | 0.5 km NE of Discovery Well | 148 ⁰ 31' | 70 ⁰ 22.85 | 0.91 | 0.91 | 1.3 | | PH-13 | .63 km NE of Discovery Well | 148 ⁰ 30.9' | 70 ⁰ 22.95 | 1.56 | 1.56 | 8.4 | | PH-14 | .57 km NE of Discovery Well | 148 ⁰ 30.9' | 70 ⁰ 22.9' | 1.53 | 1.53 | 12.2 | | PH-15 | 0.5 km NE of Discovery Well | 148°31' | 70 ⁰ 22.85 | 0.69 | 0.69 | 1.2 | Table II (Cont'd) | Probe | | T amadeu la | T | Ice
thickness | Water
depth | Maximum
penetration | |-------------|-----------------------------------|-------------------------|-----------------------|------------------|----------------|------------------------| | <u>Hole</u> | General Location | Longitude | Latitude | (m) | (m) | (m) | | PH-16 | 0.54 km NE of Discovery Well | 148°31' | 70°22.87' | 1.35 | 1.35 | 9.9 | | PH-17 | 0.12 km inland from Stump Island | 148 ⁰ 34.1' | 70°22.25' | 0.91 | 0.91 | 4.5 | | PH-18 | 0.12 km seaward from Stump Island | 148°33.7' | 70°24.3' | 1.83 | 1.94 | 11.3 | | PH-19 | 2.0 km NE of Discovery Well | 148 ⁰ 29.75' | 70°23.5' | 1.80 | 1.95 | 10.6 | | PH-20 | 3.5 km NE of Discovery Well | 148°28.5' | 70°24.25 | 1.80 | 2.06 | 11.1 | | PH-21 | 4.2 km NW of Gull Island | 148 ⁰ 25.3' | 70°23.9' | 1.70 | 1.88 | 8.3 | | PH-22 | 3.3 km NW of Gull Island | 148 ⁰ 23.2' | 70°23.65' | 1.85 | 2.17 | 10.9 | | PH-23 | 3.2 km N of Gull Island | 148°21.7' | 70°23.6' | 1.60 | 2.13 | 11.2 | | PH-24 | 3.2 km NW of Niakuk Island | 148017.3' | 70°22.9' | 1.80 | 2.03 | 10.7 | | PH-25 | 1.5 km N of Niakuk Island | 148 ⁰ 15' | 70°22.6' | 1.80 | 2.00 | 11.6 | | PH-26 | 1.9 km NE of Niakuk Island | 148 ⁰ 12.7' | 70 ⁰ 22.41 | 1.80 | 1.83 | 10.0 | | PH-27 | 2.5 km NE of Heald Point | 148°10.4' | 70 ⁰ 22.2' | 1.65 | 1.89 | 14.6 | # E. Data Collected or Analyzed: # Drilling Program The drilling effort provided wash samples or cores over a total of 170 meters of hole, a considerable amount of sample material for analysis. Samples were collected, logged, and distributed between USGS and CRREL, with samples available for almost the entire hole depth. Core samples were selected for 1) chemical analysis, 2) engineering property determinations, and 3) geological studies including paleontological and C-14 analysis. The cased holes were also thermally logged. # Chemical Properties The chemical samples were subsampled from the primary cores at the drill sites and transported as soon as possible to the CRREL laboratory in Fairbanks for processing. Water extracts were obtained from the samples by centrifuging. The conductivity, alkalinity, and moisture content were determined. This permitted shipment of oven-dried samples and extracts to Hanover for further chemical analysis, including major ion determinations. More than 100 samples were processed. # Engineering Properties Samples were selected in the field for laboratory strength, consolidation, and index property tests in Hanover. These tests will be initiated during the next quarter. # Geological Investigations Each hole was logged in the field, based on examination of both the core and wash samples and the cores were photographed. Additional information was based on drilling response during the operation. Cores were subsampled for further examination at the USGS laboratory in Menlo Park. Core and wash samples were used to provide lithologic descriptions, determine depositional origin, and general age of the sediments. These results are reported by Hopkins (RU 204). #### Thermal The thermal observations made at the drill sites by the USGS personnel were initiated soon after each hole was completed, and measured sequentially until the equilibrium point was reached. Preliminary examination indicated that holes reached equilibrium in an orderly manner. The new casing and driving system permitted control of the drilling fluid and on no occasion was drilling required in advance of the casing. This eliminated fluid loss into the formation, which substantially slows restoration of thermal equilibrium. Most of the temperature gradients, even those obtained shortly after hole completion, were very smooth, with no indication of local disturbance due to drilling. The results of the deep thermal data will be reported by the USGS. Additional shallow thermal data were obtained by CRREL from more than half of the probe sites. In most instances this information was obtained to depths great enough to determine annual bed temperatures and to indicate the trend of the gradient with depth. The results of the temperature data, along with the engineering probe data, will be discussed in future reports. # III and IV. RESULTS AND DISCUSSION The 1977 drilling and probe programs were extremely productive and successful. Six holes were drilled and sampled in detail. Engineering properties and thermal data were obtained from the 27 probe holes. The general lithology of the holes was much the same as last year, with a fine-grained section starting at the seabed which overlies the coarser sands and gravels. In the deeper holes, fine-grained sediments were found in small layers and beds. In several beds, close-interval sampling yielded large quantities of organic material distributed at critical locations throughout the section. This material was in adequate quantity for dating purposes. The probe data are being used to interpolate the lithology between the drilled holes. Changes in lithology are very apparent from the probe records. The thermal
probe data were compared with thermal data from similar locations occupied last year by both the USGS and CRREL, and gave very comparable results. Thermal data indicated permafrost was present in all the holes with bonded sediments found near the surface in several probe holes and at depth in drill hole PB-6. Summary of the results of last year's work was covered in the RU 105 annual report. Laboratory and office analyses of the 1977 cores and some aspects of the chemical analyses have now been initiated. The chemical data from a preliminary examination of the conductivity data indicated uniform salinity with depth. Complete discussion of results will follow as analysis of the samples progresses. Two papers were submitted for publication in the Third International Conference on Permafrost: - (1) Chamberlain, E.J., P.V. Sellmann, S.E. Blouin, D.M. Hopkins, and R.I. Lewellen, Engineering Properties of Subsea Permafrost in the Prudhoe Bay Region of the Beaufort Sea. - (2) Iskandar, I.K., T.E. Osterkamp, and W.D. Harrison, Chemistry of Interstitial Water from Subsea Permafrost Prudhoe Bay, Alaska. # V. PROBLEMS ENCOUNTERED/RECOMMENDED CHANGES None. # VI. ESTIMATE OF FUNDS EXPENDED It is projected that as of June 30, 60,000 of the FY77 funding remains unobligated. Research Unit #204: Quarterly Report, April-May-June, 1977 OFFSHORE PERMAFROST STUDIES, BEAUFORT SEA #### I. Abstract of Highlights Four boreholes were completed offshore and one onshore in the Prudhoe Bay area. Engineering probes, using equipment developed by Scott Blouin and Don Garfield (CRREL) (R.U. 104) provided supplementary information on stratigraphy and geothermal temperatures at about 20 sites. Borehole PB-5, a 12-meter hole on Gull Island Shoal, showed that the shoal is a constructional feature composed of silt and fine sand prograding westward, down-current from the mouth of the Sagavanirktok River. Information from this and from nearby probe holes established that the ancient thaw lake, of which Prudhoe Bay is a remnant, once extended approximately to the north edge of Gull Island Shoal. Borehole PB-6, a 30-meter hole near the elbow of the new ARCO dock, penetrated permafrost at 29 meters. In this hole we recovered intact frozen cores for the first time. Borehole PB-7. located near the site of Osterkamp and Harrison's borehole 3370, was driven to a depth of 68 meters, the greatest depth attained by any borehole in our program. We had expected to encounter ice-bonded permafrost at 50 meters, but the ground remained unfrozen to the bottom of the hole, although temperatures were as cold as -2.2, well below the freezing point of seawater. A radiocarbon-date from a depth of 1.4 m below the sea bottom in borehole PB-2, driven in 1976 a few kilometers seaward from Reindeer Island, yielded the surprisingly great age of $18,000 \pm 170$ years (USGS-192). Other evidence leads us to believe that this date is anomalous and the enclosing sediments are actually only a few thousands of years old. # II. Task Objective: D-9 #### III. Field and Laboratory Activities - A. Field Activities - March 25-May 5. conduct Prudhoe Bay borehole program in cooperation with CRREL personnel (R.U. #104). - May 25-June 4: return to Prudhoe Bay for final logging of 1977 boreholes. - B. Scientific Party - D. M. Hopkins, geologist and P.I. - R. E. Lewellen, geologist and chief driller Vaughn Marshall, geophysicist, geothermal studies - R. W. Hartz, geologist, log and sample core, driller's assistant, geothermal logging - Joyce Blueford, technician, prepare microfossil samples. - P. A. Smith, technician, core radiography, pick radiocarbon samples. - C. Methods of Analysis Core radiography Radiocarbon analysis Amino-acid racemization analysis Pebble roundness and lithology - D. Sample Localities Four offshore boreholes and one onshore borehole in Prudhoe Bay area. Precise locations given in Quarterly Report for R.U. 104. - E. Data collected or analyzed Completed identifications of all mollusks from 1976 boreholes samples; submitted most of the identifiable pelecypods for amino-acid analysis. Split subsamples from 1977 cores and cuttings for marine microfossil study. Washing and picking started. Several 1976 samples and one 1977 sample concentrated and submitted for radiocarbon dating. One 1976 radiocarbon analysis completed. Radiography of 1977 cores completed. # IV. and V. Results and Interpretation A. A radiocarbon analysis for a bulk sample of organic sediment in the marine section of one of the 1976 boreholes, PB-2 (summary log attached) yielded an age estimate of 18,000 years ± 170 years (USGS-192). This sample is unexpectedly old. Pollen and foraminifera from this sample suggest an age no greater than 5,000 years, and the stratigraphic position suggests that an age of one or two thousand years is more probable. Pollen analysis of a sample from the same level in PB-2 showed that about 15% of the total pollen assemblage is redeposited Cretaceous pollen. Thus, contamination by Cretaceous coal is possible. Organic matter eroded from Pleistocene deposits in the coastal bluffs may also be present. However, if the sample were deposited 3,000 years ago, about 85% of dead carbon would be required to increase the apparent age to 18,000 years. At present, we are unable to explain satisfactorily the unexpectedly great age of the radiocarbon-dated sample from PB-2. B. Four boreholes were completed offshore and one onshore in the Prudhoe Bay area. Engineering probes, using equipment developed by Scott Blouin and Don Garfield (CRREL) (R.U. #104) provided supplementary information on stratigraphy and geothermal temperatures at about 20 sites. Latitude and longitudes of the borehole sites is given in the Quarterly Report for R.U. #104. Summary logs of the four offshore boreholes are attached herewith. Thermal logs will be included in the next quarterly report. Borehole PB-5, a 120 meter hole on Gull Island Shoal, showed that the shoal is a constructional feature composed of silt and fine sand prograding westward, down-current from the mouth of the Sagavanirktok River. Information from this and from nearby probe holes established that the ancient thaw lake, of which Prudhoe Bay is a remnant, once extended approximately to the north edge of Gull Island Shoal. Borehole PB-6, a 30-meter hole near the elbow of the new ARCO dock, penetrated permafrost at 29 meters. In this hole we recovered intact frozen cores for the first time. Borehole PB-7, located near the site of Osterkamp's and Harrison's borehole 3370, was driven to a depth of 68 meters, the greatest depth attained by any borehole in our program. We had expected to encounter ice-bonded permafrost at 50 meters, but the ground remained unfrozen to the bottom of the hole, although temperatures were as cold as -2.2, well below the freezing point of seawater. Borehole PB-8 was located a short distance inland from Reindeer Island and driven to a depth of about 32.5 m. The principal objective here was to determine the relationships between barrier islands and the distribution of overconsolidated marine clay, and especially to compare the engineering characteristics of the marine silt and clay at this site with that encountered in borehole PB-2. Engineering parameters are being studied at CRREL (R.U. 104). The borehole program this spring helped us to recognize evidence of rapid thermokarst subsidence at many sites, following initial submergence; the bottom has then become shallower at most sites, as a consequence of rapid deposition of silt and fine sand introduced from the Sagavanirktok River. The marine sediments are underlain by thin angular gravel containing ventifacts (wind-polished stones) which in turn is underlain by organic-rich sand which in borehole OH-3370 yielded a radiocarbon age of about 22,000 years. Thicker gravel, evidently of outwash origin, lies below; a second series of organic horizons begin at depths of about -30 m. Organic samples from this deeper organic horizon are being radiocarbon-dated at the present time. - C. An operational report on the spring, 1977 drilling program, prepared by R. E. Lewellen, is attached. - VI, Problems encountered and recommended changes: none. - VII. Estimate of funds expended to date: \$115,000 BOREHOLE PB-5 | ~. | | | | | | D | OR | <i>(= 1</i> | 70 | <i>L E</i> | | , | ٠ | د - | , | | | | | | | | | | | | | | |-----------|---|---|--------------------|---|--|----------|---------------|--------------|---------|------------|----------------|----------------------|------|------|---------|-----------|--------|----------------|----------|-------|----------|-------------|----------|----------|-----|-----------------|--|----------| | 2 | | | NO. | Û | | 1 | _ \$ | 5 | • | | | | | : : | | | | | | | | : | | į | T | į | 1 | 7 | | 5 | |) | V) | Ž | | | 5 | į la | | | | | | | :::: | | | | | | | | | | | | | 1 | | | + 6 | 1 | N | ŧ | | | 5 | . 3 | | | | | | | | | | | *:-* | | | | | . : : 1 | | : | | 1 | | 17 | - | i | | 7 | | | 7 | | | | | | | | | | | | | | | | | | | -: | | 1 | | | | | | +- | - | += | | | V | 1 | 7 | _ | | | - | | | | : : | | | | | | | | | 1 | | | | - | | | | | | ;:::: | | Y | | Ι | e | | | | | | | | | | | | | | | 1 | | | | | | | | | | | " | <u>~</u> | | | | | | | \neg | | | | | | | | | <u>:</u> | + : | 1 | | | | | | | | | / -5 | | ~ | | ٠ - | 54 | 3 | A) a | Ée | r. | | | | | | | | | | | | 7 | | 175-2° | 5 X | | 010 | | | | 7.7 | • | | = 1 | \dashv | | | | | | | . / | , | _ | | 1 | | | | | | 1 | | | | E | Die
Bit
Auge | ₹.≾ | b | | | | | | - | · · · - | | • | | ne | | | _ | | - 1 | ď | | | - | | | - | | | <u> </u> | | Hoge | ₹P 'Z. | 73 | + | | : : : | | | | | 14 | 011 | 51 | | etr | , (| -61 | | 50 | 7 | | - 1
 + | | | + | | 3.1-3.9 | 5 X | | $+$ _ \perp | · • · · · · · · · · · · · · · · · · · · | | 1 | | | | = | - | | | 2 | • | | 4 | 5. | 40 | - 7- |) | | | • : | + | | | \dashv | | | - + | | O2 | d
e car | ne 3.9 | 0 | | 1.1 | - | - | | | | | 1 | | | | | | | | \dashv | <u> </u> | -+ | <u> </u> | : | \dashv | | 3.9-4.5 | 5 N | | 03 | š | ne 3 .9 | | | | | = | | | | | | | | | | . : : | | | | - : | + | -: | | \dashv | | | | | | 11 | | 1 | 5.4 | , | | | | | | | | | | | | | -:::: | | | | | | | \dashv | | | 1-1 | 1 - 1 - 1 - 1 | | | | | | | | | 1 | | | | | 7 | 7-3 | | , | 7- | | | | | + | | | 4 | | | += | | + | | | 4 | | | | | | AT) | 7/1 | ne | 5 | ili | 4 | nd | C | 1ª | 4 | | | | 4 | | 1 - | 4 | | 6.3 - 6.9 | , K7 | | | | | | | | | | 1 | | | | | | | | | | | | | | _ | : | 1 : | 4 | | 9.3 - 6.7 | 5 X | | 04 | | 5-7.3 | _ | | | | | | | | . ! | ::::: | | | | | | | | | | | <u> </u> | | _ | | | | 7 | 5M | E4L\$ | 7.6 | <u> </u> | | : | | 3 | 1 | : | | | :: | | | | | | | | | | _ _ | <u>:</u> | | _ | | | | F | 14 7.5 | .73 | 5-7.9 | 5 | | | Ш | | | | | | | | | | | | | | | | | <u> </u> | · · | _ | | 7.95-8.6 | | | 9: | A | | | 1 | | Ш | | | | | | | | | | | | ٠ | | | | | | | | | | | | | 5D
6A | | | 71 | 5 | | | | | | | | | | | | | | | : | | | | | _ | | 8.90-9 | | | | | | | | : : : : | 0 | 5. | | B | | h | 54 | 777 | | md | 9 | PO. | re | / | | | | | | | | 9.45-9.5 | 95 | | ğ | 6D | | | 7. | 35- | 9 | | _ | | | .::- | | | | | | | | -: -: | | | | <u>:</u> | | | | 10.2-10. | | | | 4 | | | | | | ::=: | | <u> </u> | | | | | Š, | | Vei | 13 | 601 | e / | 77 4 | الارمود | 1 | ,/ { | | | | | | E | 4 | <u> </u> | | 1 | 10 | 7 - | • | | - | | 1/2 | د ع | BA | 7, | 1 10 1 | ere | 24 | 3 - | 7 4 | 70 | y | THE | 7 | 716 | | - | | 70.7-// | | | 2 | Ž. | | | | | | | | _ ' | _ | | | B | e 8 | ch | 9 | ~ | re | 13 | | | . : | | - | | | 11.3 - JL | * 🛛 | ======================================= | | | | 1 1.1. | | | 0.1 | <u> </u> | | ::-: | | | | • | - | | | - | 5-) | _ _ | | <u> </u> | | - | • | | | | | | | | | | | | | | | :: | | | | 1 | | 1 | | | : : | | | | | | | 1 | | | | | | | 1 | | | | | | | | :::: | | | | | | ::::. | | | | :: | | | | | | | | | | | _ | 7. | - | , | | | | | | | | | 1 | at | <u>L</u> | | | | | | | | -:- | | | | | | eg un | | - 0 | -30 | 7 | <i>†</i> | | | | | | | | | -4 | 27 | الله .
العر | | 1 | | | . : : 1 | | 1 | | | ۲ | | 1111 1111 | - | emp/ | ered | 7 | -Z- | 7 | 7- | | | | | | | | | 4 | er ' | 7 | | | | | | | . | | | 1 | | | | | | i | | - | | | | | | | | | | . : : : : | | | | | | | | : | + | | | | | | | ···· | | | | | !**
 ::::: | | | | | .:: | | | | | - | | | - | | | | | | : | 1 :: | i | | | | 1 1 | | | | 1 | | | | | | | | | | | | | | | | - : : : : | | 1 | -+ | : | - | | | | | | | | <u> </u> | .1 | 1 | | | | | | | | | | | 2 | | - | <u> </u> | | | | + | | | 7 | | | | 1 1 - | .1:::::: | 11 1 | .11 | 1 1 | | | | | :::: | | | | | | | | | | | | | | | ** :- : | + - | | | | | | 11 | | | + | 1 | | | | | | | | | - | | | | | | | | | | - : : | | | | | | | | <u> </u> | | 1 | taria
In e | | حصنا | | | 1 | | - | - : | | | | | | | | | | | :- | | \dashv | | | | 1 | | 1.4.111 | 1 | | 1 11 | | | | | | | | | | | | | _ | | | | | + | <u>:</u> | - | \dashv | | | | | .;:: | | | J | 1 | | | | | | | | | | | 1.1. | :::: | - | | 1 . : . : 4 | 11 11 | | | | 1 | | | . 1 | ::::::::::::::::::::::::::::::::::::::: | | | | | 1 | 1 | | | | | 1111 | | | - : : : | | | | | | | | | | | <u> </u> | | \dashv | | | - 1 | 7 - 7 - 7 - 7 - 7 | | | 1 | 4 | 4:::: | ::::: | 1 | | | | | | | 1 | : | | | 1 | :::- | : : : : | | | | | + | 4 | | | | | | | 1 | | 11111 | | | | | | | | | | | | | | | , | | | | | | | | | | | | | | | | | : : : : | | :::: | . : : : : | | | | 1 | | | | | | | | | | | | | | | | | | | 1 | 4 | | | | | | | | | | | | | | # QUARTERLY REPORT Çontract: RK6-6074 Research Unit: 205 Reporting Period: April through June, 1977 attachments Number of Pages: 2 plus 3 GEOLOGIC PROCESSES AND HAZARDS OF THE BEAUFORT SEA SHELF AND COASTAL REGIONS Peter Barnes Erk Reimnitz David Drake Pacific-Arctic Branch of Marine Geology 345 Middlefield Road Menlo Park, California 94025 July 1, 1977 #### QUARTERLY REPORT - RU 205 # I. Task Objectives The primary goal of this project is to study the nature, distribution, stability and thickness of Holocene and older sediments, and their relationship to sources, dispersal mechanisms and bottom processes. Emphasis is placed on processes that are unique to the arctic environment where ice plays a dominant role. More detailed objectives are given in previous reports and in the report of Field Activities (II). ### II. Field and Laboratory Activities ### A. Ship and field trip schedule: A field study was carried out across the eastern and central portions of the Colville River delta front platform during early May. ### B. Scientific Party: L. Toimil - U.S. Geological Survey, D. Mauer - U.S. Geological Survey #### C. Methods: The Oliktok DEW line site was used as a primary base of operations for the on-ice studies using snow machines and a two-man mobil camp to obtain ice thickness measurements, sediment samples, temperature and salinity observations, ice level data and other observations on the delta front. Work on the western delta was not completed due to numerous breakdowns of the snow machines. #### D. Data collected and objectives. Previous high resolution seismic profile surveys off major river distributaries on the inner shelf of the southern Beaufort Sea have revealed an apparent lack of Holocene sediment deposition. Off the Colville River, arctic Alaska's largest river system, almost no expression of a prograding delta system can be seen beyond the 2-m isobath. Recently we have speculated that this condition is likely related to under-ice processes which may play a significant role in the lighologic character, distribution, and removal of modern sediments. The objective of this study is to define such processes. The nature of the contact between the bottom fast ice and the sea bed was examined at 19 stations established between the 0.25 and 2.0-m isobath. Ice and sediment cores within this zone were collected using a Test-lab ice corer. Subsamples of each sediment core were collected for further analysis. In addition each ice core was examined for inclusions of sediments, general character, and total thickness. Eleven stations were occupied on the floating fast ice out to the 5-m isobath along with two established on the floating ice within the Colville and Kupigruak Channels. At these stations, water temperature and salinity were measured using a Beckman salinometer. Here also the general character and thickness of the ice were recorded. On May 8th two ice-level recorders were placed on the ice to record vertical fluctuations of the ice canopy. The recorders consist of modified Stevens water level recorders. The recorders were located along the 3-m isobath west of Thetis Island and on the Colville channel. Both recorders were picked up just after river overflow on June 11-12 by Jim Helmrick. Navigation during the ice operations was based primarily on a range-range Del Norte trisponder system allowing the location of each station to be determined within 10 m. Thus many of the stations established may be relocated and examined under summer conditions. # E. Scientific Laboratory Group | Peter Barnes \ | Project Ch | nief | U.S.G.S. | Office | of | Marine | Geology | |----------------|------------|--------------|----------|--------|-----|-------------|---------| | Erk Reimnitz | Principal | Investigator | 11 | 11 | 81 | | " | | David Drake | 11 | ที | ** | 11 | u | *** | 11 | | Larry Toimil | Co-Investi | .gator | ** | 91 | ** | #1 | 11 | | Doug Maurer | Assistant | | 11 | 33 | \$1 | 11 | 11 | | David McDowell | 11 | | " | ,, | \$1 | \$ T | in . | | Gene Gattung | \$1 | | 11 | 11 | 11 | 11 | μ | #### F. Other Activities Erk Reimnitz attended the Offshore Technology Conference in Houston where he presented a paper, Peter Barnes attended the AAPG, SEPM annual meeting in Washington, D.C. where he presented a paper. Considerable time and effort was expended this quarter geting ready for the upcoming field season and preparing a proposal for the OCSEAP program for the next fiscal year. #### III. Results See Attachments A, B, and C. # IV. Preliminary interpretation of results See Attachments A, B, and C Attachment A - A word of caution on the age of deep water ice gouges in the Beaufort Sea. Attachment B - Diver observations on the inner Beaufort Shelf. Attachment C - Preliminary results and observations on vibrocores taken on the Beaufort Sea inner shelf. ## V. Problems Encountered None of significance # VI. Estimate of Funds Expended During the last quarter: OCSEAP - 6000\$ USGS - 5000\$ #### Attachment A A word of caution on the age of deep water ice gouges in the Beaufort Sea. #### E. Reimnitz, P. Barnes, L. Toimil & D. Maurer The overwhelming number of workers presently concerned with ice gouging and ice hazards in the Beaufort Sea consider the seabed, or objects on the seabed at depths greater than about 45 m, to be safe from ice damage or reworking for thousands of years (Pelletier and Shearer, 1972; Kovacs, 1972; Kovacs and Mellor, 1974; Lewis, et al., 1976; Hnatiuk and Brown, 1977). There is some data to substantiate this assumption, but it is based mainly on the fact that no ice keels deeper than 45 to 50 m have been reported. Based on this observation, the gouges seen seaward of the 45-50 m on the Beaufort Sea shelf are thought to be relict, dating back to the time when sea level was
lower. We have already pointed out some uncertainties and errors in this assumption (Reimnitz and Barnes, 1974). Today the possibility of using submarine tankers, with terminals along the Arctic shelf edge, is considered a viable alternative to transport by pipeline (Tailor and Montgomery, 1977). Also, one must consider that the outer shelf of the Arctic will be developed at some time in the future. In order to protect ourselves from surprises, which could be very costly for industry and the marine environment, we may want to leave a question mark regarding the age of deep water gouges. In this note we outline the problems of old versus young gouges on the outer shelf. In the annual report, one of us (Toimil) gave a brief discussion on ice gouging in the Chukchi Sea. In that sea, ice gouges occur in much more patchy pattern than in the Beaufort Sea, often being found associated with hydraulic bedforms due to strong currents. This is especially true for deepwater (30 to 60 m) regions, suggesting both ice and water were active geologic agents. If there were no active processes besides the ice reworking the sea floor, the 3000-5000 years since sealevel has been near its present position should have been sufficient to establish an equilibrium between process and result. In which case, numbers of gouges being added should equal those eliminated by sediment infilling and reworking by benthic organisms. Therefore, for a particular area and environment, the distribution and number of gouges should be rather uniform. We feel that the patchy gouge pattern together with the presence of ripple marks or sand waves indicates that even at 50 m depth in the Chukchi Sea gouging and reworking by currents is an ongoing process, while statistical calculations on the depth distribution of ice keels suggest these gouges to be hundreds of years old. During the summer 1976, K. Aagaard (1977) recorded eastward current pulses of up to 55 cm/sec along the edge of the continental shelf at a depth of 100 m. According to Sundborg (1956), the critical erosion velocity for fine grained sand (.125 to .250 mm dia.) is around 38 cm/sec. Under current velocity of 1 knot (50 cm/sec) very fine sand is part of suspension load and medium grained sand (.250 to .500 mm) is just becoming entrained. He further shows that for grain sizes smaller than very fine sand the critical erosion velocity increases due to particle cohesion and increases sharply with consolidation. Barnes and Reimnitz (1974) found muddy sand in the depth zone where Aagaard recorded 1 knot currents. Shear strength of these materials, as reported in our last quarterly report, is rather similar to that of muddy sand studied by divers on the inner shelf, and we do not consider these materials consolidated. It is very likely, therefore, that the observed currents along the shelf break will erode and transport sediment. If the rate of bottom reworking by benthic organisms, producing burrows, pits, mounds, and trails, at the same time dislodging grains of surface sediments, is anywhere near that reported from our diving observations (Attachment B, this report), then the shelf edge currents must surely transport sediment. Yet gouges are present which have not been eroded or infilled. Reimnitz and Barnes (1974) using the side scan sonar techniques, have mapped ice gouges seaward to the 100 m isobath, and beyond. The microrelief and configuration of such gouges (Fig. 1) is not strikingly dissimilar from those on the central shelf. For these reasons we would not rule out the possibility that gouging along the shelf edge is a modern process and close with the advice that "more work is required." #### REFERENCES - Aagaard, K., 1977, Current Measurements, OCSAP Annual Report, Arctic Project Bulletin #14, p. 3. - Barnes, P. W., and Reinmitz, E., 1974, Sedimentary processes on arctic shelves off the northern coast of Alaska, in Reed and Sater, eds.: The Coast and Shelf of the Beaufort Sea, the Arctic Inst. of N. Am. Arlington, Va, p. 439-476. - Hnatiuk, J., and Brown, K. D., 1977, Sea Botom Scouring in the Canadian Beaufort Sea., Proc., Offshore Technology Conference, 1977, Vol. III, p. 519-528. - Kovacs, A., 1972, "Ice scouring marks floor of the arctic shelf", Oil and Gas Journal (October 23), pp. 92-106. - Kovacs, A., and Mellor, M., 1974, Sea ice morphology and ice as a geologic agent in the southern Beaufort Sea, in Reed and Sater, eds. The Coast and Shelf of the Beaufort Sea, the Arctic Institute of North America Arlington, Va, p. 113-162. - Lewis, C. F. M., Blasco, S. M., McLaven, P., Pelletier, B. R., 1976, Ice Scour on the Beaufort Sea Continental Shelf. Terrain Sciences Division, Geological Survey of Canada. Presented May 20, 1976, Geol. Assoc. of Canada, Annual Meeting, Edmonton, Alberta. - Pelletier, B. R. and Shearer, J. M., 1972, "Sea bottom scouring in the Beaufort Sea of the Arctic Ocean", Marine Geology and Geo-physics, Proceedings of 24th International Geological Congress, Sect. 8, pp. 251-61. - Reimnitz, E., Barnes, P. W., Forgatsch, T. C. and Rodeick, C. A., 1972, "Influence of grounding ice on the arctic shelf of Alaska", Marine Geology, 13:323-34. - Reimnitz, E. and Barnes, P. W., 1974, Sea ice as a geologic agent on the Beaufort Sea shelf of Alaska, in Reed and Sater, eds.: The Coast and Shelf of the Beaufort Sea, the Arctic Inst. of N. Am., Arlington, Va, p. 301-351. - Sundborg, A. 1956. The river Klaralven-a study of fluvial processes. Geografiska Annaler. Vol. 38. P. 127-316. - Taylor, P. K., and Montgomery, J. B., 1977, Arctic submarine tanker system., Proc., Offshore Technology Conference 1977, Vol. IV, p. 265-274. #### Attachment B ### DIVE SITE OBSERVATIONS IN THE BEAUFORT SEA, ALASKA, 1976 ### Erk Reimnitz, and Larry Toimil Diving operations in the summer of 1976, Beaufort Sea, Alaska, covered various parts of the inner shelf from Flaxman Island to Long Island in widely varying environments (Fig. A). Three dive sites have already been compiled in our 1976 Annual Report, Attachment J, as dive sites 2, 3, and 4. Efforts were concentrated in areas where "anomalous materials", namely boulder patches and stiff, "over consolidated" silty clay, were thought to be present on the sea floor. These areas were located when side scan sonar showed a mottled pattern on the sea floor or seismic reflection records indicated thin Holocene sediments, where pre-holocene material might outcrop. Areas exposed to ice gouge activity and strong currents such as offshore shoals, the seaward side of barrier islands, and tidal inlets were also investigated. These observations form a preliminary look at bottom types and processes on the inner shelf and should be of interest to investigators in marine geology and marine biology. They are arranged here in the form of diving notes along with side scan sonar and raytheon records taken to characterize the bottom morphology at the dive sites. Photographs, interstitial salinity samples, and insitu vane shear strength measurements were also taken at various sites. Interstitial salinity values were reported in the 1976 Annual Report, Attachment A, and vane shear values are compiled in Table I here along with short bottom descriptions at each dive site. Implications of the observations are discussed under the General Comments Section at the end of each set of dive notes. # TABLE I IN SITU SHEAR STRENGTH VALUES Dive sites are arranged in the table in order of location from west to east. * - average of several readings PSI - pounds per square inch KN/M*- Kilo Newtons per square meter # SHEAR STRENGTH | | | | · | STRENGIA | | | | | |--------------|--------------------------|-------------------|---|---|------------------------------|---|---|--| | Dive
Site | Location | Water
Depth(m) | Peak
PSI(KN/M ²) | | n below sedi-
ent surface | Bottom description at point of measurement | Sediment description | Comments | | 72-1 | 70°35.6'N
149°27.1'W | 12 | 1.55 (10.69)
2.55 (17.58) | | 5
10 | Bioturbated flat bottom | Bioturbated mad | Soft to 10 cm
stiffer below | | 76–18 | 70°33.2'N
149°11.0'W | 11.5 | 1.38(9.52) | 0.69(4.76) | 2 | Seaward foot of major shoal,
between gouges | Muddy Sand | | | 72-2 | 70°33.12'8
149°11.5'W | 5 | 0.23(1.59) | 0.11(0.76) | 2 | Flat bottom on major shoal | Clean, medium-grained sand w/clam fragments | Intensely gouged | | 76– 5 | 70°28.4'N
148°47.2'W | 4.5 | 0.34(2.34) | | 2
15 | Undisturbed sediment near gouge
Flat bottom near gouge flank | Muddy sand
Sandy, muddy gravel | Trough of gouge
impenetrable
with veins | | 76-4 | 70°26.9'N
148°37.5'W | 6.4 | >1.38(>9.52)
>1.38(>9.52)> | | 2
15 | Flat bottom | Gray, cohesive mud
Very stiff, muddy,
sandy gravel w/some
shells | | | 766 | 70°26.9'N
148°30.5'W | 8.5 | 0-0.34
(0-2.34)
>1.38(>9.52) | 0-0.34
(0-2.34)
0.69(4.76) | 2 | Floor of gouge Flat bottom | Very soft surficial
sediment underlain
by fairly stiff | | | | | | | 0.57(3.93) | 2 | Flat bottom | layer | | | 76- 7 | 70°28,1'N
148°24.0'W | 8,5 | 0.69(4.76)
0.69(4.76)
0-0.34* | 0.46(3.17)
0.34(2.34)
0.46(3.17)
0-0.34*
(0-2.34) | 2 2 2 2 | Floor of gouge Gouge trough Gouge flank Gouge flank | Mud | Stiff boundary at 2.5 cm depth covered by fairly soft mud w/numerous clams | | | | | (0-2.34)
0.69(4.76)
>1.38(>9.52)> | 0.23(1.59) | 5 | Flat bottom | | | | 76-3 | 70°24.2'N
148°31.5'W | 3.0 | 1.03(7.10)
0.69(4.76) | | 2
15 | Plat bottom | Fine, muddy sand | | | 75–1 | 70°19.8'N
148°23.5'W | 2.5 | 0.54(3.72) | 0.44(3.03) | 8 | Plat bottom | Fine, muddy sand
| | | 76-2 | 70°24.0'N
148°17.3'W | 3.1 | 1.15(7.93)
>1.38(>9.52)> | | 2
15 | Flat bottom | Slightly muddy medium-
fine grained sand | | | 76-19 | 70°24.9'N
148°01.0'W | 7.0 | >1.38(>9.52)> | 1,38(>9.52) | 2 | Rippled flat bottom | Muddy sand | Ripples of 15 cm
wavelength | | 76–8 | 70°19.5'N
147°51.5'W | | >1.38(>9.52 >
>1.38(>9.52)> | | 3 | Flat bottom with ripples Flat bottom with ripples | Muddy sand
Very stiff mud | Ripples of 15-20 cm
wavelength, 1-2 cm high | | 76-9 | 70*17.2'N
147*42.8'W | 3 | 1.09(7.52)
>1.38(>9.52)>
0.69(4.76) | 1.38(>9.52) | 2
15
2 | Ripple field-flat bottom | Muddy sand Angular, pea-size | Ripples of 20 cm wave-
length. 2-3 cm height.
Old, weathered gouges | | | | | 5,55(4,75) | , | _ | gravel on flat bottom | gravel | creating broad bottom undulations | | 76–10 | 70°12.8'N
147°41.0'W | 1.6 | 1.15(7.93) | 0.92(6.34) | 6.5 | Flat bottom | Highly muddy, medium grained sand | | | 76-17 | 70*23.8'N
147*28.7'W | 1.5 | 0.69(4.76)
<0.34(<2.34)<
1.38(9.52)
1.03(7.10)
1.03(7.10) | 0.34(<2.34) 0.71(4.90) | 2
2
2
2
10 | Flat bottom Gouged flank and floor Flat bottom Flat bottom | Sand
Sand
Muddy sand
Muddy sand
Pea-size gravel | | | 76-15 | 70°18.2'N
147°18.7'W | 6 | .0.34 (2.34)
>1.38 (>9.52)> | | 2 | High ground covered by
worm tubes
Depression between worm
tube patches | Soft mud
Muddy sand | Hummocky relief related to distribution of worm tube patches | | 76-14 | 70°14.7'N
147°10.5'W | 5.5 | >1.38(>9.52) | 1.09(7.52) | 2 | Flat bottom | Sandy mud | Dive site is marked
by exposure of firm
gravel in depressions | | 76-11 | 70°10.3'N
147°01.0'W | 4.5 | >1.38(>9.52)> | 1.38(>9.52) | 2 | Flat bottom with decayed ripple train | Sandy mud | Burrowing activity | | 76-12 | 70*10.8'N
146*03.4'W | 2.5 | >1.38(>9,52) | 1.15(7.92) | 2 | Slightly undulating
bottom | Sandy mud | Small scale relief
from bioturbation | 457 Figure A. Location map for 1976 dive sites 2 through 20. Dive sites 13, 15, and 16 were discussed in Attachment J, 1976 Annual Report as dive sites 4,3, and 2; respectively. Dive Site No. 76-2 Date: August 30, 1976 Visibility: 1.5 m Depth: 3 m Introduction Location: 70°24.0°N, 148°17.3°W Divers: Reimnitz and Toimil Length of bottom traverse: 200 m S-N Currents: 10 to 15 cm/sec westerly Supplementary data obtained: Sonographs, vane shear strength, pore water salinity. The dive site is located on the seaward side of the broad, subtle shoal separating Prudhoe Bay from the open ocean (Fig. 1). Seismic reflection records in this area suggest the possibility of a very shallow reflector, that may crop out in places. The side-scan sonar shows mottled bottom. Because large numbers of boulders (Flaxman Boulders) occur on the beach at Heald Point and on the tundra surface not far from this area, and because boulders, mostly submerged, occur around the nearby Niakuk Islands, this area of the sea floor warranted further study. A vibracore taken about 700 m west of the dive site showed about .5 m of medium-grained sand with abundant ripple structures overlying sandy mud. Coming into the area in preparation for the dive, a brief sonar survey was made of the bottom to be investigated. A portion of the record is shown in Figure 2. It suggests a flat bottom with randomly distributed patches 1 to 3 m in diameter, that produce relatively strong echoes. But the reflecting patches are not high enough above the bottom to produce sound shadows on the lee side. We feel certain that the originators of the echoes are on the bottom and not in the water column, because of the clean nature of the record in the water column. The wind was easterly at 8 to 10 knots, waves very small, and current weak toward the west. #### Bottom Observations Morphology.—Working down the anchor chain we found that our 35-lb high tensile Danforth Anchor was not digging in, but lying on the side. There are a number of areas along this stretch of the coast where the bottom is equally firm and poor holding ground. The sandy bottom was smooth, marked by a regular ripple train of 5 to 8 cm wavelength, with crests oriented NW to SE in keeping with surface waves on this day. But the ripples were not active at this time. In patches of 20 to 40 cm diameter, the otherwise regular ripple train was disrupted by bottom dwelling organisms which we did not see. We navigated by the ripple train, covering about 200 m along a northerly traverse. The number and spacing of patches of disrupted ripples was comparable to that seen on the side-scan sonar record, but their size was smaller. Bottom Sediments, -- The upper 2 cm along the diving traverse consisted of slightly muddy, medium to fine grained sand. No pebbles were found, but a few shell fragments (largely Astarte Borealis) were scattered about. The gloved fingers were unable to penetrate deeper than 2 cm, and the shear vane was pushed down 15 cm with difficulty, and at that depth went off scale during rotation (over a.52 N/M²). The tip of the anchor fluke brought aboard a light grey, soft, but very cohesive mud, which must occur below the sand veneer. Bottom Organisms. --Only a few of the soft bodied, spherical coelenterates were found, along with the ubiquitous large isopods, and a few scattered shell fragments, belonging largely to Astarte. No kelp, even unattached, was seen. Figure 2. Side scan sonar record from dive site 76-2, showing strongly reflective patches having low relief (absence of sound shadow). Patchiness possibly due to disruption of a ripple field in bioturbated areas. General Comments. -- Since the patches of bioturbated, disrupted bottom seen in our diving traverse apparently were smaller than those seen on the sonographs, we found no good explanation for the mottled sonographs. Could the patchy record be an instrumentation problem? We believe it is not, since we use this instrument almost every day under many different conditions (even on this particular day at dive sites No. 3 and No. 4) and have not obtained similar, unexplained records of "Funny Bottom." ## Dive Site No. 76-3 Date: August 31, 1976 Depth: 3 m Visibility: less than 30 cm Location: 70°24.2'N, 148°31.5'W Divers: Reimnitz and Toimil Length of Bottom Traverse: 450 m Currents: None detected Supplementary data obtained: pore water salinity, sonograph and fathogram, and vane shear strength ### Introduction During the winter 1975-76 Atlantic Richfield Company extended its existing gravel fill causeway by some 1.5 km in a northwesterly direction (Fig. 1) to facilitate the offloading of barges stranded outside of Prudhoe Bay by an early winter freeze-up. During the summer 1976 we ran a series of bathymetric and side-scan sonar surveys in the vicinity of the new causeway in an attempt to determine changes in bathymetry and coastal configurations since 1950. This dive site is located several hundred meters landward of the western tip of the new causeway (Fig. 1). Sonographs obtained over the site reveal a somewhat patchy bottom and what appear to be drag marks across the sea bed produced by the grounding of tugs and barges (Fig. 2). Visibility during the dive was poor, partly because tugs working in the area had stirred up mud which was caught in this area. After an initial trip to the bottom to collect bottom sediment and shear vane measurements, we were towed northward along the bottom by a skiff rowed along a line some one hundred meters to the west of the side-scan trackline. ### Bottom Observations Morphology. -- The bottom was almost universally flat except for very small-scale relief of several cm due to burrowing activity of benthic organisms and the trails of isopods. We noted trails of ripples that might have trended northwestsoutheast, but these were only visible if we observed in just the right direction. No ice gouges or drag mark depressions seen in the sonographs were encountered during the traverse. Bottom Sedmments. -- Surficial sediments consisted of a very muddy fine sand, without a distinct transient surface layer of suspended materials. The shear vane penetrated the first 3 cm or so of sediment fairly easily, then hit a gritty, harder layer, broke through this second layer and reached a depth of 15 cm. At this depth a peak shear value of 0.69 PSI (4:76 KN/m2) and a residual value of 0.46 PSI (3.17 KN/m²) were recorded. At a depth of 2 cm within the sediment a peak value of 1.03 PSI (7.10 KN/m^2) and a residual value of 0.86 PSI (KN/m^2) appeared to be rather uniform throughout the traverse. A subangular quartz pebble about 4 cm in diameter was found along with several long clumps of organic matter which may have been deposited during spring flooding. These clumps did not appear numerous enough to account for the patchy pattern seen in sonographs of the area. Bottom Organisms. -- A number of pits, mounds and burrows indicating the presence of various types of benthic organism living within the sediments no organisms were noted during the traverse, but aside from isopods were observed. ## General Comments We swam a distance of some 450 m, thus obtaining a rather representative picture of the sea bed in this area. We found no obvious signs of increased depostion or erosion which may have taken place since the extension of the causeway. Figure 2. Side scan sonar record at dive site 76-3; patchy bottom and drag marks probably produced by tug activity in the area. Dive Site No. 76-4 Date: August 30, 1976 Depth: 6.5 m Visibility 20-30 cm in 1 m Introduction Location: 70°26.9'N, 148°37.5'W Divers: Erk Reimnitz and Larry Toimil Length of bottom traverse: 150-200 m northward Currents: about 1 knot or more to west thick bottom layer, 1.5 to 2 m above. Supplementary data: Sonograph, on heading 300° mag., vane shear measurements, and Coming into the area on a heading of about 300° maq. (Fig. 1) the side-scan sonar, was operated. Although known as an area of thin
marine sediment cover, nothing of interest was seen to dive on. We therefore dropped a marker buoy where the side-scan sonar showed a multiple gouge (Fig. 2) expecting that older deposits might be exposed in the trough. When we anchored the boat, we realized the current was flowing at 1 knot or faster to the west. It carried numerous relatively large ice fragments past the boat. In the upper water column the visibility was about 1.5 m, but about 1 m from the bottom we penetrated a soupy layer with a visibility of 20 to 30 cm. There was no noticeable current. We relied solely on feel for observing larger features. Only tracks and trails were visible from a very short distance. pore water salinity. ## Bottom Observations Morphology .-- The gouge seen in the sonar records as multiple was observed as one gouge with pronounced flanking ridges and slight undulations adjacent to the gouge. Along the rest of the traverse the bottom was flat and featureless, lacking ripple marks as far as we could tell, but marked by numerous small tracks and trails from benthic organisms. Bottom sediments. -- Exposed in the ridge along the ice gouge was a firm, muddy pea-gravel with some shell fragments. The material on the gouge floor felt and looked like a muddy sand with a few shell fragments. The gouge floor was very firm, so that here no vane shear measurement could be made (indicator off scale). Running our hands through the bottom along the traverse northward from the gouge, we occasionally felt a firm gravelly layer at shallow depth below the sea floor. A large chunk of surface material, undisturbed, was brought aboard the boat by the anchor. The surface layer, 5 to 8 cm thick, was a cohesive, medium grey, firm, silty clay. This layer was underlain by muddy, sandy gravel, with a few shell fragments. The muddy gravel was very stiff, appearing almost dried out, and separated easily from the overlying layer along a parting crack. Bottom Organisms. -- Although numerous tracks and trails were observed with the face plate fight against the bottom, we only saw a few isopods, and a few small shrimp jumping out of the surface sediment as we agitated the bottom. One of the shell fragments in the subsurface gravelly unit belongs to the genus Astarte. #### General Comments Since the trough was not marked by accumulation of new, soft sediment, the gouge appeared very recent. Sedimentation rate in this area appears to be very low, similar to conditions inferred from observations at dive site 76-5, a few miles to the west, and to those made at 1972 dives, closer to Egg Island and the Kuparok Delta. The gravelly unit below the surficial mud is older, representing a different depositional environment than the present. The shell content suggests it may not represent the top of the Gubic Formation, since in this area shells Figure 2. Side scan sonar record at dive site 76-4. Multiple gouge examined in dive runs parallel to record. have not been found in coastal bluffs. The grain-size of the gravel fraction is similar to that found in modern beaches and barrier islands. A simple explanation for the stratigraphy, therefore, would be 8 cm of Holocene marine mud overlying the basal transgressive unit, representing the last sea level rise. The surface of the gravelly unit, occasionally felt along the traverse, is marked by some relief, or the overlying unit varies in thickness. This is easily explained in terms of occasional ice gouging. It could also be that the surficial unit is a transient deposit, occasionally reworked by strong currents, and the accumulated coarse clasts are incorporated into the underlying gravelly unit during such events. A more satisfying interpretation awaits further data. Comparing diving observations under very poor visibility conditions with the sonar record showing numerous ice gouges, we learn that most of those groups are too subtle to be felt by the diver's hand. Dive Site No. 76-5 Date: August 31, 1976 Visibility: 2 m Currents: 10-15 cm/sec Depth: 4.5 m Divers: Erk Reimnitz and Larry Toimil Length of traverse: 275 m Supplementary Data: Sonographs and fathograms, vane shear measurements, and pore water salinity Location: 70°28.4'N, 148°47.2'W ### Introduction This diving traverse parallels the eastern shore of Long Island some 900 m seaward of the beach. The traverse was within an area of relatively thin (0-5 m in thickness) Reimnitz et al.(1972) Holocene deposits. In an attempt to locate outcrops of pre-Holocene materials, side-scan sonar and bathymetric profiles were collected along the trackline shown in Figure 1. No such outcrops could be detected there. However, near the end of our survey line a small ridge was crossed followed by a well-defined ice gouge trending obliquely across the ship's track (Fig. 2). In the hope of finding older exposed deposits in the gouge trough, we dove on a buoy dropped near the gouge. ## Bottom Observations Bottom morphology. The traverse began on a flat bottom devoid of measurable relief except for the small-scale microfeatures attributed to bottom-dwelling organisms; particularly the trails made by isopods. Soon faint ripples with crests trending predominantly southwest were detected. Signals from a skiff guided us in a northwesterly direction along our previous survey track. After swimming 80 to 100 m, we encountered a pothole-like depression having a diameter of about one meter and a depth of between 30-50 cm. A small levee rimmed the feature and an accumulation of fibrous organic debris was found concentrated along its bottom. It is doubtful that the depression was a product of strudle scour (Reimnitz et al. 1974) since its location is a considerable distance outside the region of normal river overflow. Rather, it appeared more likely the result of a small fragment of grounded ice working up and down in a seaway. Continuing the traverse, we ran into the sharply defined linear ice gouge visible in both the sonograph and fathogram records shown in figure 2. The gouge trended NNW-SSE. It's maximum depth of incision was between 80 and 100 cm. A sharp ridge marked the northwest side of the gouge against which some organic debris including chunks of driftwood had accumulated. Reworking of the gouge surface by benthic organisms was very minor when compared to the surrounding sea bed. Surficial materials were predominantly of gravels along the interior of the gouge flank and were resting at the angle of repose. The ridge flank sloped at a comparatively low (10-15°) angle into the surrounding sea bed. a number of places, aprons of disturbed sediments extended as much as 2 m away from the flanking ridge crest. The gouge trough was flat over distances of about one meter. The southwestern side of the gouge was poorly defined by an irregular ridge having relief of between 10 and 20 cm. The lack of measurable fill within the gouge trough together with the minor degree of reworking of the gouge flanks by benthic organisms when compared to that at the adjacent sea bed, lead us to believe that the gouge was formed rather recently. Sediments. --Surficial sediments of the undisturbed sea floor consisted of 5 to 10 cm of very muddy sand underlain by a hard gravel pavement. The gravel, which we dug up and inspected in a number of places along the traverse contained numerous shell fragments which were all rather weathered and broken. Α Figure 2. Side scan sonar (A) and raytheon record (B) at dive site 76-5, showing gouge width and associated relief. Dive Site 76-5 cont.- The gravel itself appeared similar in composition to that found along the islands and within the Gubic along the adjacent coast. One cobble-size sub-angular rock fragment was encountered. It lay on an undisturbed surface and was 15-20 cm in it's elongate dimension. The gravel covering the gouge flanks was underlain by as much as 20 cm of soft brownish mud. Very little mud was found on the ridge crest or within the intersticies of the exposed gravels. Shear-vane measurements were obtained on the northwest gouge flank and in an undisturbed area of the surrounding sea bed. Peak residual values from the gouge flank were 0.69 PSI (4.67 KN/M²) and 0.46 PSI (3.17 KN/M²) respectively. From the undisturbed sea bed no noticeable peak was recorded. The shear-vane rotated smoothly at a value of 0.34 PSI (2.34 KN/M²). In the gouge trough the gravels formed a pavement so hard that we could not penetrate it with the shear vane. Bottom Organisms: Along this traverse we made note of no benthic organisms. ## General Comments In the course of our summer field studies along the inner shelf we have often noted small, individual, grounded ice floes. With moderate currents running, these floes are recognizable by the presence of a well-defined leeward wake. We have, on a number of occasions measured surface currents of up to 2 knots in the vicinity of these grounded floes. We have attempted to assess whether or not such current-driven floes exert sufficient lateral force on the sea bed to produce an ice gouge similar to the one described. To do so we have estimated the drag force generated by a current flowing against a hypothetical square ice floe 60 feet on a side and having a The estimate is based on the analogy that the drag force on draft of 12 feet. the ice is similar to that experienced by a flat plate immersed normal to a current field for which the total drag force, 'D', may be calculated by the equation (Cp $V^2/2$) (A) as shown by Daily and Harleman (1965). In the equation 'C' is a dimensionless drag coefficient which includes components of both frictional shear stress and the normal pressure distributed on the plate's surface to which we assigned the value of 1.2 (after Daily and Harleman, Table 15-2). The 'p' term is the density of the immersing fluid, 'V' the speed of the relative current field acting on the plate's surface (for which we used 0.82 ft/sec (1/2 knot), and 'A' is the area of the projection of the plate on a plane normal to
'V'. For the numberical values assigned, we found the total drag force generated to be the order of 10 1b f. The ice gouge encountered during our diving traverse had an incision width of about 19.5 ft and an average incision depth of about 2.6 ft. The effective cohesion of the undisturbed surficial sediments adjacent to the gouge was 0.34 PSI. Applying these values to the equations for total bed resistance as presented by Kovacs and Mellor (1974, p. 197-151) we estimate that the plowing and sliding resistance of the sediments within the ice gouge described are also the order of 10 1b f, (in applying the equations of Kovacs and Mellor we found it convenient to use the English system of measure.) The numerical Dive Site 76-5 cont.- values of total bed resistance and the lateral force generated at the sea bed by the hypothetical ice floe are equal when the ice floe has been uplifted some 0.20 ft. above its equilibrium position. Although our calculations are based on extreme simplification of the parameters involved, they do indicate that under the influence of a moderate current field, individual relatively small ice floes can produce significant gouges. If so,long, linear gouges can form during the summer and may account for a significant number of the gouges observed on the inner shelf. Dive Site No. 76-6 Date: August 31, 1976 Visibility: .5 m (transmissivity 60%) Divers: Reimnitz and Toimil Currents: none detected Length of traverse: 100 m SW and 200 m NW (from boat) Location: 70°26.9'N, 148°30.5'W Depth: 8.5 m S) Divers: Reimnitz and Toimil Supplementary Data: 1 1/2 hours of side-scan sonar and fathometer with sub-bottom profile, vane shear measurements, and pore water salinity ## Introduction There are a few ice gouges in the general region, and one was picked as a likely site to study older materials cropping out. From the buoy drop site where the boat was anchored (Fig. 1), we first traversed about 100 m of bottom in a southwesterly direction and then about 200 m in a northwesterly direction. As at dive site 76-4, there is a turbid layer near the bottom, with visibility of .5 m, and in our observations we were largely dependent on feeling the surface. Our interest in this area is due to the fact that we have a vibrocore station and drill hole nearby, raising the need for knowledge of pore water salinity within the sediments and shear strength to relate to corepenetration rate. #### Bottom Observations Morphology.--Except for small tracks, trails, mounds and burrows, which were plentiful in the area, the bottom was rather featureless. Near the boat the gouge marked by the buoy was observed to be about 1.5 m wide, 60 to 80 cm deep, and U-shaped (Fig. 2). It lacked flanking ridges, as far as we could determine in the poor visibility. The materials on the gouge flanks were rather firm, and a soft layer had accumulated in the bottom. Several barely noticeable gouges were crossed, marked by slightly undulating bottom and linearity, largely smoothed over from age, and we were surprised to find that the sonar had recorded these gouges. Sediments. -- The bottom deposits consist of muddy sand, relatively soft in the upper 0 - 20 cm, and very frim below. The soft surficial layer varies in thickness along the traverse, ranging from zero to 15 or 20 cm. This unit was easily penetrated by the hand (see vane shear values in Table I). The underlying layer could not be penetrated by the gloved finger. The shear strength in this unit was measureable with the vane used (9.52 KN/M). Shell material was not noted, but a few pebbles serving as hold-fast for large fronds of brown kelp, were seen. Organisms. -- Because of the poor visibility it was difficult to learn much about the benthic life in this area. We passed an occasional frond of brown kelp, some of which were attached to a pebble, others in transit. Also we noted several coelenterates and a few hydroids. In several patches we observed 2-cm high, brownish, plant-like objects, protruding from the sediment surface. Abundant trails, tracks, mounds and burrows suggest that there is a rich benthic community thriving. General comments.—This dive was made in an area that probably typifies one of the most uniform, and quiet, depositional environments of the inner Beaufort Sea shelf. Ice gouging occurs infrequently, deposition is slow, currents and waves rarely produce bedforms, and river overflow and accompanying strudel scour does not occur. Numerous benthic organisms make their living in the uppe 10 to 20 cm of sediments, reworking it frequently, and aid in eliminating А Figure 2. Side scan sonar (A) and sub bottom profiler (B) records from dive site 76-6, showing gouge dimensions. No sub-bottom is evident from the record. relief caused by ice gouging. Drifting multiyear sea ice is by no means rare in Stefansson Sound. In fact in the average summer there are always a few scattered pieces transiting between Reindeer Island and Prudhoe Bay. Most of these enter the Sound through a wide passage east of Cross Island, and another one west of Narwhal Island. These two passages with 6 and 7 m depths respectively, are shallower than the dive site, and therefore filter out those pieces of ice that have sufficient draft for gouging the dive site. Thus only some ice pieces that have overturned after entering the Sound can accomplish gouging. We found no evidence for ice rafting on this dive. The few pebbles observed probably were dragged by kelp into the area during storms and strong currents, coming from the Boulder Patch (dive #2 Annual Report) in Foggy Bay and off the Sagavanirktok Delta. Observations made on this dive, and compared to side-scan sonar records, will aid in the interpretation of similar records obtained over wide shelf areas of the Beaufort Sea. Dive Site No. 76-7 Date: August 31, 1976 Visibility: 1.5 m Currents: None detected on bottom approximately 25 cm/sec westward at surface Depth: 8 m Location: 148°2.40'W, 70°28.1'N Divers: Erk Reimnitz and Larry Toimil Length of traverse: 400 m northward Supplementary Data: Site survey made with side-scan sonar and 7 kHz sub-bottom profiler vane shear measurements, and pore water salinity ### Introduction The dive site is located in an ice protected environment, sheltered by Reindeer and Argo Islands (Fig. 1). The setting is rather similar to that of dive site No. 76-6. A brief survey was made of the dive site with side scan sonar and 7 kHz sub-bottom profiler/fathometer (Fig. 2). A light easterly wind was blowing, causing a slightly choppy sea surface, and an easterly surface current estimated at about 25 cm/sec. The sonar survey showed numerous parallel gouges trending roughly E-W. The visibility was too poor for bottom photography. Bottom currents were not detected. ## Bottom Observations Morphology. --We traversed about 400 m of sea floor from the boat's anchor site, heading generally northward. Navigation was easy since east-west trending gouges were rather parallel and closely spaced. One of the gouges, about 8 m wide and 50 cm deep, had a relatively fresh appearance. We followed it for about 40 m westward. The crest of a flanking ridge occasionally was marked by irregular exposures of fresh appearing grey mud, differing from smooth, brownish ridge crests of the more subdued and older appearing gouges in this area. Several mounds of grey mud, 20 to 30 cm high, with rough micro-relief on their upper surfaces, but rounded overall shapes, were observed along the gouge floor but also along its flanking slope. Between the ice gouges the sea floor was smooth, except for micro-relief produced by a variety of bottom-dwelling organisms. Among these features were 1 cm large, open holes. Current-produced bedforms were absent. Sediments.—The sediments covering the dive site were sandy mud. They were rather firm, yet softer than those felt at the last dive site. At shallow depth below the floor we could generally feel a somewhat firmer layer. Shells of Astarte were rather numerous within the surficial sediment. Concentrations of the shells were noted especially in the grey mud mounds along the gouge described earlier. Pebbles ranging from two up to eight cm in diameter, some of them sub-angular, but generally rounded similar to those found in local beaches, were seen along the traverse. These were spaced some 5 to 10 m apart. Some of the pebbles were just resting lightly on the sea floor, some were partly buried and still others completely covered by sediment. Vane shear measurements showed that the gouge flanks generally were softer than the gouge floors. The strength of a firm surface felt with the gloved hand along the traverse at shallow depth could not be measured with the available tool, as the pointer went off scale. Organisms, --Very few organisms were seen along the traverse. Large brown kelp fronds, some of them attached to individual pebbles, were concentrated in small patches along the fresh-appearing gouge. Small hydroids and a few of the small plantlike features observed on the previous dive were protruding by several A Figure 2. Side scan sonar (A) shows numerous parallel gouges at dive site 76-7. Raytheon record (B) shows their small relief. Dive Site No. 76-8 Date: September 5th, 1976 Visibility: .8 m Currents: insignificant Length of traverse: 150 m Location: 70°19.5'N, 147°51.5'W Depth: 2.5 m Divers: Reimnitz and Toimil Supplementary Data: Sonograph, fathogram, water sample, vane shear measurement, pore water salinity. #### Introduction The dive site is located directly off the Sagavanirktok Delta, in only 2-m water depth (Fig. 1). At the time of the dive we had a light easterly wind, causing a small chop and weak westerly currents at the surface. Coming into the area we dropped a buoy where the side-scan sonar records showed highly mottled bottom, making this an interesting dive site. We swam for about 150 m across the type of bottom shown in Figure 2. ## Bottom Observations Morphology. — Along the traverse the
bottom was essentially flat and smooth, marked by small ripples. The ripples were oriented roughly N-S, parallel to the surface waves at the time of the dive. Their wave length was about 15 to 20 cm, and their height 2 cm, with steep sides facing westward. The regular ripple pattern was interrupted by 60 to 80 cm large patches, in which the ripple forms have been largely destroyed to completely elimnated by burrowing organisms. Sediments. -- The bottom sediments along the traverse consisted of a several centimeter thick layer of fine sand, underlain by a light grey, very firm mud. In the patches lacking ripple marks this firm, grey mud was apparently brought to the surface and mixed with sand by burrowing organisms. Small fragments of fibrous organic material were littering the bottom, oscillating back and forth with the wave activity. The surficial sand layer was too thin for obtaining vane shear measurements, and the underlying light grey mud was too firm to measure with the tool available. Organisms.—The large isopods so common on this shallow shelf region were numerous at the dive site. Mounds and craters, apparently from the worm Arenicula, were widely scattered over the bottom. The presence of unidentified burrowing organisms was noted in the patches of destroyed ripple marks. Several pairs of eyes and parts of the head of what may have been a flounder-like fish were seen protruding from the sand. #### General Comments The very firm mud covered by several centimeters of fine mud suggest that sedimentation rates are very low at this site. This is in agreement with numerous other observations in this area, particularly with the occurrence of cobbles, large boulders, and rich bottom life in the "Boulder Patch" nearby (dive #2 Ann. Report). We have arrived at the same conclusion of very low sedimentation rates near other deltas along this coast (Reimnitz, et al., 1972, Barnes and Reimnitz, 1974). The small scale ripple marks, although not actively forming or migrating at the time of the dive, obviously were rather recent features because of the shallow water depth. Therefore the fate of bottom reworking by benthic organisms is very high in the patches where ripples were destroyed. We believe that the mottled nature of the side scan sonar records obtained across the dive site (Fig. 2) is related to the observed microrelief. The ripple train reflects less energy than patches of destroyed ripples and muddy, bioturbated sediments. Д Figure 2. Side scan sonar (A) and raytheon (B) records at dive site 76-8. Mottled appearance of bottom and relatively flat bottom profile are explained by disruption of a ripple field in patches of bioturbation. Dive Site No. 76-9 Date: September 5, 1976 Depth: 3 m Visibility: 1.5 m Currents: 25-50 cm/sec westward near bottom Location: 70°17.2'N, 147°42.8'W Divers: Reimnitz and Toimil Length of traverse: 350 m Supplementary date obtained: Vane shear measurements, porewater salinity determination, photographs. Sonographs, fathograms, and sub-bottom seismic records from previous surveys, and fathograms with sub-bottom profile from 1976. ## Introduction The wind during the day gradually shifted from SE to NE, increasing from about 8 knots to about 25 knots by the time of this dive. The sea was rather choppy, and the surface currents running northwestward past the Sagavanirktok Delta (Fig. 1). A survey done in 1972 with side scanning sonar (Fig. 2) had suggested the presence of non-homogeneous seafloor (funny bottom). Also, sesmic records of the same year indicate thinning of holocene sediments in this area; possibly exposing pre-holocene material. A few weeks before the dive we had a brief survey with subbottom profiler in preparing for collecting vibro-core #10, about 1 km from the dive site. On the day of the dive no side scan sonar survey was made because of the choppy sea. A 350 m long bottom traverse made under conditions of fair visibility provides a good impression of the nature of the sea floor in this area. The near-bottom currents, flowing swiftly (25 to 50 cm/sec) northwestward, resulted in movement of fine sand and aboundant organic matter. ## Bottom Observations Morphology.—The bottom was generally smooth, with a well developed ripple train. The ripples had an amplitude of 2 to 3 cm, a wavelength of about 15 cm, and were trending about Northwest-Southeast (Fig. 3). The ripple crests were slightly rounded off, and the bedforms obviously in a state of decay, as the current flow and grain movement was obliquely across the ripple train (Fig. 4). Several minor, irregular depressions were traversed (Fig. 5), and a few barely noticeable, subdued linear depressions probably representing old ice gouges were observed. Mounds and craters from the work Arenicula, tracks and trails, and other minute surface irregularities attributable to benthic activity were seen. There also were numerous drag marks (Fig. 3) produced by various objects moving along the bottom under the strong current flow. Organisms.—Large isopods were numerous. In one place there was a large number of juveniles and two big ones in a small cluster. The presence of arenicula was seen in the cones and craters described above. Coelenterates (Fig. 3) were seen every few meters of distance covered, and numerous shells of small clams (Fig. 6). Small algae, and what appear to be hydroids, were attached to some of the pebbles along the traverse, other hydroids were protruding from the sediments. When one of these was dug up by hand we found it to be attached to a dolomite pebble. Figure 4 shows several of these organisms attached to a small angular cobble. We also saw a number of mollusk egg rings, up to 5 cm in diameter. Д Figure 2. Side scan sonar (A) obtained near dive site 76-9 in 1972, and raytheon record (B) from vibrocore survey in 1976. Mottled sonograph record due to patchy distribution of gravels on otherwise sandy bottom. Note irregular sub-bottom profile nears surface at left side of record. Figure 3. East-West trending ripples 2 to 3 cm high with about 15 cm wavelength. Note drag marks and Coelenterates. Figure 4. Sediment plume shows strong westerly current oblique to orientation of ripple train. Figure 5. Gravel in a small depression is blanketed by a thin veneer of sand covering background of the picture. Figure 6. Diver taking shear vane measurement in sandy sediment with numerous shell fragments. Figure 7. One to one-half knot current causes orgainic material to streak westward across ripple train in long, current-parallel streamers. Sediments.—Surficial sediments in general were a fine to medium grained sand with little admixtures of finer material. Along the first portion of the bottom traverse this sand was underlain by cohesive, rather soft, grey clay at 2 to 5 cm depth. There were a few scattered pebbles and small cobbles, subangular, on the surface. After the first 100 meters of traverse the sediments became increasingly gravely, blanketed by a thin veneer of sand, as shown around the flanks of a small depression in Figure 5. In a few instances gravel was seen in patches, up to 10 or 20 cm in diameter. Here individual clasts rarely were over 1 cm in diameter, and mostly much smaller. These pebbles were surprisingly angular, when compared to those seen in local beaches. They were generally brownish in color, and some had small marine organisms attached. Organic matter, consisting of algal remains, willow leaves, grassy material, and small twigs, was in rapid transit on the surface, often concentrated in current-parallel streaks one to several maters wide (Figure 7). #### General Comments The observations made during this dive are interesting for several reasons. Patchy distribution of gravel on a generally sandy bottom obviously is the cause for the mottled appearance of the sonographs obtained in this area. The stratigraphic relationship of cohesive mud to sandy gravel in the subsurface along the diving traverse is unclear. Vibrocore 10, collected about 1 km toward the delta from this dive site, is different again: lacking a surface sand layer, the upper section consists of sandy mud, with a thin layer of pebbles 10 cm down into the core. Drastic facies changes over short distances may be related to the fact that strudel scours do occur in this area (Reimnitz et. al, 1974) and sedimentation rates are very low. When thinking about the large amounts of organic material transiting westward across the bottom at rates of at least 1/2 knot, one can not help but wonder where, downdrift, the trap may be where this material finds its resting place and becomes a deposit. We are unaware of such a place. Observations made at dive 13 in the tidal inlet east of Flaxman Island, about 70 km east of the present site, indicated that large amounts of organic matter are entering this long lagoon from the seaward side, perhaps originating partly at the Canning River, or still farther eastward. With dominant easterly winds during the open season, and the accompanying easterly currents, such materials may transit great distances in a single season. At Barrow this transport system is intercepted by Barrow Sea Valley. When speculating further about the sonographic appearance of abundant organic matter moving in streaks (sonographs were not obtained at this time of strong bottom currents), it seems entirely possible that these streaks would not only be recorded, but that they might be arranged in patterns similar to the herringbone patters observed in Leffingwell Lagoon (Barnes, et.al, Part D, 1977). On the previous day a current recorder installed at a water depth of 5.5 m north of the Sagavanirktok Delta showed nearbottom eastward flow velocities up to 48 cm/sec (about one knot) strong enough to produce current ripples. The ripples observed during the dive appeared to be oscillation ripples, not current ripples, and therefore apparently post-dated the strong eastward current from westerly winds of the previous day. It is
clear that the minor bedforms produced from currents and waves in this area are very short-lived. Dive Site No. 76-10 Date: September 5, 1976 Depth: 1.5 m Visibility: 1 m Currents: Wave Oscillation Location: 70°12.8'N, 147°41.0'W Divers: Erk Reimnitz and Larry Toimil Length of traverse: 150 m Supplementary data: Sonographs (1972), vane shear measurements and pore water salinity. #### Introduction For this dive the boat was anchored at the head of Foggy Island Bay about 1.6 n miles from shore (Fig. 1). At this location sonographs obtained on July 20, 1972, reveal a large area of "funny bottom" characterized by a scattering of strong signal returns from areas of the sea bed averaging about 2 meters in diameter (Fig. 2). The sonographs were collected just after the start of breakup, when much of the fast-ice on the inner shelf was still intact. From the records alone it is not possible to determine whether or not the pattern is real or an artifact caused by background noise or some characteristic of the water column. At the time of the survey, the sonar system was operating perfectly and no such pattern appeared on the records before entering the area circled in Figure 1. No detectable (>10 cm) vertical relief is associated with the pattern indicating that if the pattern is real it is more likely due to variation in the texture of surfacial sea bed deposits rather than morpholgic character of the sea bed itself. Because of the choppy sea conditions we were unable to resurvey the area at the time of our dive. We went ahead with the dive hoping that the cause of the pattern seen in the 1972 sonographs could be identified by a close visual examination of the bottom. # Bottom Observations Morphology.—The sea bed was found to be uniformly flat and covered with symmetrical oscillation ripples having a wavelength of about 8 cm and an amplitude of 1.5 cm. The ripples were sharp crested and had secondary ridges of small amplitude along the axis of their troughs. The presences of such secondary ridges is often an indication that the ripple field is not yet in equilibrium with the existing wave regime. This is likely the case here since as already noted (see Dive-Site 76-9) the wind had gradually shifted from SE to NE and steadily increased in speed throughout the morning and early afternoon. We noted only a slight accumulation of organic matter within the ripple troughs. Nature of Sediments.—Surfacial sea bed sediments consisted of highly muddy medium grain sand, which included a few pebbles some up to 2 cm in diameter. These deposits were thixotropic. By pounding on the sediment surface with our fist, we were able to transmit visible shock waves for distances of perhaps 20 cm across the sea bed. On one occasion, we penetrated the sediment cover the full length of our gloves and by swimming forward were able to lift the surfacial unit almost as if it were a carpet. Peak shear_strengths of 1.15 PSI (7.93 KN/M²) and residual values of 0.92 PSI (6.34 KN/M²) for sediments 6.5 cm below the sea bed were recorded near the end of the traverse. Figure 2. Side scan sonar record obtained in 1972 near dive site 76-10. Mottled bottom reflectors possibly due to under ice winnowing of bottom sediments. centimeters from the sea floor, but were rather rare. Astarte shells, probably mainly empty, were common. In running the hand through the surface material, they were felt at a spacing of about one every 30 cm. # General Comments Gouges produced by ice were rather common in the dive site area. Comments concerning availability of ice for gouging made for dive site No. 76-6 nearby would also seem to apply for this site. Grey mud was exposed in a ridge crest, at a somewhat irregular micro-scale, and the grey mud mounds found on the gouge floor and flank, probably are the result of sediment extrusion during the process of ice gouging. Such features have not been observed in areas unaffected by ice, and we do not know of any organisms in this region producing mounds 20 to 30 cm high. The possibility of mud extrusion occuring during ice impact is mentioned in our annual report dive site No. 4. Diving observations made during 1972 near the present site, suggested a process of gouge formation by plastic deformation of sediment, rather than by plowing and bulldozing. Very little is known about this process. An approximately 1-m long core obtained with a vibrocorer at station V-4 nearby does not contain massive layers of cohesive sediment suitable for extrusion under pressure. The pebbles observed, some resting on the sediment surface, suggest ice rafting as a transport mechanism. Similar pebbles occur in abundance on Reindeer, Argo, and Cross Islands, from where they might be rafted during the breakup of the fast ice. During storms of previous summers we have estimated surface floor velocities of 2 to 4 knots (100 to 200 cm/sec) in this area. A current recording meter, deployed about 12 km east of the dive site at a water depth of 5.5 m, within 1 m of the bottom, operated for 52 days during the summer of 1976 including the period of this dive. Near-bottom flow velocities up to 53 cm/sec, sufficient to erode and transport fine sands, were recorded. Therefore the lack of current-produced bedforms at this dive site is surprising. We suspect that benthic organisms play an active role in modifying and shaping the micro-relief of the sea floor at this dive site. Dive Site No. 76-11 Date: September 5, 1976 Depth: 4.5 m Visibility: 1.0 m transmissivity 75% Location: 70°10.3'N 147°01.0'W Divers: Erk Reimnitz and Larry Toimil Length of traverse: 200 m westerly Currents: very weak Supplementary data obtained: shear vane measurements and pore water salinity determination. Side scanning sonar and fathometer survey of dive site. # Introduction This dive was made late on the same day as the previous three dives. The wind was still from the NE, but had decreased to 20 knots. Thus it was rather choppy, but surface- and bottom currents were very weak. The side scan sopar record leading up to the anchor site for the dive (Fig. 2) is mottled, but we suspected that this appearance could be artificial. See Figure 1 for dive site location. ## Bottom Observations Morphology.—The bottom was smooth, except for a set of ill-defined, small ripples, in a advanced state of decay from abundant benthic activity and burrowing, and a few depressions of about 30 cm diameter and 5 cm depth. These depressions have irregular outlines with gently sloping sides. There were no signs of ice gouging or strudel scouring along the 200-m-long bottom traverse. Sediments.—The bottom sediments consisted of a slightly sandy, very firm mud, with patches in which small, brown clam shells were scattered widely. Thick Astarte shells were rather common, and concentrations of these shells were seen especially in the bottoms of the small depressions described above. About five or ten pebbles, up to 3 cm in diameter, occasionally with attached hydroids, were seen along the bottom traverse. The bottom was so firm that the vane shear apparatus, with the vanes barely buried in the sediment, registered off-scale. Organisms.—The bottom was highly disrupted by benthic activity producing tracks, trails, mounds and craters, small open holes, and highly irregular microrelief. Outside of a few isopods, coelenterates, hydroids, fairly abundant clam shells and a few snail shells, very few life forms were actually observed. It seems that the coelenterates prefer sandier substrate. A small, bush-like brown algae, about 10 cm high was occasionally observed, as were some large fronds of brown algae. Algal debris and fronds were especially common in the small depressions, but probably only few of them were actually attached to pebbles. There also were a few of the brownish, filiamentous algae seen in other dives. ## General Comments Bottom-inhomogenouities that clearly explain the mottled appearance of the sonar records were not found. But it did seem as if the number of small clams littering the surface was variable along the 200-m bottom traverse. Thus, the mottled sonar record may be due to variations in accoustic reflectivity of the bottom with variations in the number of exposed clam shells, but it may also be an artifact or related to reflections from a rough sea surface. The small depressions in the seafloor may have been produced from current- and wave- Figure 2. Side scan sonar (A) and raytheon record (B) at dive site 76-11. Mottled pattern possible due to patchy shell distributions or reflections from choppy sea surface. induced motion of anchored kelp fronds. The firmness, or dense packing of bottom sediments suggests very low rates of sedimentation an interpretation that is supported by our regional surveys with high resolution seismic reflection techniques. Dive Site No. 76-12 Date: September 6, 1976 Depth: 2.5-3 m Visibility: 2 m Currents: 10-15 cm/sec westward Location: 70°10.8'N, 146°03.4'W Divers: Erk Reimnitz and Larry Toimil Length of traverse: 400 m southward Supplementary data obtained: Photographs, vane shear measurements, pore water salinity. Sonographs, fathograms, and seismic records obtained nearby. ## Introduction Leffingwell Lagoon is separated from the open ocean by Flaxman Island (Fig. 1), an island known for the occurrence of large boulders on the beach, (Leffingwell, 1919), and for being eroded at rather high rates (Lewellen, 1970). Our own studies have shown that the Flaxman Boulders resting on the beach and in the swash zone around the island are weathered out of the bluffs exposing the Quaternary Gubic Formation, where they occur as scattered erratics in a finer matrix. We speculated that if the processes of erosion of Flaxman Island has been going on for a long time, and if the concentration of erratics in the older, larger island were as high as those in today's remanent stump, the lagoon floor should be littered with boulders in a wide halo around the island. The side scanning sonar
record along the south side of the island (Fig. 2) did indeed show what we interpreted as possible boulders. A buoy was dropped at a water depth of 2.6 m, as marked on the sonar record, in an area where numerous small point source reflectors are shown. The wind and sea were calm. Along the buoy anchor, the visibility was about 1.5 m, and bottom currents westward at an estimated 10 to 15 cm/sec. ### Bottom Observations Morphology.—The bottom along the traverse was generally smooth, with a suggestion of slight undulations, barely noticeable, possibly related to dragging ice in the distant past. Subangular to angular cobbles and boulders, up to 30 cm in diameter, where protruding from the sediment or resting on the surface (Figs. 3 and 4). Some of the boulders were sitting in slight depressions, marked by concentrations of pebbles and shells (Fig. 4). We also encountered a number of slabs of tundra, obviously resulting from local bluff erosion, and sticks of wood (Fig. 5). These tundra slabs are almost neutrally buoyant, and therefore probably in transit on windy days. The micro relief consisted of irregularities from intense benthic activity, which had eliminated any signs of ripple marks formed during storms and strong current flow. <u>Sediments.--</u>The sediments that include the pebbles, cobbles boulders, tundra slabs, wood, and shell material consisted of muddy sand. The upper 3 to 4 cm of this sandy mud felt relatively soft and could be penetrated by the divers hand, but below that depth the hands could not penetrate (see shear vane readings). Organisms.—Figure 6 shows evidence for large numbers of bottom dwelling and burrowing organisms, including Arenicola, large isopods, coelenterates, hydroids, and many others that we can not identify. Numerous puffs of suspended matter were ejected from the bottom within a 20 cm radius from where the diver's hand disturbed it. The isopods, found on most of our dives, here were seen to be living also within the sediments to a depth of perhaps 2 cm. Shells of Figure 2. Boulders seen on dive 76-12 appear as dark spots on side scan sonar record (A) and give small relief to the raytheon record (B). Figure 3. Boulder approximately 30 cm in diameter resting on sandy mud. Note lack of marine growth. Figure 4. Boulder covered with marine growth resting in slight depression. Note concentration of pebbles and shells, and filamentous algae moving with current. Figure 5. Large (40-50 cm long axis) tundra slab and stick of wood. Figure 6. Abundant marine growth on bottom and attached to rocks. astarte, cyrtodaria, and other clams and snails were seen, notably in the depressions surrounding cobbles and boulders (Fig. 4). When lifting cobbles, we noted that large numbers of small shrimp are living below these. Most of the large rocks had abundant marine growth (Figs. 4 and 6) but a few of them were bare of growth (Fig. 3). Brown kelp with large leaves was seen only rarely, but the brown filamentous type was rather common (Fig. 4), serving as a good current direction indicator. ## General Comments Cobbles and boulders not covered with large brown kelp as extensively as in the "Boulder Patch" (dive no. 3 Ann. Rep.) show up rather distinctly on side scan sonar records, as do the small depressions surrounding some of the boulders. These depressions, generally floored by pebbles and shell material, clearly are scour features formed under stormy conditions or strong current flow. We assume that under such conditions the general bottom would be characterized by ripple marks. But such bedforms are rapidly eliminated by biologic activity. This lagoon floor had a richer, and more variable benthic burrowing community than seen in any other dive along this coast. But how fast this community can eliminate other bedforms we do not know. We feel that ice rafting in general is not a very active process on this shelf (Reimnitz and Barnes, 1974, Barnes and Reimnitz, 1974). But cobbles bare of marine growth and lightly resting on the seafloor, as seen in figure 3, suggest that ice rafting from the beach is taking place. Lack of a scour depression around this cobble indicates that a major event producing scour depressions in this area has not occurred since this cobble was deposited. Our guess is that the cobble in Figure 3 has been in this place for several years, but this is only a feeling which we can not substantiate. From: a) the extent of the boulder halo surrounding Flaxman Island, b) the size of boulders, and c) a knowledge of the rate of bluff retreat by erosion, one could calculate the rate of sedimentation in this lagoon, assuming that the boulders do not move laterally. But this may not be a valid assumption, and we will refrain from making such calculations. We believe that the boulder horizon, marking a beach and swash zone accumulation, extends for a long distance from Flaxman Island toward the mainland at increasing depth below the lagoon fill. But our high-resolution seismic reflection records in this lagoon have not permitted us to trace this horizon with any confidence. Side scan sonar records obtained in the area in 1975 showed a herringbone-like pattern on the lagoon floor, which we interpreted to be the result of helical flow (Barnes, et.al., 1977, Part D). The 1976 work with sonar and diving did not allow us to shed additional light on the subject, except that the pattern is short-lived, and may be re-formed occasionally. Dive Site No. 76-14 Date: September 8, 1976 Depth: 5.5 m Visibility: 1.8 m Currents: < 10 cm/sec Location: 70°14.7'N,147°10.5'W Divers: Reinmitz and Toimil Length of Traverse: 150 m Supplemental Data Obtained: Shear Vane measurements, bathymetric profiles and sonographs 1976 and 1973. Sub-bottom profiles 1973. Photographs 1976. # Introduction In this and another recent report (Diving Notes from Three Beaufort Sea Sites, 1976 Annual Report, Attachment J) we describe regions of the seabed along the inner shelf which are characterized by concentrations of exposed boulders. We have classified these regions as lag deposits resulting from the erosion of small islands of the Gubic Formation. We have used Tigvariak Island, which has numerous boulders exposed within its retreating bluffs and swash zone, as a present day example of such an island. We have also described (dive site 76-9 of this report) the large amounts of organic materials sometimes observed in transit across the seabed and wondered about the fate of these materials. Observations made during this traverse located about 2 km north of Tigvariak Island (Fig. 1), and confirmed the presence of coarse lag deposits seaward of Tigvariak Island, and suggests a process in which bottom transport materials may be trapped and incorporated into a coherent deposit. # Bottom Observations Morphology. -- Figure 2 shows photographs of the original side-scan sonar and bathymetric records obtained during our predive survey. The records are similar to those obtained in 1973 in the same region. The mottled texture of the seabed in the sonographs is very much like the pattern revealed in records obtained across the "Boulder Patch" (1976 Annual Report, Attachment J). The slight depression seen in the raytheon record is closed and somewhat circular in plain view. Upon diving, the seabed was found to be essentially flat, devoid of major bed forms, and extensively bioturbated. The first of several very subtle, closed depressions was encountered after swimming some 20 or 30 m. The depressions ranged between 0.1 and 4.0 meter across and only around their perimeters was a drop in the seabed noticable, despite good visibility (about 2 m). The large accumulations of kelp (Fig. 3), The thickness of the accumulated, loose kelp was between 20-30 cm. Swimming further south we found some of the larger depressions to be flanked by ledges 5-10 cm high composed of 2-3 cm thick beds of laminated organic materials in an advanced state of decay (Fig. 4). These thin outcropping beds could be peeled off by hand indicating some degree of compaction. Sediments. -- Surficial sediments along the Traverse consisted of sandy, light brown muds. The thickness of the surficial muds was irregular and the unit was underlain by gravels. In some areas the muds were as much as 10 cm thick while on the floor of the depressions, gravels were exposed. Shear Д Figure 2. Side scan sonar (A) showing mottled seafloor and Raytheon record (B) showing relief of depressions and irregular sub-bottom beneath at dive site 76-14. Figure 3. Kelp and other organic debris collected in a shallow depression. Thickness of the loose accumulation is 20 to 30 cm. Figure 4. Ledges of organic material 5 to 10 cm high can be seen in background, surrounding the slight depression where fresh organic debris has accumulated. Note cloud of sediment resuspended by diver's fin. strength of the muds outside of the depressions peak off scale, and residual valves averaged 1.09 PSI $(7.52~KN/M^2)$. The gravels formed a pavement so hard they could not be penetrated. In almost every case, the central areas of the depressions were marked by either gravels, cobbles, or a boulder. The largest boulder encountered, which was found in a depression having a diameter at about 4 meters, was 40-50 cm across and about 30 cm high. This boulder, together with the majority of gravel and cobble size rock fragments were angular and covered with marine growth. Close inspection of a number of cobble size fragments showed barnacle hold fasts on all sides; indicating that the cobbles had been overturned from time to time. A very thin layer, 1-2 mm thick, of light brown fine sand or silt covered most of the exposed rocks and marine growth. This layer appeared to have only recently settled out of suspension and was easily resuspended by the wake of our diving fins. Organisms. -- While we found the muddy surficial sediment to be highly bioturbated, only a few isopods were visable. Below the surface we found the thick
shelled clam Astarte to be abundant. A rich community of marine organisms occupied the surface of the larger rock fragments. These included various forms of algae, cupped shaped sponges, acorn barnacles, bryozoans and one or two soft bodied corals. Most of the brown kelp we encountered in the depressions did not have rocks attached to the holdfast. Apparently their accumulation in the depressions is the result of becoming intangled with the few long fronds which are anchored to exposed cobbles and boulders. # General Comments The mottled bottom seen in 1973 and 1976 sonographs is caused by the numerous depressions filled with organic material seen during the dive. These shallow depressions were most likely scoured by high velocity currents eroding muds and sands due to an increase in turbulence around exposed boulders and cobbles. The area then becomes a site of benthic marine growth, with holdfast-type organisms (kelp and barnacles) entrapping finer organic material until thick deposits accumulate. Upon burial, this debris would be compacted into the thin laminated mats seen outcropping on the sides of the depressions. Thus, accumulation of organic debris has been occurring at this site for some time. In this manner the "Boulder Patches" become sites of high benthic activity and eventually deposition of organic material. Dive Site No. 76-17 Date: September 9, 1977 Depth: 2.5 - 6 m Visibility: 2 m Currents: None detected Location: 70°23.8'N, 147°28.7'W Divers: Erk Reimnitz and Larry Toimil Length of traverse: 300 m northwestward Supplementary data obtained: Photographs, vane shear measurements, salinity of interstitial water, fathogram nearby. ## Introduction The dive was made on the seaward side of Narwhal Island (Fig. 1). As is common for this area, the KARLUK could be brought to the site only on a tightly winding course because of ice. We anchored within 100 m from the beach, in a small clearing among grounded ice at a depth of about 2.5 m. Earlier during the day we had attempted to make a geophysical survey northward, winding through ice, to a point about 5.5 km from the island where we were stopped by a line of solid ice roughly along the 18 m depth contour. This ice was grounded, and afforded protection for the inshore areas. The sea was calm, and we detected no currents, so that the ice north of the island, either grounded or adrift, was rather stationary. We have reason to believe that over the last year little ice movement has taken place in this area because of multiyear stamukhi offshore. The purpose of the dive was to make further bottom observations in the area where the stamukhi zone and winter ice shear events occur close to shore. A side scan sonar record and fathogram obtained very near the dive site along a winding course are shown in Figures 2a and 2b, respectively. Due to the presence of much grounded ice (Fig. 2a) forcing us to detour continuously, we did not make much progress in a seaward direction during the first 2/3 of the dive. After this we surfaced, got rid of the camera, and had the skiff man lead us through the ice seaward by towing a weighted line along the bottom. In this manner, we proceeded 200 m to a water depth of about 5.5 m. At 3.5 m depth, we traversed a thermocline with very blurred visibility, but in general, visibility was excellent. #### Bottom Observations Morphology.—The large scale relief observed along the traverse consisted of ice gouges, most of which were short and irregular. These gouges ranged from a few centimeters to nearly 1.5 m in vertical relief (ridge crest to gouge floor). Relatively smooth bottom areas (Fig. 3) were rare inshore of the 3 m isobath, but made up as much as 60% of the seafloor farther seaward. Figure 4, at a water depth of 2.5 m near where the photo of Figure 5 was taken, shows one of the short, irregular gouges. Figure 5 shows a grounded ice cake in the process of cutting a very shallow gouge. Current scour depressions, so commonly observed around grounded ice in summer time, were not formed at any of the ice-bottom contacts seen in this dive. At a water depth of 4 to 5 meters the interaction of ice with the bottom, consisting of sandy, cohesive mud and outcrops of stiff, overconsolidated silty clay, had produced highly irregular relief, including 20 to 30 cm large, angular blocks (Fig 6). Figure 7 shows a view across a 2 m wide gouge with 60 cm high flanking ridges cut into sandy cohesive mud, with flanking slopes steeper than the angle of repose. Figure 8 is a close-up view of the flanking ridge, whose crest was Д Figure 2. Side scan sonar (A) and raytheon (B) record near dive site 76-17, showing offshore relief and gouging. Gouge examined during dive is not on the records. Figure 3.—Rounded cobbles, pebbles, and medium grained sand at a depth of about 2.5 m near Narwhal Island. Note lack of marine growth on the rocks, lack of burrowing organisms, and lack of ripple marks. Figure 4.--Short, irregular gouge in same area as Figure 3. Figure 5.--Small summer gouge, approximately 30 cm wide, being formed in sandy mud with some cohesion. Water depth about 4 m, several hundred meters from Narwhal Island. Figure 7.—View across a 2-m wide gouge with 60 cm high flanking ridges, cut into sandy cohesive mud. Figure 8.--Close-up view of flanking ridge seen in Figure 7. Angular relief, and lack of bioturbation and weathering indicates recency of event. planed off by a subsequent event. Angular relief, and lack of bioturbation and weathering indicates recency of this gouge. It can be seen that plastic deformation of sediments was involved in the formation of this gouge. Small scale ripple marks, very poorly defined, were observed in a few very small irregular patches. But several gouge floors were marked by transverse ripples, described earlier by Reimnitz and Barnes (1974) and still unexplained. We also saw scattered mounds and craters from the worm Arenicula, which here seemed to be larger than in most other areas observed. Sediments. -- The bottom sediments in the area are marked by wide variations. In general, the deposits were coarser along the inshore half of the bottom traverse. Here medium-grained sand, with patches of gravel and rounded cobbles were typical (Figs. 3 and 4). The northern beach of Narwhal Island is made up of similar deposits, although here they are somewhat better sorted into storm berm, beach face, and swash zone deposits, each somewhat different. Among the large clasts observed along the traverse, the pinkish granite originating from east of the Mackenzie Delta (Rodeick, 1974) was rather common. The distribution of gravel and cobbles was not only patchy and irregular on the surface, but within the upper 1 m of section as well. Thus, concentrations of gravel were often seen in sandy mud gouge flanks, or felt below surficial sand or mud patches. From a depth of about 3.5 m seaward, a sandy, cohesive mud generally blanketed the seafloor, but patches of sand and gravelly sand also were present. These materials apparently are underlain by a stiff (overconsolidated) silty clay, indicated by outcrops and a few scattered blocks of this material (Fig. 6). This silty clay is very similar to that observed by divers off Reindeer and Argo Islands (Reimnitz and Barnes, 1974) and in many other places on this shelf. About 5 slabs of nearly neutrally buoyant tundra mat, rather fresh in appearance, were also observed along the traverse. Seaward of 3.5 to 4 m depth, the bottom and particularly the floor of depressions, were covered with a thin transient layer of brown ooze, which appears to be rich in plankton remains. The floor of the gouge shown in figure 8 had a very soupy ooze layer about 5 cm thick. Except for the transient ooze layer on the surface, the bottom along the traverse was rather firm, but with large local variations (Table 1). Organisms.—The bottom seaward of Narwhal Island, as observed previously off Cross Island, is characterized by being almost barren of benthic organisms. We saw very few isopods, a few scattered polychaete tubes, similar to the ones described off Karluk Island, scattered mounds and craters produced by Arenicula, and a few pieces of brown kelp (Fig. 6). None of the kelp was firmly anchored, only held in place temporarily by small pebbles. In contrast to rich marine growth seen on rocks in protected areas, elsewhere, the coarse clasts in this area were bare of any benthic organisms. The angular blocks of silty clay had a few bore-holes, up to .8 cm in diameter and the bottom in the muddier offshore part of the traverse had some small pockmarks suggesting the presence of burrowing organisms. # General Comments Short, irregular ice gouges, common for a) nearshore areas off seaward facing beaches, b) offshore shoals (see dive 76-18), and c) regions with irregular bathymetry and relatively steep, local relief, do not show up nearly as well on sonographs as long, linear ice gouges typical for the open shelf with gentle slopes. Thus, the sonographs near the dive site show mainly reflections from ice, much of it grounded, and only a few well-defined gouges. The fact that current scour depressions had not formed along the ice bottom contacts and general lack of ripple marks, suggest that strong currents have not occurred here during the last few weeks, if not longer. This may be explained by the high concentration of grounded ice in the nearshore zone off Narwhal Island. The transverse ripples seen in several gouges must be due to some curious flow phenomenon associated with dragging objects. It is noteworthy that none of the ice had incorporated sediment near the bottom contact (Fig. 5). This has been noted previously by Reimnitz and Barnes (1974). Reimnitz, et al. (1977a and b) have shown that a large part of the available marine energy is expended on the seafloor within the stamukhi zone by ice ridge and hummock formation, ice gouging, and that the stamukhi zone runs tangent and close to the major
promontories of the Alaskan coast. Narwhal and Cross Island acting together form one of these promontories, where even the beaches are commonly disturbed by ice push. The total lack of marine growth on the cobbles and pebbles confirms the frequent ice interaction with the bottom near Narwhal Island and Cross Island (see Figure F in Reimnitz et al, 1973, a bottom photo taken seaward of Cross Island). Off Flaxman Island, where the stamukhi zone lies farther seaward and the beaches therefore are relatively protected, rocks seen on the bottom in closed circuit TV observations commonly have marine growth. It seems that the large-leaved brown kelp is able to survive by never attaching firmly. Since strong currents on the inner shelf generally flow parallel to shore, and long, linear, shoreparallel gouges on the central shelf would serve to track lightly anchored kelp, it may be able to stay in a shallow water habitat required for photosynthesis. Dive Site No 76-18 Date: September 10, 1976 Depth: 6-12 m Visibility: +1 m Location: 70°33.2'N, 149°11.0'W Divers: Erk Reimnitz and Larry Toimil Length of traverse: 300 m northward Currents: surface 15 cm/sec westward, bottom - none detected. Supplementary data obtained: Vane shear measurements, pore water salinity determination, side scanning sonar record, and fathograms with sub-bottom seismic profile. ## Introduction The pronounced linear shoals occurring west of Prudhoe Bay several kilometers seaward of the barrier island thain (Fig. 1) are important focal points in the formation of major shear—and pressure ridge systems during the winter, and therefore exert considerable control on sea ice zonation on the Beaufort Sea shelf (Reimnitz, et al., 1977 a, b). Although these shoals in cross—section and relief are rather similar to modern barrier islands, they seem to have a different origin. It will be of considerable interest, and importance to know how they were formed. In the above two references, we have shown that these shoals seem to be migrating shoreward today. Therefore, we would also like to know what processes are involved in such shoal migration today. On the day of the dive, the shoals in the area were marked by numerous grounded floebergs (stamukhi), which seemed to be of pressure ridge origin. Encountering fences of large, grounded ice on the shoals has been common occurrence during the 7 summer seasons in which we have made field observations in the area. The shoal on which the dive was made had a few gaps between the grounded floebergs, but many smaller free-floating ice cakes were drifting westward past these, at an estimated rate of 1/2 km/hr. We anchored the boat on the south side of the shoal, somewhat protected from the drifting ice. Because the gaps in the line of stamukhi were small, and individual floebergs large, we had the diving tender row the skiff with a weighted line through gap, which we could follow without running afoul under the ice. The sonograph obtained near the actual diving traverse, and the fathogram recorded along the traverse after dive completion are shown in Figure 2. The fathogram (Fig. 2A) shows a foreshortened profile across the shoal, with slopes of about equal steepness but different relief: smooth on the south side and step-like on the north side. The adjacent flat bottom is about .5 m deeper on the seaward side of the shoal (right side). The sonograph is reversed, with the seaward side to the left (Fig. 2B). It shows the stamukhi on the crest of the shoal, some drifting ice on the leeward side, and a few ice gouges. But on this and other similar shoals we have never seen as many major gouges as one would expect because of the constant presence of grounded ice. The dive started where marked on the fathogram (Fig. 2A). In the upper part of the water column, the visibility was estimated at about 2 m, but within a few meters of the bottom we penetrated a layer with abundant fine planktonic (?) particles, decreasing visibility to about 1 m. А B Figure 2. Fathogram (A) obtained along the traverse subsequent to dive 76-18. Side scan sonar record (B) obtained across the shoal between two large stamukhi (dark reflectors near the track) grounded on the seaward side of the shoal. This sonograph was recorded about 50 m east of the diving traverse. A lack of prominent gouges discernible on sonographs of sandy shoals is typical. # Bottom Observations Morphology. -- On the flat bottom adjacent to the ridge, the bottom was featureless, except for a multitude of tracks made by large isopods. Proceeding up the lee side of the shoal we saw several areas with indistinct, rounded off ripples, spaced about 15 cm apart and trending about NW to SE. The upper half of this slope had no detectable ripple marks, but was marked by an irregular microrelief of unknown origin. This surface was cut by numerous short, irregular gouges in criss-crossing patterns. On the crest of the shoal there also were numerous short, ill-defined gouges and two major linear gouges trending roughly parallel to the crest. These gouges were about 1.5 to 2 m wide, adjacent and parallel to each other, with the flanks of the ridges sloping at the angle of repose. In our judgement, none of the gouges on the crest had a fresh appearance, seeming rather weathered and subdued. Descending down the seaward side of the shoal, we saw a number of ill-defined gouge features, and micro-relief from bottom dwellers, notably the worm Arenicula. On the short stretch of flat-lying seafloor traversed near the end of the dive there was no noticeable relief, except for that produced by burrowing activity. Sediments. -- On the flat floor landward of the shoal (Fig. 2A) the bottom was a firm sand, covered by 3-5 cm of soupy brown ooze, probably remains of the summer plankton bloom. Sandy substrate continued halfway up the landward flank of the shoal, but the ooze layer disappeared at this point. Across the entire upper part of the shoal the bottom was clean, well-sorted sand, with brown ooze collecting in the bottoms of gouges. Halfway down the seaward slope, we crossed an area with muddy sand, which, when penetrated by the diver's hand, momentarily adhered to the glove. At the toe of the seaward slope (Fig. 2A), the slightly cohesive muddy sand gave way to rather clean sand, but at the very end of the traverse it was again muddy sand. The distribution of the transient ooze layer was similar on both seaward and landward side, with a 3-5 cm thick layer covering micro-relief on the flat floor adjacent to the shoal. Poking around with the hand during the traverse we did not detect any difference between surface and subsurface material, except that on the landward flank there may have been muddy sand below the sand. This is only judged by feeling, and we can not be certain. Not a single pebble was noted along the entire traverse, but there were numerous small clam shells and fragments, apparently mainly of the genus Cyrtodaria. The substrate in general felt rather firm along the entire traverse, and some vane shear values from the end of the dive are given in Table 1. Organisms. -- Most notable was the large isopod, occurring in large numbers on the flat floor on both sides of the shoal. Here, within a view of 1 m, one could count perhaps ten of these, rapidly crawling along with the backs barely protruding from the ooze layer. On the shandy shoal devoid of ooze, they were not very numerous. In several places we saw groups of about five isopods feeding on pinkish, jelly-like organisms, shaped like a watermelon but with distinct ridges from one end to the other. We saw scattered coelenterates, soft spherical organisms of about 1.5 cm diameter attached to the bottom. There also were a few scattered tubes of polychaetes protruding several centimeters from the seafloor, and some mounds of the worm Arenicula. Also, several unattached brown kelp fronds were seen, but by and large the shoal itself did not have much bottom life as far as we could tell. #### General Comments The shoal, consisting of clean sand without any pebbles, is very different from modern barrier islands consisting of sandy gravel to gravelly sand. In speculating on the process of ice rafting in the Beaufort Sea, we have used the lack of coarse clasts as an argument against the rafting of gravel and boulders on the shelf (Reimnitz and Barnes, 1974). The time of the year when incorporated sediment is released from ice is summer time, when it melts. During this period the residence time of ice, because of grounding, is higher on the shoals than on the general shelf. Winnowing by currents (probably not by waves at this depth) should result in a cap of lag material on the shoal, representing the coarsest fraction supplied at this time. As mentioned under dive 76-17, short irregular gouges are not recorded very well by side scanning sonar, compared to long linear ones. We saw a number of these during the dive, along with two major linear ones. But we were surprised by the general lack of evidence of recent ice gouging on the shoal, especially when compared to diving observations made across this and other shoals in 1972. An 80 cm long core obtained on the crest of the shoal with a vibrocorer in 1976 penetrated clean, well-sorted, medium-grained sand, with several packages of current-produced structures. Thus, the crest of the ridge occasionally is shaped by current action, but probably these currents are mainly local along the bottom contact of stamukhi. Thus we do not expect that the packages with current-produced sedimentary structures extend very far laterally, but rather occur as lenses. The dive has added further information on the Beaufort Sea shoals on the inner shelf, which generally are marked by stamukhi. But we are still a long way from an understanding of the origin of the shoals, and their long-term interaction with the ice. Dive Site No. 76-19 Date: September 22, 1976 Depth: 5.5 m Visibility: .6 m Currents: 17 cm/sec at 86° mag.
Location: 70°23.95'N, 148°01.40'W Divers: Erk Reimnitz and Larry Toimil Length of traverse: 60 m Supplementary data obtained: Vane shear measurements ## Introduction This dive was made mainly for the purpose of checking the condition of an instrument package consisting of current meter, tide gauge, and nephelometer, prior to retrieval. The wind was northeasterly at about 10 knots, and there was widely scattered drift ice, increasing in concentration northward toward Cross Island (Fig. 1). Attached to the current meter anchor was a steel cable as grappling line, with another anchor at the end. Dragging a grappling hook to pick up the grappling line we had accumulated a considerable amount of brown kelp, and the line itself also had many large brown fronds wrapped around it. We swam a short distance along the grappling line toward the current meter with very poor visibility (about .6 m). We separated, while being teathered with a 2-m long line, and thus swam a search pattern around the current meter site. A 15 feet long dragmark led up to the current meter, indicating that we had dragged the instrument while grappling. In spite of the kelp in the area, the instruments were not fouled. #### Bottom Observations Morphology. --Small current ripples, with a wave length of about 10 cm, and indicative of westward current, were well developed in an even pattern. Lack of ripple disruption by burrowers suggested a recent origin for the ripples. The bottom was smooth on a large scale, except for several 30 cm diameter depressions that were only 1 to 2 cm deep and floored by granules and shell fragments. Sediments.—The surficial sediments were fine to medium sand, except for the small depressions with granules and fragile shell fragments (Cyrtodaria). These shells were sparsely scattered about throughout the dive site. One large kelp frond was seen attached to a pebble. Very fine grained, dark organic matter was marking the steep, down-current side of the ripples. The bottom was firm (see shear strength in Table 1). In pushing the shear vane into the bottom it felt as if the firm substrate was muddy. When retrieving the anchor the flukes indeed had some very dark brown, and muddy sand with several pebbles and fragile shell fragments. Organisms. -- Except for the scattered fronds of brown kelp, and small shell fragments, we noted no benthic life. ## General Comments The current ripples were not actively migrating at the time of the dive, although the current meter at 1 m above the bottom recorded 17 cm/sec current. We judged the current as being "very weak." Earlier during the day the current velocity had been around 1/2 knot (25 cm/sec) for several hours, and we think that the ripples were formed at that time. It appears as though the sand layer blanketing the floor is very thin, underlain by muddy sand. We do not know what caused the apparent change in depositional environment. The site is close to the Sagavanirtok River delta (Fig. 1), which supplies predominantly finer-than-sand-size material, and no pebbles to the sea at this time. It could be that the muddy sand underlying the sand venier represents deltaic sediments from a time when the main discharge was closer to the site than today. The sand venier then would be a winnowing product of the underlying material. Because of the intense sediment disruption near arctic deltas by strudel scour (Reimnitz et al, 1974) it seems futile to attempt an interpretation of the limited observations at this site. The origin of slight depressions marked by granule-size deposits in the sand venier remains unknown. Dive Site No. 76-20 Date: September 23, 1976 Depth: 0-5 m Visibility: .2 m to zero Currents: weak into lagoon Location: 70°26.55'N, 148°46.5'W Divers: Erk Reimnitz and Larry Toimil Length of traverse: 150 m Supplementary data obtained: None at time of dive #### Introduction The tidal inlet studied on this dive is the main connection for eastern Simpson Lagoon and the open ocean (Fig. 1). The Kuparok River discharges into the lagoon nearby. During the middle of July 1976, we retrieved a current meter from the axis of the inlet, which had been in place since September 1975. The instrument package, mooring lines, and a 100-m long cable leading to an anchor nearby the channel all had collected very large amounts of fibrous organic matter. After observing very large amounts of similar organic matter in the tidal inlet east of Flaxman Island, there is an interest in knowing the source, pathways, and depositional sites of this material. In 1972, some work was done in this inlet with the R/V LOON, including a dive, and a current meter implant. In order to place the instrument into the deepest part of the channel, we also made a reconnaissance bathymetric survey. In this survey, we first placed 4 buoys in the channel axis, and then ran a survey line along the line of buoys (Fig. 2). Figure 2, based on C&GS Chart 9472, shows that the maximum depth of the channel was 9 feet, and that the channel was much farther from the adjacent island than in 1972. In 1972, maximum depth in the channel was found to be about 27 feet. At the time of the dive there was a weak current into the lagoon through the channel. We made several bottom traverses across the channel, with 20 to 30 cm visibility in very shallow water, and zero visibility below 1.5 m depth. The traverses were in the vicinity of buoys 2 and 3, close to the deepest part of the channel. #### Bottom Observations Morphology.—From the beach on the nearest island, the bottom slopes at the angle of repose toward the channel axis. Asymetric current ripples, 3-5 cm high, and spaced 20 cm apart, suggested seaward flow had shaped them. These were observed to a depth of 1.5 m on either side of the channel; below which depth poor visibility prevented detection. Adjacent to the channel axis we felt several 5-10 cm high ledges, which may have been slabs of tundra, rather than the actual bottom profile. Sediments.—To a depth of 1-m adjacent to the beach was very loose gravel lying at the angle of repose, below 1 m surface sediment became sandier with pea gravel exposed in the troughs of ripples. Below a depth of 1.5 m, where we could no longer see, muddy bottom was felt, so soft that the hand could penetrate to the wrist. This mud was overlain by small patches of gravel. Near the channel floor, the sides felt like rather firm mud and in several places it felt as if small ledges were cut into the mud, but these may have been slabs of tundra. The channel axis was underlain by firmly packed gravel, with some angular rock fragments up to 4 or 5 cm in diameter. We felt a number of tundra slabs, sticks, branches, and an 8 cm diameter log, resting on or protruding from the channel fill. We observed none of the fibrous organic matter which must have been abundant in early summer. Organisms. -- None were observed. #### General Comments We believe that the details of the bottom morphology, and sediments in this active tidal inlet undergo short term, drastic changes. The longitudinal profile of the channel axis in 1972 (Fig. 2) showed a highly irregular bottom. Swimming along the channel axis in that year (August 24), with .5 m visibility, we found that the parts of the bottom profile were bluffs, 60 to 80 cm high, exposing fibrous organic matter which we interpreted as tundra. The high ground between the bluffs consisted of sandy gravel shaped into about 20 cm high current ripples pointing seaward. The deep holes were partly filled with soft mud and organic matter, and sticks. Thus, it appeared that this tidal inlet was not in equilibrium with open water conditions, but with catastrophic events during river flooding of sea ice and including strudel scour. Reimnitz et al, (1974) described what clearly was a strudel scour of major dimensions, found very near this tidal inlet. Figure 2.—Dive site 76-20 is located in the tidal inlet to Simpson Lagoon, near buoy 3. The four buoys were placed in the channel axis in 1972 for the purpose of obtaining a longitudinal depth profile of the inlet channel. Note that at that time the maximum depth was 27 feet, while C&GS Chart 9472, based on 1950 surveys, shows a maximum depth of 9 feet. #### REFERENCES - Barnes, P. W., and Reimnitz, E., 1974, Sedimentary processes on arctic shelves off the northern coast of Alaska, in Reed and Sater, eds.: The Coast and Shelf of the Beaufort Sea, the Arctic Inst. of N. Am. Arlington, Va., p. 439-476. - Barnes, P. W., Reimnitz, E., Drake, D., and Toimil, L. S., 1977, Miscellaneous Hydrologic and geologic observations on the inner Beaufort Sea shelf, Alaska, USGS Open File Report #77-477 Part D. - Daily, J. W., Harleman, D. R. F., 1965, Fluid Dynamics, Addison-Wesley Publishing Co., Reading, Massachusetts. - Kovacs, A., and Mellor, M., 1974, Sea ice morphology and ice as a geologic agent in the southern Beaufort Sea, in Reed and Sater, eds.: The Coast and Shelf of the Beaufort Sea, the Arctic Institute of North America Arlington, Va., p. 113-162. - Leffingwell, E. de K. 1919; The Canning River region, northern Alaska, U.S. Geological Survey Professional Paper 109, 251 pp. - Lewellen, R. I., 1970, Permafrost erosion along the Beaufort Sea Coast, Private Publication, Geography & Geology Dept., Univ. of Denver, Denver, Col., p. 25. - Reimnitz, E., Wolf, S. C. and Rodeick, C. A., 1972, Preliminary interpretation of seismic profiles in the Prudhoe Bay area, Beaufort Sea, Alaska, U. S. Geo. Sur. open file report 548, 11 pp. - Reimnitz, E., Barnes, P. W. and Alpha, T. R., 1973; Bottom features and processes related to drifting ice on the arctic shelf, Alaska, U. S. Geo. Sur. Miscellaneous Field Studies Map, MF-532. - Reimnitz, E., and Barnes, P. W., 1974, Sea ice as a geologic agent on the Beaufort Sea shelf of Alaska, in Reed and Sater, eds.: The Coast and Shelf of the Beaufort Sea, the Arctic Inst. of N. Am., Arlington, Va. p. 301-351. - Reimnitz, E., Rodeick, C. A. and Wolf, S. C., 1974,
"Strudel scours: a unique arctic marine geologic phenomenon, Jour. of Sedimentary Petrology, Vol. 44, p. 409-420. - Reimnitz, E., Toimil, L. J., and Barnes, P. W., 1977a, Stamukhi Zone Processes: implications for developing the Arctic offshore, Proc., offshore Tech. Conf., 1977, Vol. III, p. 513-518. - Reimnitz, E., Toimil, L. J., and Barnes, P. W. 1977b, Arctic Continental Shelf processes and morphology related to sea ice zonation, Beaufort Sea, Alaska, AIDJEX Bull. #36, p. 15-64. - Reimnitz, E., Barnes, P. W., Toimil, L. J., and Melchior, J. (in press), Ice gourge recurrence and rates of Sediment Reworking, Beaufort Sea, Alaska, Geology. - Rodeick, C. A., 1975; The origin, Distribution and depositional history of gravel deposits on the Beaufort Sea continental shelf, Alaska; Master's thesis, San Jose State Univ., 87 p. #### ATTACHMENT C Preliminary results and observations on vibracoring taken on the Beaufort Sea innershelf. Peter Barnes, Erk Reimnitz, Larry Toimil #### Introduction Interpretation of modern sedimentary regimes requires that in addition to the surficial distribution of sedimentary parameters an understanding of their sub-seafloor distribution be known. This is especially true on the Arctic Shelves where ice gouging is actively influencing modern processes to depths of tens of centimeters on an annual basis (Reimnitz and others, 1977; Barnes and Reimnitz, 1974; Lewis, 1977). Numerous attempts during earlier studies to core the sediments of the Beaufort shelf met with limited success and were essentially unsuccessful inside 20 m depth. The use of a vibrating coring device has allowed us to obtain cores up to 180 cm in length from several different geologic environments on the inner shelf of the Alaskan Beaufort Sea. The core descriptions and a preliminary interpretation are the basis of this report. ### Coring Device The Kiel vibratory coring device used in this study vibrates from the forces created by a pair of counter-rotating electrically driven eccentric weights driving a hammer against an anvil. The hammer impact from the downstroke of 700 kp is repeated at 2,840 times per minute and is transmitted through the driving head to the core barrel, forcing the barrel into the sediment. The vibrating head and core barrel are guided into the sediment by a tripod frame and vertical rails (Fig. 1). This same frame supports a winch which withdraws the core from the bottom after sampling. Two types of core barrels were used; 10 x 10 cm square steel barrels and 10.8 cm ID fiberglass barrels. The steel barrel appeared to propogate the vibrations to the sediment more efficiently and therefore was more successful in obtain full cores. It was necessary to use a spring type core catcher to retain sandy samples in both the round and square barrels. Samples were obtained by anchoring the vessel and lowering the corer to the sea floor and vibrating in increments until either full penetration was indicated on the control console or further penetration of the corer stopped. Vibrating times ranged from 3 to a maximum of 10 min. A discussion of the implications of varied penetration rates at different coring sites is given in another report (Reimnitz and others, 1977). After retrieval, the cores were capped on the lower end and sealed at the top with plaster of Paris or wax. The cores were then shipped to Menlo Park and stored at about 4°C prior to analysis. The metal core boxes split in half from corner to corner by unscrewing the two halves. Fiberglass barrels were cut with a saw. The cores themselves were split using a wire "cheese cutter". One half of the core was inverted on plexiglass sheeting and a 1 cm slab sectioned from the center for radiography. Radiography was accomplished using 50 kv and 3 ma with type M or AA film in an attempt to achieve maximum contrast. Exposures were usually 10-15 min. The remainder of this half of the core was archived in plastic wrap at 4°C. The other half of the core was photographed and described and then impregnated with a sediment peel resin, essentially following the techniques outlined in Burger and others, (1969). The peels worked well in sandy sediments, clearly enhancing sedimentary structures; but they were unsucessful in the finer grained materials. The remainder of this half was sectioned into 5 cm and stored for future analysis. #### Results All types of sediments were encountered from gravels to sands, to clays and even peats. The variety is such that lateral extrapolations from one core station to another are not possible with the present spacing between core holes. During the first season of coring a variety of sedimentary environments were sampled (Fig. 2, A & B). The results we obtained indicate that at present the set of cores we have is insufficient to characterize any one environment. In fact, more questions were generated than answered, in particular regarding the lateral continuity of the stratigraphy and structures we observed. However, with only crude attention to detail, some relationships are evident from the initial descriptions and several environments could be distinguished. # Delta Front Platform Along the arctic coast a bench or terrace is commonly developed along the 2-m isobath. The so-called 2-m bench is especially well developed off river deltas. Cores 18 through 23 on the delta of the Colville River (Fig. 2A and appendix) were distinctive in that they were well stratified and were characterized by abundant peat layers. These cores, all from water depths less than 4 m, also had bedded and cross-bedded clean sands, especially inshore of the 2-m bench. The occurrence of peat appears to increase both in the onshore direction and in the cores taken on the western section of the platform. No peat layers were noted seaward of these shallow cores. Two other components were conspicuous; coal by its presence in these cores and pebbles which were completely absent. It appears that the sedimentary processes on the delta front platform, as recorded in the cores, reflect the influence of the Colville River and a coastal environment with a negligible influence from ice. Presumably the peat, coal and other detritus are supplied by the river and coastal bluff erosion (Arnborg et al., 1966; Walker, 1974), and reworked during the summer by waves and currents. One can also conclude that the river is not presently a source of gravel for the offshore environment. The abundance of low density peat in the river cores suggests a low energy environment where subsequent deposition buries the peats before they can be reworked and redistributed by waves and currents. The environment may be explained by the character of the arctic rivers of Alaska. In the spring initial melting occurs from the top down towards the permafrost making organic material the first available detritus for river transport. Subsequent melting of the permafrost active layer makes mineral detritus available. The initial flooding of the sea ice by river flow (Reimnitz and Bruder, 1972; Walker, 1974) occurs mostly on the sea ice overying the 2-m bench. Continued river flow and sea ice melting are confined to the delta front platform by sea ice seaward of the platform (Walker, 1974). This results in an initial input of organic material followed by the peak input of mineral detritus all of which are more or less constrained, by the presence of sea ice, to the 2-m bench. The intensity of subsequent open-season wave and current reworking as well as the seasonal variability of mineral and organic input, could determine the likliehood of peat layer preservation. ## Areas reworked by strudel scour and ice gouge Seaward of the delta front platform in an area influenced by strudel scour (Reimnitz and others, 1974) and ice gouge (Reimnitz and others, 1977) the vibrocores exhibit a different character (Cores 13 through 17: Fig. 2A and appendix) Most notably, there is a lack of horizontal bedding and the sediments in total are generally finer grained. Pebbles, shells and well-defined sand layers occur occasionally. Much of the cored material appears disrupted from the action of ice gouging. As the rates of gouging in this area should rework the bottom sediments to an average depth of 30 cm in less than 100 years, while sedimentation is estimated at less than 10 cm per 100 years, we would expect the entire core to be reworked (Barnes and others, 1977). The existence of sand layers is therefore somewhat puzzling. Either they are lenses with only limited lateral extent or the areal influence of ice gouging is not a random process. #### Barrier Islands A series of 4 cores taken in the vicinity of Reindeer Island (Cores 5 through 8, Fig. 2B and appendix) show that this environment is dominated by sand. Clean-bedded sands with some bross bedding and with rare pebbles occur on the downdrift side of the island (Core 5). On the seaward side of the island sands with the same characteristics are overlain by gravels and pebbly sands (Core 6). Further offshore, poorly to well-bedded sands are found in association with mud lumps (Cores 7 and 8) but pebbles are not present. These cores could be interpreted to represent portions of the transgressive sequence of a migrating barrier island, where the stratigraphy wave and current bedding at the foot of the advancing island is represented in Core 5 which is overlain by the pebbly beach facies seen in the upper part of Core 6. Offshore ice gouging is perhaps responsible for the poor development of bedding. The mud lumps are derived from outcrops of pre-Holocene stiff silty clay which has been observed on diving, side-scan and seismic observation in the area (Reimnitz and Barnes, 1974). ## Lagoons and Bays The action of ice gouging and strudel scour is minimal in the central portion of Prudhoe Bay and in Stefansson Sound (Fig. 1). Cores taken from this environment reflect a sedimentologically more quiet and biologically more active regime (Cores 1, 4, 9 and 12). Bedding is
clearly present but horizontal boundaries are poorly defined. Nuch of the core could be described as possibly bioturbated. There is occasional development of distinct sand beds with cross bedding (Core 12). The finer grained sediments are very dark and rich in organic materials. Thus the cores from protected inshore areas appear to be characterized by stratified sequence of organically rich fine-grained sediment, which has been partially disrupted by bioturbation. #### Summary Four sedimentary environments can be crudely characterized from the above discussion as follows: - Delta front platform consisting of well bedded sequences of sands, muds and peats. - 2) Marine environment influenced by ice gouging and strudel scour, consisting primarily of unstructured muds. - 3) Barrier islands composed of clean sands and minor amounts of gravels. - 4) Protected lagoons and bays consisting of organic muds and minor sands with biologically disrupted bedding, 544 #### References - Arnborg, L., Walker, H.J. and Peippo, J., 1967, Suspended load in the Colville River, Alaska, 1962, Geografiska Annaler, v. 49, p. 131-44. - Barnes, P.W., and Reimnitz, E., 1974, Sedimentary processes on arctic shelves off the northern coast of Alaska, in Reed and Sater, eds.: The Coast and Shelf of the Beaufort Sea, The Arctic Inst. of N. Am., Arlington, VA., p. 439-476. - Barnes, P.W., Reimnitz, E., Drake, D., and Toimil, L.S., 1977, Miscellaneous Hydrologic and geologic observations on the inner Beaufort Sea shelf, Alaska, USGS Open File Report #77-477, Part E. - barnes, P.W., Reimnitz, E., Drake, D., 1977, Marine environmental problems in the ice-cowered Beaufort Sea shelf and coastal regions, Quarterly Report to National Oceanic and Atmospheric Adm., Environmental Assessment of the Alaskan Continental Shelf; Principal Investigator's Reports, Oct. 1976-Dec. 1976, Part B. - Burger, J.A., Kline, G. dV., and Sanders, J.E., 1969, A field technique for making epoxy relief-peels in sandy sediments saturated with saltwater, Jour. of Sed. Petrol., v. 39, p. 338-346. - Lewis, C.F.M., 1977, Bottom scour by sea ice in the southern Beaufort Sea; Beaufort Sea Project, Technical Report 23, Dept. of Environment, Victoria, B.C., 120 p. - Reimnitz, E., and Barnes, P.W., 1974, Sea ice as a geologic agent on the Beaufort Sea shelf of Alaska, in Reed and Sater, eds.: The Coast and shelf of the Beaufort Sea, The Arctic Inst. of N. Am., Arlington, VA., p. 301-351. - Reimnitz, E., Rodeick, C.A. and Wolf, S.C., 1974, Strudel scours: a unique arctic marine geologic phenomenon, Jour. of Sed. Pet., v. 44, p. 409-420. - Reimnitz, E., Toimil, L.J., and Barnes, P.W., 1977, Arctic continental shelf processes and morphology related to sea ice zonation, Beaufort Sea, Alaska, AIDJEX Bull. #36, p. 15-64. - Reimnitz, E., Barnes, P.W., Toimil, L.J. and Melchior, J. (in press), Ice gouge recurrence and rates of sediment reworking, Beaufort Sea, Alaska, Geology. - Reimnitz, E. and Bruder, K.F., 1972, River discharge into an ice-covered ocean and related sediment dispersal, Beaufort Sea, Coast of Alaska, Geol. Soc. Am. Bull., v. 83, p. 861-66. - Walker, H.J., 1974, The Colville River and the Beaufort Sea: Some interations, in Reed and Sater, eds.: The Coast and Shelf of the Beaufort Sea, the Arctic Inst. of N. Am., Arlington, VA., p. 513-542. Lat. 70°19.0'N, Long. 148°22.0'W Water Depth: 3 m Location: Central part, mid-Prudhoe Bay Photo Sketch Description Total core length: 107 cm Lat. 70°22.3'N, Long. 148°28.4'W Water Depth: 1.7 m Location: Prudhoe Bay entrance channel (outer part on shreward side) Photo Sketch Description Irregular layers or pockets of clean oxidized fine sand. Saviy mud interbedded with sand layers in upper part, mottled below 10 cm depth. Poorly defined contact Homogeneous to mottled, slightly middy medium to fine sand, grey, with pebbles from 25-40 cm, becoming grey, clean, homogeneous medium sand at 50 cm; 50-70 cm no pebbles or shells. Oxidation boundary Dark bron-grey, medium to fine sand especially dark at 80 cm; very fine humic substance when washed. Irregular horizontal banding 75-95 cm disrupted below 85 cm. A few pebbles as sketched. No real boundary; marked by granulometric differences. Disturbed core, medium sand, clean, grey, slightly oxidized along right side. Slight admixture of mud and very fine organic substance along left side making this half dark brownish grey. Homogeneous clean, grey, medium sand below 145 cm. Several pebbles as sketched. Lat. 70°24,0'N, Long. 148°33.2'W Water Depth: 1.5 m Location: East end of Stump Island Photo Sketch Description Lat. 70°27.3'N, Long. 148°28.2'W Water Depth: 6.5 m Location: Stefansson Sound midway between Reindeer Island and Stump Island Photo Sketch Description Grey, slightly muddy medium to fine sand, homogeneous to mottled. more muddy in pockets on both sides, and burrow? in center Sandy mud, bioturbated, with very irregular upper contact horizontal banding marked by organic-rich dark layers clean, fine sand-grey organic lenses with thin clay-rich layer between mottled sandy mud, organic, black lens at 39 cm Muddy, mottled grey fine sand with highly mottled and muddy organic-rich sand in central part of unit firm, hard to cut, banded silty clay with highly irregular upper contact ripple-bedded, muddy fine sand Firm, muddy fine eard, broken up during cutting due to core catcher. Mottled in upper part, possibly horizontally bedded near base. Several small shell fragments near base. Lat. 70°28.9'N, Long. 148°24.2'W Water Depth: 25 m Location: On shoal west of Reindeer Island Photo Sketch Description Light grey sand, fine and clean down to around 30 cm, gradually becoming medium sand, clean for rest of core. Now oxidized. At 60 cm to bottom, color slightly darker grey, but barely noticeable. No minor structures noticeable except at 100 cm apparent bedding planes as sketched. No shell material. Core rather dry in upper 30 cm but still damp below. +pebble +granule Subsequent observation on core since peel was made (this photo) revealed primary sedimentary structures. The upper 60 cm consists of plane bed laminations. Coring has disturbed the edges. Rippled cross beds and parallel laminations are between 76 and 113 cm. Total core length: 126 cm Lat. 70°30.5'N, Long. 148°21.1'W Water Depth: 4 m Location: North side of Reindeer Island Description Photo Sketch 45 9900 1500 <u>:</u> 3388kG 5000 200 156785 Light grey, fine, clean, homogeneous sand, mam beginning at 40 cm to grade into medium *** sand. Occasional granules to small 3838E pebbles. No shells. nijepi 389 awit. Sand unit has a few pebbles throughout. 1000 2000 300 £ 2000 1000 7105 Zsharp, smooth contact 淋漓 Slightly sandy fine gravel with high amount of granule-size material, 1 rounded as beach material, few small No. shell fragments. Some fining toward 激権 base. 7 M sharp smooth contact 2 Fine to medium clean sand, trace of horizontal bedding. No publies or shells. Slightly oxidized outside of dashed boundary Fine sand, thinly bedded, possibly with very fine mud whiskers inter-calated. Unit is medium grey, definitely darker than above. mud Total core length: 124 cm, lump No core catcher. mud lamina 551 Lat. 70°30.5'N, Long. 148°21.6'W Water Depth: 11 m Location: North of Reindeer Island Photo Sketch Description Total core length: 70 cm (no core catcher) Lat. 70°29.8'N, Long. 148°20.8'W Water Depth: 8 m Location: North of Reindeer Island Photo Sketch Description Medium to coarse sand with few scattered granules and small shell fragments, structureless, gradually fining down to fine-medium sand Fragment of stiff, silty clay, medium grey, mixed with surrounding sand by ice pressure. Has sharply defined margins, but highly irregular. 2-3 mm smooth layers of medium sand Fine to medium, clean sand, subrounded unoxidized. Horizontal bedding planes as sketched, being most pronounced from 102 cm down to 115 cm. This bedding is not from noticeable variations in grain size or sorting, but light grey to medium grey color variations, and from peel. small clam valve at 114 cm and 115 cm core- 1-2 mm laminae rich in dark string particles (coal?) These laminae are oxidized. NOTE: very few faces of fine shell debris in the core. No pebbles. Lat. 70°20.1'N, Long. 147°31.1'W Water Depth: 6.5 m Potal core length: 169 cm; core catcher activitaed: some downslipping. Few angular pebbles as marked. Location: Stefansson Sound south of Narwhal Island Photo Sketch Description Two shells at surface, one live Asrarte Dark grey, medium sand, angular, structureless, with a few granules and a small pebble. Possibly some shell fragments. Becoming more muddy, with mud in **ᢖ郍 孋蝘鰀 鵩薦樣 蘇斯維 編集 解 看着 斯麦哥 医麦牙曼 美国 计多数 医甲基苯甲基 医克勒氏 医克勒氏氏征 医二乙酰 医克勒氏氏征 医二乙酰胺苯二乙酰胺苯甲基** little pockets. Irregular contact, ill-defined clay layer angular pebble clay-rich Dark grey, sandy silt, irregular, horizontal bandina shell fragments dark, organic rich, but fine grained layers Horizontally banded clayey silt, banding mainly alternating dark grey/olive drab color in some areas mottled without bans. No shells, no pebbles. clay layer angular pebble clean, light grey, fine sand layer 7.0 Dark grey, muddy fine sand, band: horizontai sometimes deformed by larger mud content gradually becoming less sandy--more muddy downward. Little to no structure from 130-140 cm. Shell fragment at 137 cm. thin, fine organic layer Dark grey, sandy, clayey silt, well bedded, bedding mostly defined by fine organic rich layers (crosses) clean, light grey, fine sand core, catcher Lat. 70°17.1'N, Long. 147°44.3'W Water Depth: 27 m Location: Off Pt. Brower east of Sagvanirktok River Photo Sketch Description Iat. 70°17.7'N, Long. 147°47.0'W Water Depth: 1 m Location: Off Pt. Brower Photo Sketch Description brownish grey sandy mud sand and pea gravel mixture, oxidized, one shell. light grey silty alay layer slightly pebbly medium sand Coarse, sandy gravel clasts up to >3 cm diameter (sand sub-angular) (pebbles rounded, similar to beach).
Several small but thick shell fragments. No structures. Slightly sandy gravel - gravel clasts smalle smaller than above unit. No structures. slightly pebbly sand Rather well sorted pea gravel(granules largely) rounded, small, coarse sand content. sandy gravel Slightly pebbly, medium to coarse sand - no structures. Sandy gravel, similar to beach material in roundness, small shell fragments. Medium sand with few pebbles, probably disturbed, as it came out of core cap, which was only partly on the barrel. Portion of core probably lost during capping. 97 cm of core Lat. 70°24.1'N, Long. 148°18.5'W Water Depth: 3 m Location: North of Prudhoe Bay Photo Sketch Description Medium, sand, partly oxidized in upper 15 cm, shells at 8 cm. below mud-ball layer grey fine sand trace of smooth, horizontal lamination? + Shells + Coal particles along dipping line + Clayey silt balls Interlaminated clayey silt & fine sand. Black, organic rich layers and lens Silty fine sand grading downward into Molted silty sand interspersed with mud. Bedded clayey silt, at base muddy fine sand with ripple bedding. Fine sand, clean, grey, homogenous? + Clam valve + Clay rich layer, irregular Medium grey, clayey sandy. silt to silty sand highly mottled disrupted. Some show mud balls and irregular sand pockets. Silty clay with highly irregular micro relief on surface and bottom. Fine silty sand. Layered to laminated clayey Layered to laminated clayey silt and fine sand, ripple bedding? + Dark fine organics Irregular, silty clay, light-grey, muddy fine sand near base. Dark grey, homogenous fine sand Horizontally bedded silty clay. Total core length 126 cm. 557 Note: Lower half of core rathter firm. No pebbles, apparently no fibrous organic layers. Coarse enough for dating purposes. Lat. 70°44.8'N, Long. 150°28.1'W Water Depth: 19 m Location: Off Colville Delta Photo Sketch Description Total core length 88 cm. Note: flap was pushed down and across core, lower 10 cm disturbed and № 10 cm downward slippage occured. Since the lower part of core stopped and we don't know why we were unable to penetrate deeper than 98 cm. Lat. 70°41.5'N, Long. 150°27.2'W Water Depth: 1.5 m Location: North of Colville Delta Photo Sketch Description Total core length 33 cm, but a few cm of downward slippage of core must have occurred, resulting in loss of some sediments. Sediments becoming gradually finer from top to bottom. But what stopped further penetration? No shells collected, or seen in first cut. Except for sand, layer at 12 cm no pebbles. Lat. 70°37.0'N, Long. 150°27.0'W Water Depth: 12.4 m Location: North of Colville Delta Photo Sketch. Description Grey, muddy, medium grained sand, grading at ~ 2 cm into oxidized clean, medium grained sand. Apparently homogenous. Highly irregular contact with clayey silt with numerous irregular pockets of fine silty sand. Grey, homogenous, clean, medium sand, irregular sharp upper contact. Smooth, sharp lower contact. Crack, grey, homogenous silty clay, with small, minute sand pockets. + Irregular, thin muddy sand layer. Grey, clayey silt, small sandy pockets, one 5 mm pebble on surface, shells irregular layer of fine sand and shells. Grey clayey silt, with irregular pockets and lenses of fine sand irregular horizontal layering in lower half. Medium to fine grey clean sand, sharp-smooth lower wavey rippled sharp upper contact. Homogenous silt, grading down into clean, grey, fine sand, sharp, irregular lower contact. Churned-up grey clayey silt, with intermixed irregular sandy pockets, become darker grey from \sim 70 cm on down (gradually). Irregular unit of clean, fine, light grey, several small fragile shell fragments. + 5 mm pebble. 98 cm total length. Notes: Ice disrupted below 45 cm, probably also from 8-14 cm. Bo organic-rich layers. Two pebbles in first cut face. Numerous small, fragile clam fragments, preferentially in muddy sediments. Grade size of sand writs does not changes through length of core. Lat. 70°36.3'N, Long. 150°28.2'W Water Depth: 11.5 m Location: North of Colville Delta Photo Sketch Description Core was cut with comparative ease, had no pebbles, no pronounced fibrous organic layers, and only a few small fragile clam fragments near and in sand unit (within first cut face). Becoming stiffer toward bottom, gradually. First interpretation calls for ice disrupted sediments. Lat. 70°34, 0'N Long. 150°28.2'W Water Depth: 8,5 m Location: North of Colville Delta Photo Sketch Description Note: Not a single pebble, only small clear frugments, fine grained organic matter (dark band) at 95-96 cm, not good enough for dating. Core was cut easily, no obvious reason for lack of deeper penetration. Upper 50 cm appear disrupted by ice. Lat. 70°33.3'N, Long. 150°27.9'W Water Depth: 3.3 m Location: North of Colville Delta Lat. 70°33.6'N Long. 150°28.1.'W Water Depth: 2 m Location: North of Colville Delta Photo Sketch Description Paraffin plug the "burrow" may be from boathook, used pushing the cap into box; but sand is dense, and should not be penetrable. Also burrow is irregular, with smaller burrows adjacent. Medium grained, oxidized, clean sand grading downward into fine sand with some silt. The sub-horizontal lines drawn in represent coal laminae. Clay layer with small sand pockets. Clean fine sand, grey. Sandy, clayey silt with horizontal bedding. One black, rounded pebble in x-ray slab. Fine gray sand interbedded with organic and coal rich laminae and lenses. Ripple bedding in central part. Some small shells. Burrow. Sandy, clayey silt, somewhat mottled with trace of horizontal layering indicated Horizontally layered fine, grey, sand; dark layers are coal concentrates apparently no ripple bedding. The core was easy to cut with wire, and comparing nature of sediment with long cores through stiff silty clay, I believe we may have hit ice-bonded sediment at 103 cm. Also, note rate of penetration curve. On first cut face no shells, but in sub-sampling a few were picked and put in vials. Lat. 70°32.7'N, Long. 150°27.5'W Water Depth: 1.5 m Location: North of Colville Delta Photo Sketch Description Note: Not a sin.le pebble, one shell found in entire core on first cut face. Entire core rather sandy, not as stiff or resistant to penetration as other longer cores. No change in very bottom of core. Lack of deeper penetration could possibly be due to ice-bonded sediment. The organic rich layers are so fine grained that it would be too difficult to separate coal prior to C¹⁴ dating, probably no dating to be done. 565 Lat. 70°33.8'N, Long. 151°01.0'W Water Depth: 4 m Location: N.W. of Colville Delta Photo Sketch Description Lat. 70°32.5'N, Long. 150°59.6'W Water Depth: 0.6 m Location: N.W. of Colville Delta Photo Sketch Description Lat. 70°29.5'N Long. 150°59.5'W Water Depth: 1 m Location: N.W. of Colville Delta Photo Sketch Description Apparently lost ~ 1 cm fine/med. grain oxidized sand homogenous, brownish silt, possibly some bedding + 9-10 cm, clean, oxidized, fine sand containing thin clay lamina. Clayey silt with 1-2 m sand laminae interbedded, no ripple structures at 26 cm a 3 mm lamina of fine organic bedding slightly undulating. No pebbles, no sticks, no shells, no bioturbation. 35-47 cm fine-medium grained sand, mottled, perhaps bioturbated, brownish to gray alternating patch. Silty, laminated, thin organic whiskers, 2 layers with fibrous org. material, thin sandy lamina between them, clay (1.5 cm) on bottom. C-14 23-1 sub spl. Clayey silt interbedded with thin sandy laminae. Fibrous org. material in lower 2 cm. No critters, no burrows, no pebbles. Fine, gray sand with interbedded lenses of fibrous organic matter. Lenses of organic matter may reflect ripples? + 2 cm of clean, fine sand. Thinly bedded clayey silt with fine sand. Laminae and thin whiskers of black, probably org. rich laminae. No apparent ripple structure. No burrows, no pebbles or shells. Sand layer, possibly ripple bedding? Clay-homogenous between Organic rich bedded clayey silt C-14 23-2 sub spl C-14 23-3 sup spl. * sand layer, perhaps ripple structures thinly bedded silt. Lat. 70°33.2'N, Long. 149°11.2'W Water Depth: 7.5 m Location: North of Bodfish Island Photo Sketch Description + Slightly darker, fine to medium sand with dashed lines. Medium to coarse, slightly oxidized, clean, homogenous sand, no structures visible except possibly the two sketched lines, representing somewhat finer sand Note: No pebbles, no shells. No core catcher used, some material slid out, but penetration stopped on something over 1 m down into ridge. # QUARTERLY REPORT CONTRACT: RK6-6074 RESEARCH UNIT: 206 REPORT PERIOD: 9th QUARTER NO. OF PAGES: AREAS OF FAULTING AND UNSTABLE SEDIMENTS IN THE ST. GEORGE BASIN REGION, SOUTHERN BERING SEA J.V. GARDNER AND T.L. VALLIER PACIFIC-ARCTIC BRANCH OF MARINE GEOLOGY U.S. GEOLOGICAL SURVEY MENLO PARK, CALIFORNIA 94025 JULY 1977 #### I. ABSTRACT OF HIGHLIGHTS OF QUARTER'S ACCOMPLISHMENTS Analyses of seismic-reflection profiles from last year's cruise (S4-76) are continuing, but final results are not yet available. Data from grain-size analyses of 295 samples and total carbon content determinations of 174 samples were completed during this quarter. The station locations and grain-size and total carbon data are included in this report, but our interpretations of these data will be part of a subsequent report (Gardner and Vallier, in preparation). Heavy mineral and clay mineral studies of surface samples and a petrographic description of rocks from a dredge haul are underway. Most of our efforts during the upcoming quarter will be directed towards finishing some of these studies and preparing for an August through September cruise in the southern Bering Sea. #### II. TASK OBJECTIVES The major task objectives are to outline and document problems related to faulting and seafloor instability (see Gardner and Vallier, Annual Report to OCSEAP, April, 1977). In addition, we are studying sediment distributions to determine the sediment dynamics on
the seafloor. #### III. FIELD OR LABORATORY ACTIVITIES - A. Ship or Field Trip Schedule: None - B. Scientific Party: None - C. Methods: We completed 295 grain-size analyses and 174 determinations of total carbon contents. Small samples (10-20 grams) were selected onboard the ship from piston cores, gravity cores, and Van Veen samplers. The samples used for total carbon determinations were (1) washed with deionized water twice using a centrifuge in order to eliminate corrosive salts, (2) dried in an oven overnight, (3) ground into a uniform powder using a mortar and pestle, and (4) analyzed in a LECO induction furnace. The following procedures were used for grain-size analyses. Samples were: (1) washed twice with deionized water to eliminate salt, (2) treated with hydrogen perioxide to eliminate organic matter, (3) peptized with 10% Calgon solution to disperse clays, (4) sieved through -1¢ to 4¢ (2mm to 0.063mm) sieves, (5) dried and weighed for the >2mm size fraction, (6) the 2mm to 0.063mm size fraction was dried, weighed, and microsplits were taken for analyses with a 2m by 0.25mm rapid sediment analyzer using methods of Thiede and others (1976). The <0.063mm fraction was diluted to 1000 ml. in a graduated cylinder, agitated to prevent differential settling, and a 20ml aliquot was taken, dried and weighed for total fine-fraction weight determination. Other aliquots were analyzed by hydrophotometer for size distribution determinations (Jordan and others, 1971). The precision of total carbon analyses was determined by using five splits from each of the 174 samples run on the LECO induction furnace. Statistical analysis was applied to groups within each of the five total carbon values from each sample: the first two of five values, the first three of five values, the second three of five values, the last three of five values, and the best three (high and low values deleted and the remainder used) of five values. The means, variances, and standard deviations were calculated for each of the groups. The following average percent error was calculated: (1) first two readings, ±1.9%, (2) first three readings ±2.3%, (3) all five readings, ±2.3%, and (4) best three of five readings, ±1.1%. Therefore, we have a high confidence in our total carbon values. - D. Sample Localities: See Figure 1 for sample localities, S4-76. - E. Data Collected or Analyzed: - Number and types of samples: 174 samples for total carbon determinations. 295 samples for grain-size analyses (142 from gravity cores, 64 from Van Veen samplers, and 89 from piston cores). - 2. Number and types of analyses: total carbon contents, five determinations for each sample equals 870 analyses. Grain-size analyses, approximately three determinations (>2mm, 2mm-0.063mm, and <0.063mm) for each of 295 samples equals 885 analyses. - 025 IV. RESULTS - 026 We have only begun the analyses of results from the surface - 027 samples at this time. Table 1 shows the sample locations, grain- - 028 size data, some statistical parameters (Folk and Ward, 1957), - 029 and total carbon contents. Figures 2,3, and 4 show the facies - 030 distribution, median diameters, and sorting values. The other - Open File Report on grain-size distributions and total-carbon - 034 contents). - Median grain diameters ($Md\phi$) of the surface samples - 036 range from 0.5 to 7.7 and average 3.65 (very fine sand). - 037 Sorting values $(\sigma\phi)$ range from 0.35 to 4.0. Sediment facies are - 038 sand, silty sand, sandy silt, silt, and clayey silt. Clay - 039 comprises less than 10% of most samples; exceptions are samples - 040 near the center of St. George basin (stations 24-26), on the continental slope (station 36) and in the Pribilof Canyon system (stations 72,73, and 75). Total-carbon contents are generally 042 les than one percent, however higher values occur from samples 043 in the Pribilof Canyon system which has an abundance of finer-044 grained material and from near the island of Unalaska (station 045 85) where there are abundant carbonate shell fragments. 046 general, the total-carbon contents of the samples are inversely 047 related to grain-size. 048 049 Three sediment provinces can be distinguished. The Pribilof Island province, which includes the islands and Pribilof ridge, 050 is dominated by poorly- to well-sorted sand and silty sand 051 with low total carbon contents. The Pribilof Canyon province, 052 which includes the canyon system and adjacent Pribilof basin, 053 is characterized by clayey silt with lesser amounts of sandy 054 silt and silty sand. These sediments are moderately sorted 055 and have relatively high total-carbon contents. The St. George 056 basin province is dominated by poorly-sorted silt and sandy 057 silt and high values of total carbon. 058 #### 059 V. PRELIMINARY INTERPRETATION OF RESULTS A thorough analysis of the data has not been attempted. We believe, however, that the distributions of sediments are the results of not only present-day sediment dynamics but also sediment dynamics associated with fluctuations of level sea related to Pleistocene glaciations. The submarine canyons and the general circulation pattern seem to exert a strong influence on the sediment distribution. The composition of the sediments - suggest inputs from the mainland via the Yukon and Kuskokwin rivers, - 068 the Aleutian volcanoes, and the Pribilof Islands. A much more - 069 thorough sampling program must be undertaken before the several - 070 influences can be properly evaluated. - 071 VI. PROBLEMES ENCOUNTERED/RECOMMENDED CHANGES - 072 None - 073 VII. ESTIMATE OF FUNDS EXPENDED - 074 All funds have been expended. - 075 VIII. BIBLIOGRAPHY - O76 Gardner, J. V., and Vallier, T. L., 1977, Faulting - 077 unstable sediments and surface sediments in the southern Bering - 078 Sea outer continental shelf and slope: Am. Geophys. Union, EOS - 079 Transactions, v. 58, No. 6, 0. 404. - oso , in press, Underway geophysical data collected on U.S.G.S. - 081 Cruise S4-76, southern Bering Sea: U.S. Geol. Survey Open-file - 082 Report 77-524. - 083 Vallier, T. L., and Gardner, J. B., in press, Types and dis- - 084 tribution of faults in the St. George basin area of the sou hern - 085 Bering Sea: U. S. Geol. Survey Open-file Report. - 086 IX. REFERENCES FOR THIS REPORT - 087 Folk, R. L., and Ward, W. C., 1957, Brazos River bar: - 088 a study in the significance of grain-size parameters: Jour. - 089 Sed. Petrology, v. 27, p. 3-21. - 090 Gardner, J. V., and Vallier, T. L., in preparation, Grain- - 091 size distributions and total carbon contents of samples from - 092 the southern Bering Sea, U.S. Geol. Survey Cruise S4-76: U.S. 093 - Geol. Survey Open-file Report. - Jordan, C. F., Jr., Fryer, G. E., and Hemmer, E. H., - 095 1971, Size analysis of silt and clay by hydrophotometer: - 096 Jour. Sed. Petrology, v. 41, p. 489-496. - 097 Thiede, J., Chriss, T., Clausen, M., and Swift, S., 1976, - 098 Settling tubes for size analysis of fine and coarse fractions - 099 of oceanic sediments: Oregon State University School of - 100 Oceanography, Report 76-8, Covallis, Oregon, 87 p. 101 TABLES 102 1. Station numbers, locations, sample numbers, water depths, 103 size class ratios, statistical parameters, and total-carbon 104 contents of surface sediments, southern Bering Sea, Cruise 105 S4-76. 106 FIGURES - 107 l. Station and sample locations from U.S.G.S. Cruise S4-76, - 108 southern Bering Sea. - 109 2. Facies distributions of surface sediments, St. George - 110 basin area, southern Bering Sea. - 111 3. Median diameters $(Md\phi)$ of surface sediments, St. George - 112 basin area, southern Bering Sea. - 113 4. Sorting values $(\sigma\phi)$ of surface sediments, St. George basin - 114 area, southern Bering Sea. - 115 Surface Samples Only | St | ation | | Sample | Water | | Size Class | S | | Median | Sorting | Skewness | Kurtosis | Total | |-----|-------|--------------------------|--------------|-----------|------------|------------|----------|----------|--------|---------|----------|----------|------------| | _ | mber | Location | Number | Depth (m) | Gravel (%) | Sand (%) | Silt (%) | Clay (%) | мдф | σφ. | αφ | Кф | Carbon (%) | | | 1 | 54°44.27'
165°52.82' | G-2 | 248 | 0.0 | 81.118 | 15.820 | 3.062 | 3.4602 | 0.7952 | 0.4246 | 2.4240 | 0.3886 | | | 2 | 55°02.08'
165°29.43' | G - 5 | 118 | 0.0 | 76.362 | 21.010 | 2.629 | 3.7228 | 0.6926 | 0.5480 | 3.0238 | 0.4072 | | | 3 | 55° 16.73'
165°08,53* | G-8 | 109 | 0.0 | 63.975 | 32.542 | 3.484 | 3.6555 | 1.2014 | 0.4562 | 1,2672 | 0.4347 | | | 4 | 55°30.92'
164°50.46' | G-11 | 101 | 0.086 | 75.529 | 21.356 | 3.029 | 3.2028 | 1.3203 | 0.4297 | 1.6581 | 0.3218 | | | 5 | 55°53.96'
165°42.08 | G-13 | 109 | 0.0 | 42.821 | 51.840 | 5.339 | 4.5540 | 1.7202 | 0.0817 | 1.0913 | 0.7247 | | 579 | 7 | 56°41.96'
166°55.18' | G-19 | 90 | 0.199 | 63.195 | 32.840 | 3.767 | 3.4526 | 1.5172 | 0.4572 | 1.1585 | 0.4775 | | | 8 | 56°45.23'
167°40.51' | G-20 | 95 | 0.257 | 76.177 | 20.260 | 2.946 | 3.0143 | 1.3177 | 0.4897 | 1.4358 | 0.4001 | | | 9 | 57°01.32'
168°16.90' | V-2 | 80 | 0.158 | 92.656 | 5.660 | 1.526 | 2.5789 | 0.7612 | 0.2590 | 2.4084 | 0.2470 | | | 10 | 57°07.73°
168°33.04° | V-3 | 75 | 0.0 | 94.059 | 4.083 | 1.857 | 3.1888 | 0.6997 | 0.0378 | 1.5486 | 0,2230 | | | 11 | 57°00.07'
168°44.04' | V-4 | 80 | 0.0 | 93.437 | 5.102 | 1.461 | 2.5926 | 0.6686 | 0.3550 | 1.7422 | 0.2233 | | Station
Number | Location | Sample
Number | Water
Depth (m) | Gravel (%) | Size Class | Silt (%) | Clay (%) | _ Median
Md¢ | Sorting
ø | Skewness
a¢ | Kurtosis
K¢ | Total
Carbon (%) | |-------------------|-------------------------|------------------|--------------------|------------|------------|----------|----------|-----------------|--------------|----------------|----------------|---------------------| | 12 | 56°57.27°
168°48.30 | V-5 | 81 | 0.0 | 93.451 | 4.781 | 1.769 | 2.6936 | 0.7830 | 0.3767 | 1.9923 | 0.2545
 | 13 | 56°53.14'
168°54.02' | V-6 | 82 | 0.0 | 91.741 | 6.612 | 1.647 | 2.5922 | 0.7295 | 0.4404 | 1.9386 | | | 14 | 56°47.93
168°36.30 | G - 27 | 98 | ·0.0 | 75.519 | 19.894 | 4.587 | 3,1869 | 1.5218 | 0.5576 | 1.9034 | 0.3974 | | 15 | 56°38.33'
168°38.23' | G-30 | 107 | 0.0 | 82.634 | 14.665 | 2.701 | 3.1833 | 1.0505 | 0.3765 | 2.3764 | 0.3554 | | 16 | 56°36.32'
168°17.10' | G-32 | 107 | 0.0 | 81.911 | 15.071 | 3.0181 | 3.0551 | 1.1876 | 0.4904 | 2.1204 | 0.3073 | | 17 | 56°31.83'
167°58.50' | G-33 | 111 | 0.0 | 73.598 | 21.640 | 4.762 | 3.1399 | 1.6804 | 0.5854 | 1.5426 | 0.4638 | | 18 | 56°34.85°
167°54.21' | G-37 | 107 | 0.0 | 76.748 | 26.492 | 2.759 | 3.0442 | 1.3025 | 0.4598 | 1.4815 | 0.3199 | | 19 | 56°36:70'
167°51.66' | G-38 | 107 | 0.0 | 70.028 | 26.360 | 3,612 | 3.2797 | 1.4682 | 0.5195 | 1.4165 | 0.3993 | | 20 | 56°40.61'
167°46.47' | G-40 | 100 | 0.0 | 74.475 | 23.176 | 2,349 | 3.1487 | 1,2606 | 0.4016 | 1.2517 | 0.5420 | Surface Samples Only | Statio | on | | Sample | Water | | Size Class | 5 · . | | Median | Sorting | Skewness | Kurtosis | Total | |--------|----|-------------------------|--------|----------------|------------|------------|--------------|----------|--------|---------|----------|----------|--------------------| | Number | | Location | Number | Depth (m) | Gravel (%) | Sand (%) | Silt (%) | Clay (%) | Mdφ | σφ | α¢
 | Кф | Carbon (%) | | 2 | 1 | 56°27.12'
167°40.34' | G-41 | 115 | c.o | 63.995 | 31.571 | 4.434 | 3.3171 | 1.6323 | 0.5604 | 1.1173 | 0.4743 | | 2 | 2 | 56°20.08'
167°26.72' | G-43 | 121 | 0.0 | 38.738 | 53.059 | 8.203 | 4.8443 | 2.0557 | 0.1265 | 1.0792 | 0.6946 | | 2 | 13 | 56°09.00'
167°06.98' | G-46 | 128 | 0.0 | 17.873 | 69.969 | 12.158 | 5.5918 | 2.1773 | 0.1461 | 1.5767 | 0.9665 | | 2 | 4 | 55°58.99'
166°44.48' | G-48 | 129 | 0.0 | 13.348 | 73.648 | 13.004 | 5,6593 | 1.9882 | 0.2870 | 1.6376 | 0.9768 | | 2 | :5 | 55°47.99'
166°19.82' | G-49 | 126 | 0.0 | 13.917 | 76.847 | 9.236 | 5.4066 | 1.7357 | 0.2033 | 1.8738 | 0,8250 | | 581 | :6 | 55°40.53'
166°01.60' | G-51 | 120 | 0.0 | 25.420 | 68.341 | 6.238 | 4.9169 | 1.6940 | 0.0661 | 1,3720 | 0,6747 | | 2 | :7 | 55°31.02'
165°41.91' | G-52 | 114 | 0.0 | 21.061 | 73.516 | 5.424 | 4.9144 | 1.4479 | 0.0974 | 1.6105 | 0,6090 | | 2 | :8 | 55°17.29'
165°59.04' | G-54 | 122 | 0.0 | 36.931 | 57.488 | 5.581 | 4.6001 | 1.6616 | 0.0718 | 1.3030 | 0,5605 | | 2 | :9 | 55°25.91'
166°21.10' | G-56 | 128 | . 0.0 | 22.629 | 70.853 | 6.518 | 4.8453 | 1.6040 | 0.1879 | 1.5603 | ⁰ .7538 | | _ | | 166°21.10' | | - - | | | | <u> </u> | | | | | | Surface Samples Only | C+ = | tion | | Sample | Water | | Size Class | 5 | | Median | Sorting | Skewness | Kurtosis | Total | |---------------|------|-------------------------|---------------|-----------|------------|------------|----------|----------|--------|---------|----------|------------|------------| | _ | ber | Location | Number | Depth (m) | Gravel (%) | Sand (%) | Silt (%) | Clay (%) | Mdş | σφ
 | αφ | К ф | Carbon (%) | | -, | 30 | 55°36.01'
166°39.80' | G - 59 | 130 | 0.0 | 19.512 | 70.697 | 9.791 | 5.3504 | 1.8982 | 0.1579 | 1.4827 | 0.8782 | | | 31 | 55°47.65'
167°01.33' | G-62 | 135 | 0.179 | 27.960 | 60.789 | 11.073 | 5.4119 | 2.2912 | 0.0732 | 1.1345 | 0.9370 | | | 32 | 55°57.15'
167°23.99' | G-63 | 133 | 0.0 | 21.004 | 68.366 | 10.630 | 5.114 | 1.9884 | 0.3202 | 1.2685 | 0.9968 | | | 33 | 56°06.22'
167°46.28' | G ~6 5 | 134 | 0.0 | 63.038 | 30.628 | 6.334 | 3.3701 | 1.7797 | 0.6222 | 1,5075 | 0.4995 | | | 34 | 56°18.82'
168°17.39' | G-67 | 157 | 1.420 | 84.937 | 8.587 | 5.057 | 1.9987 | 1.4171 | 0.1361 | 4.6656 | 0.3098 | | 582 | 35 | 56°05.13°
170°03.02° | G-69 | 122 | 0.0 | 84.790 | 11.435 | 3.776 | 2.9005 | 1.1176 | 0.5035 | 2.4531 | 0.3431 | | | 36 | 56°06.28'
170°33.41' | G-71 | 400 | 0.0 | 20.020 | 47.784 | 32.196 | 6.5224 | 3,2712 | 0.1651 | 0.9266 | 0.7048 | | | 38 | 56°24.35'
170°58.34' | G - 75 | 125 | 0.0 | 76.835 | 20.156 | 3.009 | 2.9933 | 1.2822 | 0.5499 | 1.6808 | - | | | 39 | 56°37.29'
170°40.08' | G-77 | 113 | 0.0 | 54.206 | 40.819 | 4.975 | 3.7873 | 1.5965 | 0.4348 | 1.1580 | 0.5199 | Surface Samples Only | Station | | Sample | Water | 1 (0) | Size Class | Silt (%) | Clay (%) | Median
Mdø | Sorting
σφ | Skewness
a¢ | Kurtosis
K¢ | Total
Carbon (%) | |---------|-------------------------|-------------|------------|------------|------------|----------|----------|---------------|---------------|---------------------------------------|----------------|---------------------| | Number | Location | Number | Depth (mm) | Gravel (%) | Sand (%) | Silt (s) | Clay (%) | . Activ | | | | | | 40 | 56°39.99'
170°35.95' | G-79 | 111 | 0.233 | 54.045 | 40.723 | 4.999 | 3.6251 | 1.6513 | 0.5153 | 1.1011 | 0.7497 | | 41 | 56°41.02'
170°31.36' | G-80 | 108 | 0.0 | 37.943 | 56.467 | 5.589 | 4.5960 | 1.6662 | 0.1619 | 1.0524 | 0.8166 | | 42 | 56°44.77'
170°29.06' | G-81 | 103 | 0.0 | 45.417 | 48.932 | 5.651 | 4.2156 | 1.7124 | 0.3171 | 1.1030 | 0.6540 | | 43 | 56°48.49'
170°23.77' | G-82 | 97 | 0.0 | 50.052 | 43.982 | 5.966 | 3.9967 | 1.8170 | 0.3689 | 1.0674 | 0.7753 | | 48 | 57°01.46'
169°33.69' | v- 9 | 60 | 0.478 | 95.381 | 3.197 | 0.945 | 2.1359 | 0.4324 | 0.1385 | 2,2246 | 0.2225 | | 49 | 56°57.29'
169°39.14' | v-10 | 60 | 2.873 | 92.277 | 3.186 | 1.664 | 2,2474 | 0.4080 | -0.0515 | 3.0723 | 0.3356 | | 50 | 56°56.38'
169°25.08' | V-11 | 68 | 0.183 | 94.070 | 4.395 | 1.351 | 2.8026 | 0.6531 | 0.1257 | 1.6644 | 0.2856 | | 51 | 56°51.97'
169°31.05' | V-12 | 68 | 5.792 | 88.291 | 4.255 | 1.662 | 2,1718 | 1.1830 | 0.0104 | 3.3345 | 0.2346 | | | | | | | | ···· | | | | · · · · · · · · · · · · · · · · · · · | | | Surface Samples Only | Sta | tion | | Sample | Water | | Size Class | 5 | | Median | Sorting | Skewness | Kurtosis | Total | |-----|------|-------------------------|--------|-----------|------------|------------|----------|----------|--------|---------|----------|----------|------------| | Nun | ber | Location | Number | Depth (m) | Gravel (%) | Sand (%) | Silt (%) | Clay (%) | Mdφ | σφ | a¢ | Кф | Carbon (%) | | - | 53 | 56°33.73'
169°56.77' | G-89 | 96 | 0.0 | 63.124 | 31.732 | 5.145 | 3.6896 | 1.3563 | 0.6794 | 1.6334 | 0.8734 | | | 54 | 56°29.17'
170°04.02' | G-90 | 105 | 0.0 | 24.149 | 68.726 | 7.125 | 4.9394 | 1.7016 | 0.1993 | 1.4390 | 0.7987 | | | 55 | 56°22.32'
170°08.84' | P-7 | 110 | 0.0 | 20.806 | 72.308 | 6.887 | 5.1339 | 1.6920 | 0.1486 | 1,1581 | 0.7635 | | | 56. | 56°14.02'
169°50.04' | V-14 | 126 | 0.0 | 91.237 | 6.230 | 2.533 | 3.0021 | 0.8672 | 0.2222 | 2.8564 | 0,3146 | | | 57 | 56°19.58'
169°42.03' | V-15 | 145 | 0.0 | 94.986 | 3.326 | 1.688 | 2.2369 | 0.7690 | -0.0128 | 1.8231 | 0. 2228 | | 584 | 58 | 56°22.57'
169°37.59' | G-94 | 123 | 33.731 | 62.547 | 2.605 | 1.117 | 0.5436 | 1.4801 | 0.0858 | 0.6318 | 0.2660 | | 34 | 60 | 56°42.02'
169°10.12' | V-17 | 85 | 0.500 | 92.273 | 5.845 | 1.382 | 2.6400 | 0.5999 | 0.4848 | 1.9317 | 0,2803 | | | 61 | 56°34.02'
168°55.11' | V-18 | 100 | 0.0 | 94.095 | 4.823 | 1.082 | 2.8431 | 0.6454 | 0.0784 | 1.3498 | 0, 2608 | | | 62 | 56°33.60'
168°44.77' | V-19 | 110 | 0.0 | 89.780 | 8.064 | 2.156 | 3.0429 | 0.9052 | 0.2116 | 2.4838 | 0.3153 | Surface Samples Only | | tion
ber | Location | Sample
Number | Water
Depth (m) | Gravel (%) | Size Class | Silt (%) | Clay (%) | Median
Md¢ | Sorting
σφ | Skewness
a¢ | Kurtosis
K¢ | Total
Carbon (%) | |-------------|-------------|-------------------------|------------------|--------------------|------------|------------|----------|----------|---------------|---------------|----------------|----------------|---------------------| | _ | | | | | | | | | | | | | | | | 63 | 56°33.27'
168°45.64' | v-20 | 102 | 0.058 | 91.715 | 6.284 | 1.943 | 2.6867 | 0.9190 | 0.2736 | 2.1372 | 0.2782 | | | 64 | 56°32.14°
168°47.00° | V-21 | 101 | 0.0 | 90.428 | 7.761 | 1.811 | 2.9278 | 0.8910 | 0.2115 | 2.4230 | 0.3056 | | | 65 | 56°30.21'
168°49.99' | V-22 | 102 | 0.192 | 88.403 | 8.361 | 3.044 | 2.8541 | 0.9702 | 0.2946 | 2.6271 | 0.2939 | | | 66 | 56°29.41'
168°51.22' | V-23 | 103 | 0.0 | 91.042 | 6.570 | 2.388 | 2.6468 | 0.9057 | 0.3220 | 2.8684 | 0.3330 | | | 67 | 56°26.26'
168°55.42' | V-24 | 108 | 10.129 | 83.874 | 4.185 | 1.812 | 1.8672 | 1.5744 | -0.1221 | 1.8577 | 0.2541 | | ກ
ລ
ກ | 68 | 56°21.72'
169°01.76' | G-103 | 125 | 5.775 | 80.346 | 10.952 | 2.928 | 1.6698 | 2.0263 | 0.1592 | 2.0487 | 0,2449 | | | 69 | 56°13.73'
169°00.74' | V-26 | 152 | 11.812 | 82.699 | 3.230 | 2.289 | 1.9574 | 1.3255 | -0.3364 | 2.1058 | 0,2693 | | | 70 | 56°08.31'
169°32.27' | G-105 | 320 | 0.145 | 24.147 | 47.499 | 28,208 | 6.1692 | 2.9407 | 0.2833 | 0.8645 | 0,9069 | | | 72 | 55°38.09'
170°05.06' | P-10 | 2850 | 0.0 | 6.317 | 68.033 | 25.650 | 6.3317 | 2.6327 | 0.2839 | 0.9728 | 1,1193 | | | _ | | | | | | | | | <u> </u> | | | | Surface Samples Only!, | Sta | tion | | Sample | Water " | | Size Class | Ratios | | Median | Sorting | Skewness | Kurtosis | Total | |-----|------|--------------------------|--------|------------|------------|-------------|----------|----------|--------|---------|----------|----------|------------| | Num | ber | Location | Number | Depth (mm) | Gravel (%) | Sand (%) | Silt (%) | Clay (%) | мдф | σφ | αφ | кф
 | Carbon (%) | | * | 73 | 55°39.41'
169°4835' | P-11 | 2770 | 0.0 | 5.935 | 50.582 | 43.465 | 7.7272 | 3.0751 | 0.0584 | 0.7956 | 1.6490 | | | 75 | 55°30.78°
169°15.78' | P-13 | 2080 | 0.0 | 3.474 | 65.299 | 31.227 | 6.9038 | 2.6310 | 0.2698 | 1.1632 | 1.5367 | | | 78 | 55°47.09'
168°13.30' | G-109 | 135 | 0.427 | 87.039 | 10.161 | 2,373 | 2.7378 | 1.0011 | 0.3233 | 2.0119 | .3353 | | | 79 | 55°36.95
167°50.51' | G-111 | 132 | 0.0 | 67.190 | 28.506 | 4.304 | 3.0165 | 1.5896 | 0,6900 | 1.0601 |
.4316 | | (7 | 80 | 55°27.00'
167°28.85' | G-113 | 138 | 0.0 | 47.135 | 47.646 | 5.219 | 4.0402 | 1.5705 | 0.4903 | 1.2100 | <u>.</u> | | 586 | 81 | 55°17.26'
167°06.75' | G-116 | 140 | 0.266 | 54.768 | 37.660 | 7.306 | 3.5546 | 2.0643 | 0.4916 | 1.2976 | .4108 | | * | 82 | 55°07.81'
166°45.68' | G-118 | 144 | 0.0 | 51.711
↑ | 51.950 | 6.339 | 4.7292 | 1.9619 | 0.0323 | 1.0360 | .5943 | | | 83 | 54°58.99°
166°°25.97' | G-119 | 145 | 0.0 | 33.541 | 61.121 | 5.338 | 4.4814 | 1.4978 | 0.2185 | 1.2706 | .5519 | #### Surface Samples Only: | tion | | Sample | Water | | Size Class | i | | Median | Sorting | Skewness | Kurtosis | Total | |------|--------------------------|----------------|-----------|------------|------------|----------|----------|--------|------------|----------|----------|-----------| | ber | Location | Number | Depth (m) | Gravel (%) | Sand (%) | Silt (%) | Clay (%) | Mdφ | σ φ | αφ
 | Кф | Carbon (% | | 73 | 55°39.41'
169°48.35' | P-11 | 2770 | 0.0 | 5.935 | 50.582 | 43.465 | 7.7272 | 3.0751 | 0.0584 | 0.7956 | 1.6490 | | 75 | 55°30.78'
169°15.78' | P-13 | 2080 | 0.0 | 3.474 | 65.299 | 31.227 | 6.9088 | 2.6310 | 0.2698 | 1.1632 | 1.5367 | | 78 | 55°47.09'
168°13.30' | G-109 | 135 | 0.427 | 87.039 | 10.161 | 2.373 | 2.7378 | 1.0011 | 0.3233 | 2.0119 | 0.3353 | | 79 | 55°36.95
167°50.51' | G-111 | 132 | 0.0 | 67.190 | 28.506 | 4.304 | 3.0165 | 1.5896 | 0.6900 | 1.0601 | 0.4316 | | 80 | 55°27.00'
167°28.85' | G-113 | 138 | 0.0 | 47.135 | 47.646 | 5.219 | 4.0402 | 1.5705 | 0.4903 | 1.2100 | - | | 81 | 55°17.26'
167°06.75' | G-116 | 140 | 0.266 | 54.768 | 37.660 | 7.306 | 3.5546 | 2.0643 | 0.4916 | 1.2976 | 0,4108 | | 82 | 55°07.81'
166°45.68' | G-118 | 144 | 0.0 | 41.711 | 51.950 | 6.339 | 4.7292 | 1.9619 | 0.0323 | 1.0360 | 0,5943 | | 83 | 54°58.99'
166°°25.97' | G - 119 | 145 | 0.0 | 33.541 | 61.121 | 5.338 | 4.4814 | 1.4978 | 0.2185 | 1.2706 | 0.5519 | #### Surface Samples Only | Station
Number | Location | Sample
Number | Water
Depth (m) | Gravel (%) | Size Class
Sand (%) | Silt (%) | Clay (%) | Median
Mdφ | Sorting
σφ | Skewness
aø | Kurtosis
K¢ | Total
Carbon (%) | |-------------------|-------------------------|------------------|--------------------|------------|------------------------|----------|----------|---------------|---------------|----------------|----------------|---------------------| | 84 | 54°07.88°
165°44.29° | G-121 | 57 | 0.034 | 32.331 | 61.837 | 5.799 | 4.6358 | 1.5103 | 0.2742 | 1,1256 | 0.7458 | | 85 | 54°07.67°
166°11.68° | V-29 | 86 | 9.432 | 84,055 | 4.177 | 2.336 | 1.8612 | 1.3321 | 0.1198 | 3.6430 | 3.1795 | 8th Quarterly Report 1 April - 30 June 1977 TITLE: Earthquake Activity and Ground Shaking in and along the Eastern Gulf of Alaska PREPARED BY: Christopher Stephens RESEARCH UNIT: 210 PRINCIPLE INVESTIGATORS: John C. Lahr Robert A. Page #### I. Objectives The objective of this research is to evaluate the hazards associated with earthquake activity in the Gulf of Alaska and adjacent onshore areas that pose a threat to the safety of petroleum exploration and development. #### II. Field and Laboratory Activities #### A. Preparation for 1977 Field Season Activities over the past quarter have been increasingly concentrated on preparations for the 1977 field season. Overall, our efforts have been directed towards increasing the reliability of station operations. Arrangements have been made to have a U.S.G.S. technician live in Alaska during FY78. About two-thirds of his time will be devoted to maintainence of our seismic stations, which should facilitate a more continuous operation of the network throughout the winter season. In addition, we have been conferring with Kenneth King (U.S.G.S., Las Vegas) in an effort to improve our installation design by drawing on his expertise in operating remote equipment under severe environmental conditions similar to those encountered in Alaska. #### B. Laboratory Activities #### 1.) Routine Processing of Seismic Data The routine processing of seismic data has continued at a slower than normal rate due to changes in personnel. We are working as rapidly as possible to fill two vacancies and have hired two students on temporary appointments in order to help with data processing during the summer. #### 2.) Data Analysis The data analysis activity has increased during the last quarter. In addition to our study of the seismicity near Icy Bay we have initiated a detailed study of the recent shallow seismicity beneath Prince William Sound. Under a closely coordinated project supported by other funding, we have also initiated a re-evaluation of the 1904 great earthquake (M_S > 8) which occurred in central Alaska. These last two studies are discussed further below. A computer programmer has also been hired to develop interactive programs on the new U.S.G.S. Honeywell Computer in Menlo Park which will aid in processing and analyzing data. #### PRINCE WILLIAM SOUND SHALLOW SEISMICITY From July, 1975, through September, 1976, Prince William Sound has been one of the more active seismic areas along the eastern Gulf of Alaska. Since the earthquakes which occur beneath this area are the result of relative thrust motion between two lithospheric plates (see, e.g., Plafker, 1972), a careful study of these earthquakes may reveal some of the details of this interaction. In Figure 1, the earthquakes which occurred beneath Prince William Sound during the last two quarters of 1975 are plotted by number of events as a function of depth. What is particularly striking about this distribution is that most of the earthquakes are concentrated in a relatively narrow depth range of about 15 km centered around 26 km deep. However, it is also evident that the distribution is biased by the details of the velocity model used to locate the earthquakes. A number of earthquakes were located at shallower depths and may represent movement on faults or fractures within the upper plate. We hope to better resolve some of these features by improving our velocity model, deriving improved station corrections and then relocating the earthquakes which occurred in this region over the past two years. #### CENTRAL ALASKA GREAT EARTHQUAKE OF 1904 Probably the largest instrumentally recorded earthquake in central Alaska occurred on 27 August 1904. The epicenter determinations made for this event vary considerably among various sources (e.g., Rosenthal, 1907; Milne, 1912; Gutenberg and Richter, 1954). Gutenberg and Richter (1954) placed the epicenter at 640N by 1510W, over 150 km from the site of the nearest (and possibly the only) felt report (which was in Rampart), and within about 200 km of the present route of the Alaska pipeline. Richter (1958) determined a magnitude of 8.3 for this event. Considering the damage that could result from an earthquake of this magnitude, and the uncertainties that exist in the location, magnitude, and faulting mechanism of the 1904 earthquake, a more thorough investigation of this earthquake is necessary. Chris Stephens has begun working on this problem in cooperation with Wayne Thatcher, also of the U.S.G.S During the past quarter, the process of collecting seismo- grams was begum. Using these, the earthquake will first be relocated, and then the methods of Kanamori (1970a, b), using long-period surface-wave synthetic seismograms, will be employed to investigate the rupture mechanism. Although the number of high quality seismographs operating at the time of the earthquake was relatively small, this technique was successfully applied by Okal (1977) to study two large earthquakes which occured in Mongolia in 1905. #### References - Gutenberg, B. and C.F. Richter, 1965, Seismicity of the Earth and Associated Phenomena, Hafner Publ. Co., New York, 310 p. - Kanamori, H., 1970a, Synthesis of long period surface waves and its application to earthquake source studies - Kurile Islands Earthquake of 13 October 63, J. Geophys. Res., 75, 5011-5027. - Kanamori, H., 1970b, The Alaska Earthquake of 1964: Radiation of long-period surface waves and source mechanism, <u>J. Geophys.</u> <u>Res., 75</u>, 5029-5040. - Milne, J., 1912, Seismic activity, 1904-1909, inclusive, Brit. Assoc. for the Adv. of Science, 17 Rept., p. 2-20. - Okal, E. A., 1977, The July 9 and 23, 1905, Mongolian Earthquakes: A surface wave investigation, Earth and Planet. Sci. Letters, 34, p. 326-331. - Plafker, G., 1972, Alaska Earthquake of 1964 and Chilean Earthquake of 1960: Implications for arc tectonics, J. Geophys. Res., 77, p. 901-925. - Richter, C.F., 1958, Elementary Seismology, W.H. Freeman and Co., San Francisco, 768 p. - Rosenthal, E., 1907, Katalog der im Jahre 1904 registrierten seismischen Storungen, Bureau Central de l'Association Internationale de Sismologie, Publ., Ser. B. Catalogues, Strassburg, 145 p. - Yukon Valley News, August 31, 1904, p. 3. # PRINCE WILLIAM SOUND JULY - DECEMBER, 1975 × DEPTH, 30 40 10 15 Figure 1. Plot of number of earthquakes as a function of depth for earthquakes located beneath Prince William Sound by the U.S.G.S. seismic network for the period July-December, 1975. Note the bias introduced into the distribution by the step increases in the velocity model at depths of 20 and 32 km. VELOCITY, KM/SEC EARTHQUAKES NUMBER OF #### Quarterly Report - R.U. 212 April 1977-June 1977 ## FAULTING, INSTABILITY, EROSION AND DEPOSITION OF SHELF SEDIMENTS, EASTERN GULF OF ALASKA P. I. Paul R. Carlson Bruce F. Molnia U.S. Geological Survey Menlo Park, California 94025 #### I. Task Objectives: B-10 - Determine the types and characteristics of bottom sediments. D-2 - Determine the types and extent of natural seafloor stability. Compile maps indicating relative susceptibility to instability hazards. D-6 - Determine and map the distribution, mode of faulting, age of most recent movement, and magnitude of offset for major faults. #### II. Field activities: - A. Ship (R/V Growler) - 1.
April 22-May 25, 1977 - Scientific Party Leg I Dangerous River to Sitkagi Bluffs Paul Carlson, Jack Hampson, Jim Nicholson, Austin Post, Jim Riehle, Dave Shockroff Leg II - Yakutat Bay to Cape Suckling Bruce Molnia, Jack Hampson, Jim Nicholson, Austin Post/William Clique, Nancy Hardin, Roy Young - 3. Dat collected 51 High resolution seismic lines 1200 km. 10 Seafloor televisions observations 1 side scan sonar line 25 km. - B. Ship (NOAA Discoverer) - 1. March 14-23, 1977 - 2. Scientific Party Jack Hampson - Data collectedShipek grab samplesGravity cores #### III. Results and Plans High quality, high resolution seismic reflection records (minisparker) were obtained in Yakutat and Icy Bays and in the nearshore zone of the eastern Gulf of Alaska between Dangerous River and Cape Suckling. These records will be studied and the results will be incorporated with data collected and synthesized in the previous two years. These data will allow us to extend our mapping closer to the shore and will help bridge the data gap between on and offshore geologic knowledge. The samples collected on the Discoverer cruise were obtained in the area of the northeastern Gulf of Alaska between Bering Trough and Yakutat Sea Valley. Vane shear and Tor vane measurements were made on the core samples. Moisture contents and bulk density samples were taken when possible. Size analyses and mineralogy will be completed on these samples in the laboratory. These data will add to our growing knowledge of the seafloor characteristics in lease sale area 39. A piston coring cruise is planned for October 1977 in the north-eastern Gulf of Alaska between Montague Island and Yakutat Bay. Principle targets of study will be areas of seafloor instability. Long cores will provide additional information about the physical properties of the poorly consolidated sediments and will add knowledge about the slump and slide processes active on this high energy seafloor. Hydrocarbon gradients also will be measured. #### IV. Publications and oral presentations During this past quarter, several papers have been presented at national and regional meetings. In addition, several papers have been submitted for publication. These papers and abstracts are listed below and those that have been published are attached in Appendix A. - Bruns, Terry R. and Plafker, George, 1:77, Structure of the continental shelf, eastern Gulf of Alaska: Am. Assoc. Petroleum Geologists Bull., v. 61, p. 773. - Carlson, Paul R., 1977, Submarine slump features seaward of Icy Bay and the Malaspina Glacier, northeast Gulf of Alaska: Am. Assoc. Petroleum Geologists Bull., v. 61, p. 774. - Carlson, Paul R. and Molnia, Bruce F., in press, Submarine faults and slides on the continental shelf, northern Gulf of Alaska: Marine Geotechnology. - Carlson, Paul R., Molnia, Bruce F., Kittelson, Steven C., and Hampson, John C. Jr., in press, Bottom sediments on the continental shelf, northern Gulf of Alaska: U.S. Geol. Survey miscellaneous field studies. - Kvenvolden, Keith A., Redden, George D., and Carlson, Paul R., 1977, Hydrocarbon gases in sediments of the eastern Gulf of Alaska: Am. Assoc. Petroleum Geologists, v. 61, p. 806. - Molnia, Bruce F. and Carlson, Paul R., in press, Surface sedimentary units of the northern Gulf of Alaska continental shelf: Am. Assoc. Petroleum Geologists Bull. - Molnia, Bruce F. and Fuller, Paul, 1977, Clay mineralogy of eastern Gulf of Alaska: Am. Assoc. Petroleum Geologists Bull., V. 61, p. 815. - Molnia, Bruce F., 1977, Rapid shoreline erosion and retreat at Icy Bay, Alaska - a staging area for offshore petroleum development: Offshore Technology Conference, p. 115-124. - Molnia, Bruce F., Carlson, Paul R. and Bruns, Terry R., in press, Large submarine slide in Kayak Trough, Gulf of Alaska, in Coates, D. (ed), Landslides; Engineering geology reviews, Geol. Soc. America. - V. Preliminary Interpretation Samples and records being analyzed. - VI. Problems too frequent reporting dates. - VIII. Estimate funds expended 70%. Appendix A. Publications released. Bruns, Terry R. and Plafker, George, 1977, Structure of Continental Shelf, Eastern Gulf of Alaska: Am. Assoc. Petroleum Geol. Bull. v. 61, p. 773. U.S. Geological Survey marine geophysical data indicate that structural style in the eastern Gulf of Alaska increases in complexity from east to west and reflects the change from predominantly strike-slip through oblique slip to dip-slip motion along the boundary between the North American and Pacific plates during the late Cenozoic. The eastern part between Cross Sound and Icy Bay is characterized by a basin filled with as much as 9 km of relatively undeformed upper Cenozoic sediment unconformably overlying an irregular basement surface. The axis of the basin is near and generally parallel with the coast. The seaward flank of the basin is formed by an uplifted shelf edge. Maximum uplift occurs at Fairweather Ground where probable Cretaceous to lower Tertiary highly deformed rocks are present at the seafloor; the amount of uplift diminishes westward. A central segment, beginning roughly at a line between Icy Bay and Pamplona Ridge and extending to Kayak Island, has an upper Cenozoic section, at least 7 km thick, that is folded and faulted and contains multiple angular unconformities indicating penecontemporaneous active deformation. Many large northeast-trending gently dipping, asymmetric and faulted folds are present in this segment, primarily in the east half near the Pamplona Ridge-Icy Bay trend. Some of these structures are concealed by 1 km or more of undeformed sediment, much of which may be Pleistocene or younger. Broad east-westtrending folds are present at the shelf edge and inner shelf in the west half of the area. The western area, between Kayak and Montague Islands, is characterized by complex, tightly folded and intensely faulted structures, and locally shallow acoustic basement. The thickness of upper Cenozoic sediment is extremely variable. Faults and folds with divergent trends probably reflect multiple periods of deformation in this region. Carlson, Paul R., 1977, Submarine-Slump Features Seaward of Icy Bay and Malaspina Glacier, Northeast Gulf of Alaska: Am. Assoc. Petroleum Geol. Bull., v. 61, p. 774. The earthquake-prone and storm-wracked continental shelf of the northeastern Gulf of Alaska has bottom features that indicate mass movement of a large area of the seafloor. A total of 29 seismic lines was run across the 1,200 sq-km area, south of Icy Bay and the Malaspina Glacier, on five cruises between September 1974 and June 1976. The acoustic profiles show disrupted bedding and irregular topographic expression, characteristics commonly associated with submarine slides and slumps. Carlson, Paul R., 1977, (cont'd) The slump structures are in water depths of 70 to 150 m on a slope of less than 0.5 are about 0.5 km wide (front to back), have a relief of 2 to 5 m, and consist of low-strength, poorly sorted, clayey silt. The slump "blocks" show progressive failure due to lateral extension or stretching of a sedimentary unit at the base of the blocks. This unit lies at a depth in the Holocene sediment of 35 to 50 m. Slump features of similar size and shape are present off the mouth of the Copper River, Alaska: The Copper River slump blocks probably were created by the intense ground shaking that accompanied the 1964 Alaska earthquake. The slump features southwest of the Malaspina Glacier cannot be related to a specific earthquake. However, the presence of a fault on the south side of the Icy Bay structure, the numerous earthquakes near the mouth of Icy Bay, and the active seismicity of nearby Pamplona Ridge (three magnitude-6 shocks in 1970) indicate that prolonged ground shaking is common and of sufficient intensity to cause the mass movement. Molnia, Bruce F., and Paul T. Fuller, 1977, Clay Mineralogy of Eastern Gulf of Alaska: Am. Assoc. Petroleum Geol. Bull., v. 61, p. 815. Analysis of the clay-mineral content of 87 bottom samples from the continental shelf of the northeastern Gulf of Alaska (Montague Island to Yakutat Bay) shows a remarkable uniformity in clay-mineral assemblage. All samples are characterized by chlorite averaging 51% illite averaging 37% and kaolinite averaging 10%. Montmorillonite is present in only one-third of the samples analyzed and averages 2%. The rank of the major clay minerals differs from the western Gulf of Alaska where illite is in greater quantity than chlorite. Mineralogy was determined by X-ray diffraction of Mg++ and ethylene glycol-saturated clay samples of less than 24. The quantity of each clay mineral present was determined by a peakarea technique. The major source area for these sediments is the highly deformed and intruded metasedimentary and meta-volcanic terrane of the Chugach, St. Elias, and Fairweather Mountains, where erosion is mainly mechanical by glaciation. Most material enters the gulf as rock flour where it is distributed by surface currents from east to west, thereby achieving a nearly uniform distribution. Samples from the Miocene to Pleistocene Yakataga Formation, which underlies the Holocene sediment offshore and which is the major onshore formation in the eastern part of the area, contain the same clay-mineral assemblages as the modern sediment, with percentages that fall within the same ranges. Apparently the bedrock of the Yakataga Formation, like the modern sediment, was eroded and deposited mechanically. Kvenvolden, Keith A., George D. Redden, and Paul R. Carlson, 1977, Am. Assoc. Petroleum Geol. Bull., v. 61, p. 806. Hydrocarbon gases in Sediments of Eastern Gulf of Alaska. Hydrocarbon gases were measured in nearshore, near-surface sediments recovered by grab samples and/or gravity cores at 12 stations. Methane (C,) was detected in all samples and ranged in concentration from 0.32 to 23.0 nl/g of wet sediment. Hydrocarbon gases of higher molecular weights--i.e., ethane (C_2) , propane (C_3) , isobutane
$(i-C_4)$, n-butane $(n-C_A)$, ethylene and propylene--were detected in most of the samples at concentrations at least an order of magnitude less than the concentration of C_1 . The highest amounts of C_1 , as well as C_2 , C_3 , and $n-C_A$, were found in a sample of clayey silt from near the mouth of the Copper River. High concentrations of gases also were found in clayey-silt samples southeast of Kayak Island. These areas of high gas concentrations show discontinuous seismic reflectors suggesting the presence of gas-charged sediments. Gravity-core samples from depths of about 50 cm below water-sediment interface at the stations near Kayak Island yielded C_l at a concentration of about 14 and 20 nl/g. The ratios of C_1 (C_2 /(C_2 + C_3) were 287 and 235 in addition, ethylene and propylene were observed. These data are consistent with a source from biochemical and low-temperature chemical diagensis of sedimentary organic materials. If the gases observed in these cores are related to apparent gas-charged sediments deeper in the Holocene section, then this deeper gas probably has resulted from early diagenetic processes and is not the product of seepage of petrogenically derived gases. #### OTC 2892 ## RAPID SHORELINE EROSION AND RETREAT AT ICY BAY, ALASKA - A STAGING AREA FOR OFFSHORE PETROLEUM DEVELOPMENT by Bruce F. Molnia, U. S. Geological Survey This paper was presented at the 9th Annual OTC in Houston, Tex., May 2-5, 1977. The material is subject to correction by the author. #### ABSTRACT Icy Bay is the only sheltered bay near many of the offshore tracts that were leased for petroleum exploration in the April 1976 northern Gulf of Alaska OCS lease sale. Consequently, it has been selected as a primary onshore staging site for the support of offshore exploration and development. The environment of Icy Bay has many potentially hazardous features, including a submarine moraine at the bay mouth and actively calving glaciers at the bay's head which produce many icebergs. But most significant from the point of view of locating onshore facilities and pipeline corridors are the high rates of shoreline erosion and sediment deposition. The glacier that once filled Icy Bay has receded more than 40 km since 1904, when the bay was completely ice-covered. A large hooked spit, Point Riou Spit, has developed on the eastern shore of the bay mouth within the limits of the terminal moraine and has grown to a length of 6.6 km (an average growth rate of 92 m/y). The Gulf of Alaska shoreline on the east side of Icy Bay, which includes the Malaspina Foreland and Point Riou Spit complex, has been steadily croded northward by waves and longshore currents. Analysis of ten sets of aerial photographs taken since 1941 indicate that the eastern shoreline has receded as much as 1.3 km in this 35-year period, an average rate of retreat of 37 m/y. The western shoreline has also changed similarly; over 8.2 km2 have disappeared, including all of Guyot Bay. Field observations during 1976 revealed that the eastern section of Point Riou Spit is frequently washed over by storm waves and is filling in the Riou Bay portion of Icy Bay with sediment. At the point where the spit attaches to the Malaspina Foreland, a forest with trees at least 90 years old is being undercut by wave erosion. If pipelines or any onshore staging References and illustrations at end of paper facilities are to be placed in the areas of Point Riou, Riou Bay, or the Malaspina Foreland, then the dynamic changes in shoreline position must be considered so that man-made structures will not be eroded away or silted in before the completion of development. #### INTRODUCTION Icy Bay, Alaska (Fig. 1), a north-trending fiord adjacent to the Gulf of Alaska, lies 20-80 km from the majority of potentially rich offshore tracts leased in the April 1976 Northern Gulf of Alaska Lease Sale (OCS Sale #39). It also offers the only shelter from storms for marine traffic between Yakutat Bay 90 km to the east and Prince William Sound 295 km to the west. Its location and the protection it can offer have made it a logical candidate for consideration as an onshore staging area for the development of Gulf of Alaska oil and gas. On June 2, 1976, the Chugach Natives, Inc., applied to the Alaska District Army Corps of Engineers (NPA 76-124) for a permit to dredge and fill and to construct dock and shiphandling facilities in the Moraine Island area north of Point Riou Spit and Riou Bay (Fig. 2). Other plans include housing, fuel storage areas, warehouses, water storage and supply, power generation facilities, a sewage treatment site and an 1800 m (6,000') airstrip capable of handling jet traffic. Cecil Barnes, the president of Chugach Natives, Inc., is quoted in the July 21, 1976 "Alaska Scouting Service Report" as envisioning a new town at Icy Bay that could have a population of 2,500 in 7 to 10 years. Bomhoff and Associates, Inc., an Anchorage engineering firm, has prepared a feasibility study that was submitted to the State of Alaska in November 1976. The U. S. Geological Survey has been investigating shoreline erosion as one of many potential hazards that might complicate or adversely affect normal petroleum operations (Molnia and others, 1976). Icy Bay, because of its recent dynamic history, was one area selected for detailed evaluation. This paper reports on the dynamics of the erosion and deposition processes in the Icy Bay area and relates these findings to proposed developments in castern Icy Bay. #### HISTORY OF ICY BAY The history of Icy Bay is quite dynamic. As recently as 1904, today's Icy Bay did not exist. In 1794, when the explorer Vancouver surveyed the Gulf of Alaska coast, a large lobe of the Malaspina Glacier system, Guyot Glacier, extended several kilometers out to sea, occupying the area of present-day Icy Bay. A second bay, now filled in by glacial, glacial-fluvial and glacial marine deposits, located east of Icy Bay in the present Malaspina Foreland (Fig. 2), was open at that time. Vancouver named the eastern tip of this bay Point Riou. The infilling of this second bay (referred to as Vancouver's Icy Bay by Alpha 1975) is not well documented, but based on Belcher's (1843) observations, by the middle of the last century Vancouver's Icy Bay no longer existed. Tebenkof (1848) published a series of charts based on data compiled by Russian explorers between 1788 and 1807 which generally agreed with Vancouver's description of the first Icy Bay. They show a triangular bay about 12 km long and 8 km wide at its mouth. By 1837, when Belcher examined the area, the bay had completely filled in and Guyot Glacier had receded, opening up the mouth of the present bay (Belcher, 1843). Water depths in the old bay as shown on Tebenkof's chart were as much as 27 m (90 ft). Rough calculations show that over 0.5 km3 of sediment would be needed to fill the bay charted by Tebenkof. The infilling must have occurred between 1807 and 1838, or within about 30 years. By 1886, Guyot Glacier had again advanced (Seton-Karr 1887) to a position over 10 km seaward of the 1977 shoreline position. A terminal moraine (Fig. 2) at the mouth of Icy Bay marks the limit of this advance. The moraine is thought to date from between 1904 and 1909 (Tarr and Martin, 1914). Ice retreat, which began prior to 1910, has continued to the present, (Fig. 3), with about 40 km of retreat through 1977. In 1913, Tarr and Martin named the opening bay Icy Bay. After ice retreat began, and probably prior to 1910, longshore sediment transport began building a spit complex on the east shore of Icy Bay at the point where it meets the Gulf of Alaska. The spit, today called Point Riou Spit (Fig. 2), has continued to develop to the present time. (The modern Point Riou is not the same point named by Vancouver.) As the spit complex has grown, it has hooked to the northeast and isolated a portion of Icy Bay between it and the Malaspina Foreland. This body of water is known as Riou Bay (Fig. 2). This study will examine the changes taking place in Riou Bay, Point Riou, and the eastern and western shorelines. Using the recent history of Icy Bay as a data base, projections will be made for areas being considered for petroleumrelated development. #### METHOD The development of the Point Riou area was evaluated from vertical and oblique aerial photographs, USGS topographic maps, and from NOAA nautical charts. During the period 1941 - 1976, ten separate sets of vertical aerial photographs were made by various U. S. government and state agencies and private contractors. These were projected to a common scale and traced using Salzman Projectors and rephotographed to approximately the same scale. Common reference points were found (Fig. 2) and used to align overlays traced from each photograph, so comparisons of crosion and deposition could be made. Two U. S. Coast and Geodetic Survey triangulation stations originally established in 1922 (U. S. Coast and Geodetic Survey, 1922) were located. The distance between them was determined so that lengths measured on the photographs could be recalculated as true distances on the ground. Tidal heights at the time each photograph was made were determined for all aerial photographs and considered in evaluation of rates and locations of areas of deposition and erosion. Measurements were made using a compensating polar planimeter to calculate area, and these were compared to bathymetric data to calculate volume of sediment either deposited or eroded. Lengths were measured with a flexible ruler and converted to ground distance. Two separate sets of calculations were used to determine shoreline change. One set was generated from the air photographs listed below, which covered the period 1941 - 1976. The second set was based on three editions of the NOAA and U. S. Coast and Geodetic Survey Icy Bay 1:40,000 nautical chart (present number 16741, old number 8457), covering the period 1922-1971. The data
from the two independent sources were then compared. A field check of the area was made in June 1976 from the Geological Survey's environmental research ship R/V Sea Sounder. The vertical aerial photographs evaluated are as follows: 27 May 1941 U. S. Coast and Geodetic Survey nine-lens series 05651 30 June 1948, U. S. Navy Mission SEA - 47 26 July 1954, U. S. Air Force Mission 4G-28 11 July 1957, U. S. Air Force Mission 51 AMOI 26 Aug 1970, Alaska Dept. Lands YAK-26 7 June 1971, Nat. Ocean Survey 21 July 1972, U. S. Air Force AF 71-40 15 Aug. 1973, U. S. Air Force AF 71-40 30 Aug. 1975, North Pacific Aerial Surveys, Inc. 24 Aug. 1976, U. S. Gool. Survey 76 VI This paper will concentrate on data from the 1941, 1948, 1957, 1971, and 1975 photographs, although information from other aerial surveys will be discussed. The editions of the NOAA and U. S. Coast and Geodetic Survey 1:40,000 Icy Bay nautical chart used were the first (1923), third (1964), and fifth edition (1974). #### DESCRIPTION OF NAUTICAL CHARTS 1923 Chart The 1923 U. S. Coast and Geodetic Survey Chart (Fig. 4), which is based on a Sept. 5 - 14, 1922 sextant, alidade, and lead line survey shows Point Riou Spit as being 3.18 km long and located in the area of the 1904 terminal moraine. This chart is the oldest known map that shows the eastern shore spit. The area occupied by the spit is 0.98 km² to mean lower low water (m.1.1.w.). The area of Riou Bay is 7.30 km², and the distance across its mouth is 5.52 km. This is the distance from the northeasternmost tip of the spit to the northwesternmost point on Moraine Island. The west shore of Icy Bay, adjacent to the west side of the 1904 terminal moraine, is characteristically a low area of sand and mudflats that probably developed as part of the Guyot Glacier outwash plain. Guyot Bay is a large embayment formed by the eastward growth of a sediment spit along the shoreline and flanks of the moraine. Whereas Point Riou Spit has grown over the crest of the moraine and is growing out by infilling in deeper water, the unnamed spit on the west shore is not. This is probably due to an absence of abundant sediment migrating eastward. The area immediately east of Guyot Bay reaches an elevation of about 12 m (40 feet) above m.l.1.w. From descriptions on the unpublished original 1922 survey (U. S. Coast Geodetic Survey 1922), it appears that this area is underlain by ice-cored moraine. The 1922 chart shows a bulbous island with a sinuous tail developing in open water at the east side of the terminus of Guyot Glacier. The morphology of the island complex resembles an esker with attached delta, and consequently the island is here named Esker Island. Moraine Island is separated from the Malaspina Foreland by about 150 m of open water. It probably formed as a block of recessional moraine as Guyot Glacier retreated. #### 1964 Chart The shoreline on the 1964 Coast and Geodetic Survey chart (Fig. 5) is based on the 1948 U. S. Navy aerial photographs. Point Riou Spit has grown to 6.02 km long and occupies an area of 2.62 km2, and Riou Bay has an area of 10.65 km2. The most significant changes from the 1923 chart are the growth of Point Riou Spit, the recession of Guyot Glacier, and the erosion of the spit and mudflats on the west shore of Icy Bay. The area shown as Guyot Bay (Fig. 5) is a completely different embayment than that shown on the 1923 chart (Fig. 4). The distance across the mouth of Riou Bay has decreased to 3.27 km. Esker Island is shown with an indistinct shoreline, hence no comparison to the 1923 chart can be made. Moraine Island has become attached to the Malaspina Foreland by development of a tombolo. Depths in Riou Bay are no longer shown on the 1964 chart, so no comparisons can be made or rates of infilling calculated. #### 1974 Chart The 1974 NOAA Chart has the same western shoreline as the 1964 chart, but has a new eastern shoreline based on the 1971 NOAA aerial photographs. Point Riou Spit has decreased in length to 5.96 km, but a 1-km long bar, probably separated from the spit by a major storm, lies 1 km to the east of the present spit's tip. The area of the spit has increased to 2.73 km² (exclusive of the bar). The area of Riou Bay has decreased to 9.00 km and its mouth is now 3.39 km across. With the exception of bathymetry measured by the U. S. Coast Guard in 1971 and the Geological Survey in 1970, the bathymetry shown on the 1974 chart is identical to that of the 1922 survey. Esker Island has been resurveyed and has essentially the same configuration as shown in 1922. Table I summarizes the pertinent data derived from the nautical charts. Figure 5 is a composite diagram showing the comparative positions of the important coastal features from the three charts. Figure 6 is a similar composite of the Point Riou shoreline drawn from three of the aerial surveys (1941, 1957, and 1975) and the 1923 nautical chart. ## DESCRIPTION OF AERIAL PHOTOGRAPHS OF THE EASTERN SHORE Although photographic coverage also exists from 1941 to 1975 for the shoreline on the west side of Icy Bay, this paper will concentrate on the eastern shore, the area proposed for petroleum-related development. Photographs that were evaluated in detail were made in 1941, 1948, 1957, 1971, and 1975. Other measurements were made on photographs made in 1954, 1970, and 1976. 1941 - The 1941 Coast and Geodetic Survey photograph (Fig. 7) was made when the tidal height was 8.3 feet (2.5 m) above m.l.l.w. This photograph is a composite from a nine-lens camera. A sketch map drawn from the photograph (Fig. 8) shows Point Riou Spit to be 5.29 km long and to occupy an area of 1.89 km. Riou Bay has an area of 9.24 km² and a mouth width of 3.73 km. Moraine Island is predominantly unvegetated and is attached to the Malaspina Foreland by a tombolo. A sandy beach a few hundred meters wide fronts the Gulf of Alaska as far as the eastern edge of the photograph at the Yahtse River. Data from the measurement of aerial photographs are summarized in Table II. 1948 - The 1948 Navy photograph (Fig. 9) was taken when the tidal height was approximately three feet (* 1m) above m.l.l.w. A sketch map (Fig. 10) shows the length of Point Riou Spit to have increased to 5.53 km while its area increased to 2.34 km². When compared to 1941, this represents a growth rate of 34 m/yr (Table III) and a 24 percent increase in area. The area of Riou Bay has decreased to 9.14 km² and the distance across its mouth has decreased to 2.98 km. The width of exposed sandy beach has decreased by about 40 percent from the 1941 photograph. 1957 - The 1957 Air Force photograph (Fig. 11) was taken when the tide was 2.9 feet (0.9 m) above m.l.l.w. A sketch map (Fig. 12) shows that the length of Point κιου Spit has increased to 8.86 km and its area to 2.69 km². This represents an average growth rate of 148 m/y between 1948 and 1957. Riou Bay occupies an area of 8.55 km² and its mouth width has decreased to 2.20 km. 1971 - The 1971 NOAA photograph (Fig. 13), made when the tide was 3.5 feet (1.1 m) above m.l.1.w., and the sketch map (Fig. 14) show Point Riou Spit to be broader and shorter than in 1957. A linear bar, 1 km long, with a bulbous end to the southwest and a northwest-trending hook at its north tip, now occupies a part of the area that in 1957 was occupied by the east end of Point Riou Spit. The bar, here named Severed Bar, lies about 1 km east of the end of the spit. Observations made on June 12, 1976, indicate that a tidal height of about 6 feet (2 m) above m.l.l.w. is necessary to completely submerge the bar. Severed Bar trends parallel to Moraine Reef but appears to be separate from it. Between 1957 and 1971, the westernmost edge of the spit has developed a rounded knob which projects out into what were open water depths of 18 - 70 m (10 - 40 fms) on the 1923 nautical chart. This area, here named Crested Point, gives the hooked end of the spit a profile similar to the head shape of the late Mesozoic dinosaur Corythosaurus. This profile continues through the present. In spite of losing Severed Bar, Point Riqu Spit has about the same area as in 1957 (2.70 km²) but has decreased in length to 5.53 km. The area of Riou Bay (8.94 km²) and the width of its mouth (3.6 km) have both increased (Table II). No photographic coverage has been found for the period 1957 - 1970, but considering the rapid rate of spit growth and the large distance of open water between the spit's tip and Severed Bar, the storm that breached the spit and formed Severed Bar probably occurred late in the 1960's. The 1970 photo shows Severed Bar to be about the same size and shape as in 1971, but Point Riou Spit is about 200 m shorter (length 5.34 km) than in 1971. The Riou Bay mouth measured 3.25 km in 1970. 1975 - The 1975 North Pacific Aerial Survey photograph (Fig. 15) was made when the tide was 5.7 feet (1.75 m) above m.l.l.w. On the sketch map (Fig. 16), only a small area of the southwest part of Severed Bar is emergent, although its outline can be seen as a darker area on the photograph. The shape of Point Riou Spit is similar to that of 1971, with the exception that Crested Point has become more rounded and the embayment below the growing northeasternmost projection has been isolated as a saline lake that receives sea water only during storm washover. The spit has grown to a length of 6.48 km and occupies an area of 3.09 km 2 . The area of Riou Bay (8.60 km2) and the width of its mouth (2.70 km) have both decreased but neither have returned to the pre-storm dimensions of 1957. Measurements of incomplete 1976 Geological Survey photographs show a further increase in the spit's length to 6.60 km and a decrease of the bay mouth to $\bar{2}.54$ km. Areas could not be calculated from the 1976 photographs. The most striking change between the 1975 photograph and earlier ones is the absence of sandy beach south of Reference Lake. June 1976 field observations of the Gulf of Alaska coastline immediately east of Riou Bay
(Fig. 17) showed waves and surf breaking on the forested Malaspina Foreland. Recently deposited sand was found carpeting the forest floor behind the southeastern extension of the spit (Fig. 18). A large number of fallen trees, generally oriented with their roots toward the Gulf of Alaska and their trunks toward Riou Bay, have eroded from the Malaspina Foreland. Three ring counts of two of the larger trees yielded ages of about 90 years. ### COMPARISONS AND INTERPRETATION OF NAUTICAL CHARTS AND AERIAL PHOTOGRAPHS Interpretations of the nautical charts and of the various aerial photographs both lead to the same conclusions but to different magnitudes. Both the aerial photographs and the nautical charts show that presently Point Riou Spit is growing, Riou Bay's area is decreasing, and the Gulf of Alaska shoreline of Icy Bay is rapidly eroding and receding northward. Values derived from the nautical charts are consistently greater than values from the same year's aerial photographs. This is due to two factors: (1) a difference in tidal reference points; and (2) a difference in base distances. All aerial photographic surveys were made when tidal heights were above m.l.l.w. The range is from 2.9 (1957) to 8.3 (1941) feet (0.9 - 2.5 m) above m.1.1.w. The nautical charts are based on a shoreline supposedly corrected for m.l.l.w. Consequently lengths and areas calculated from nautical chart shorelines are greater than those from the same year's aerial photographs. For Point Riou beaches, which have slopes of between 3° and 5°, a one-foot (0.3 m) reduction in tidal heights will expose 3.4 to 5.7 meters of beach. The 1941 aerial photograph, the earliest used in this study, has the highest tidal height of all. Consequently, less shoreline is exposed than would be if the tidal height were equal to that of any of the more recent photographs. Since all other photos are compared to the 1941 shoreline, this means that the numbers calculated for shoreline erosion and retreat are lower than the actual area lost. Measurements of distances on the 1964 and 1974 nautical charts are 7 - 10 percent greater than on the 1959 USGS topographic map used for ground truth for the aerial photographs. On this map, the distance from the northwest corner of Moraine Island to the southeast edge of Reference Lake is 5.84 km and the distance from the Moraine Island to the eastern edge of Intermediate Lake is 2.62 km. On the nautical charts these distances are 6.24 km and 2.85 km respectively. #### SUMMARY OF CHANGES AT ICY BAY Between 1941 and 1976 the Gulf of Alaska shoreline of the eastern shore of Icy Bay receded at least 1.3 km (Fig. 6). Between 1922 and 1976 the same shoreline receded as much as 1.5 km (Fig. 5). The latter number is presented with less confidence than the former due to the less than precise nature of the 1922 sextant, alidade, and lead-line survey. Point Riou Spit began developing as soon as Guyot Glacier began retreating (about 1904) and continued to grow until at least 1957, when its length was 6.86 km. Sometime between 1957 and 1970, a large storm breached the eastern end of Point Riou Spit and detached Severed Bar. This increased the area of Riou Bay and also increased the distance across the mouth. Point Riou Spit has continued to grow, and as of 1976 (6.60 km) had almost reached its pre-storm length. Table III summarizes the incremental growth of Pt. Riou Spit. Between 1922 and 1957 the width of Riou Bay's mouth and its area have steadily decreased. Following the major storm, Riou Bay's area and width have again been decreasing (Table II). Since 1941 Riou Bay's width has decreased from 3.73 km to 2.54 km, a decrease of 32 percent. In 1957 the width had decreased to 2.20 km. It is likely that the damaging storm had a recurrence interval of 50 to 100 years. The western shoreline of Icy Bay has also undergone significant changes. Between 1922 and 1976 the shoreline has retreated as much as 4.8 km with a loss of more than $8.2~\rm km^2$. As the recent charts show no bathymetry in the area of change, no volume of sediment lost has been calculated. Vancouver's Icy Bay, which existed until about 1837, was filled in with sediments in less than 40 years. Calculations based on Tebenkoff's (1848) chart indicate about 5 x 10^8 m of sediment would be needed to raise the bottom to m.1.1.w. The growth in Point Riou Spit between 1922 and 1975 would require over 3.56 x 10^7 m of new sediment. The sediment being added to Pt. Riou Spit probably comes from two sources, the eroded Malaspina Foreland and the streams draining the Malaspina Glacier system. Sediment is transported into the Point Riou system by long-shore drift and wave action. The sediment eroded from the western shoreline may have been transported into Icy Bay and deposited on the growing shoreline near Claybluff Point. It might also remain in the vicinity of Guyot Bay but be below sea level because of melting of stagnant ice underlying the western shore. The sediment that rapidly filled Vancouver's Icy Bay must have come from the Malaspina system. To date, no detailed investigations have attempted to determine its source. ### EFFECTS OF SHORELINE CHANGES AND SPIT GROWTH ON PROPOSED DEVELOPMENT The sediment transport schemes for the eastern shore of Icy Bay can be characterized as: (1) longshore transport from the east and then continued longshore transport into Icy Bay along the margin of Point Riou Spit; and (2) washover sedimentation by storm waves, which drive sediment into southern Riou Bay, onto the Malaspina Foreland, and onto the inner curve of Point Riou Spit. Longshore transport has kept Point Riou elongating since its inception and, if allowed to continue without storm breaching, will probably close off the mouth of Riou Bay completely. The distance between Moraine Island and the tip of the spit has decreased from 5.52 km in 1922 to 2.54 km in 1976. Continued growth at the present rate would connect the two points in less than 20 years, thus closing off Riou Bay. Then, new sediment which had previously been deposited in deep water adjacent to Point Riou Spit, been attached to the spit, or entered Riou Bay would continue along the face of Moraine Island and enter Moraine Harbor, the major site for proposed development (Fig. 19). Moraine Harbor will fill in within 15 years if sedimentation continues at the rate calculated for Point Riou Spit between 1922 and 1974. (Human intervention could prolong the life of Riou Bay and Moraine Harbor, but this has not been considered in the calculations.) This assumption is based on the calculation of the volume of sediment added to Point Riou Spit between 1922 and 1974, and the calculation of the area of Moraine Harbor. Between 1922 and 1974, Point Riou Spit increased in area by 1.75 km2. The average water depth in which the spit grew was 20.35 m (11.13 fm). This number was obtained by contouring the open water depths on the 1923 nautical chart which are now occupied by the spit. Consequently, over 3.56 x 10' m of sediment were added to Point Riou Spit during the period in question. This calculation is conservative because (1) the spit actually projects a significant distance above the upper limit calculated for, m.1.1.w., and (2) the 1974 NOAA chart actually shows a 1971 shoreline. Available NOAA data and bathymetry from Bomhoff and Associates (1976) used to calculate the volume of Moraine Harbor indicate that $9.55 \times 10^{6} \, \mathrm{m}^{5}$ of sediment would fill Moraine Harbor to m.l.l.w. Using the depositional rate calculated for Point Riou Spit, $6.84 \times 10^5 \text{m}^3/\text{yr}$, the life of Moraine Harbor would be 14.0 years. Even before the attachments of Point Riou Spit to Moraine Island, the increase in sediment would affect moorage sites for tankers and platforms and also loading and unloading areas for other marine traffic. #### CONCLUSIONS - (1) The Gulf of Alaska shorelines at either side of Icy Bay have been eroding and retreating since the deglaciation of Icy Bay began in 1904. - (2) The Malaspina Foreland shoreline to the east of the bay mouth has been eroded back more than 1.3 km since 1941 and as much as 1.5 km since 1922. - (3) The western shoreline has retreated at least 4.8 km since 1922, and between 1922 and 1976 lost an area of more than 8.2 km 2 . - (4) Point Riou Spit began developing as soon as longshore sediment transport was able to supply sediment to the area that the ice occupied in 1904. By 1922, it had reached a length of 3.18 km. By 1957, it had grown to 6.86 km. A major storm between 1957 and 1971 shortened the spit by breaching it, and formed Severed Bar. In 1976, Point Riou Spit was 6.60 km long. - (5) If Point Riou Spit continues to grow at its present rate, it will seal off the mouth of Riou Bay within 20 years. Further sedimentation will fill in Moraine Harbor, the proposed site for the Chugach Natives, Inc., development, about 15 years after sealing Riou Bay. - (6) Between 1922 and 1971, sedimentation added over $3.56 \times 10^{\circ}$ m of sediment to Point Riou Spit. This included the growth of the spit into an area where previously over 40 fms (~ 75 m) of open water existed. - (7) Vancouver's Icy Bay was filled in by sediment probably during the period between 1807 and 1837. Available bathymetry and geography imply that this would require a sediment volume of about 5 x 10^8 m³. - (8) Before any attempts are made to construct major staging or related facilities in dynamic areas such as Icy Bay, the total sediment picture including areas of erosion and deposition, must be carefully evaluated. The proposed facilities could be silted in long before the Gulf of Alaska offshore development is completed. #### NOMENCLATURE The names Crested Point, Esker Island, Intermediate Lake, Reference Lake, and Severed Bar have not as yet been formally accepted by the Board on Geographic Names. Applications have been submitted to formalize each of the above names, and their use
here is in accordance with Board on Geographic Names policy. #### ACKNOWLEDGMENTS The author wishes to sincerely thank John C. Hampson, Jr., and Darlene A. Condra for their invaluable assistance in the gathering of difficult to find photographs and the compilation of valuable data. The author also wishes to thank Austin Post for his numerous suggestions and his ready supply of information on the deglaciation of Icy Bay. #### REFERENCES Alaska Scouting Service, 1976, July 21, 1976; Petroleum Inf. Corp., Anchorage, Alaska, Vol. 22, No. 29 Alpha, T. R., 1975, The evolution of Icy Bay, Alaska, in Principal sources and dispersal patterns of suspended particulate matter in near shore surface waters of the Northeast Pacific Ocean, by Paul R. Carlson et al., U. S. Geol. Survey Rep. prepared for NASA, Goddard Space Flight Center, National Tech. Info. Service, E75-10266, pp. 4-9. Belcher, Capt. E., 1843, Narrative of a voyage round the world, performed in Her Majesty's Ship Sulphur during years 1836 - 1842: London, Henry Colborn, Vol. I, p. 79-80. Bomhoff and Associates, 1976, Moraine Harbor feasibility study; unpub. rep. submitted to the State of Alaska for Chugach Natives, Inc., Anchorage, Alaska. Molnia, B. F., Carlson, P. R., and Bruns, T. R., 1976, Rept. on the Environmental Geology, OCS Area, Eastern Gulf of Alaska, U. S. Geol. Surv., Open file rept 76-206, 46 p. National Oceanographic and Atmospheric Administrations, 1974, Nautical Chart 16741 (formerly C and GS 8457): Icy Bay, Alaska 5th Ed., Scale 1:40,000. Seton-Karr, H. W., 1887, Shores and alps of Alaska: London, Low, Marston, Searle, and Rivington, 248 p. Tarr, R. S., and Martin, L., 1914, Alaskan glacier studies: Washington, Natl. Geog. Soc., 498 p. Tebenkof, Capt. M., 1848, Hydrographic atlas and observations, with 48 charts: St. Petersburg (Chart published in Tarr and Martin, 1914). U. S. Coast and Geodetic Survey, 1922, Icy Bay, Alaska: unpub. survey, 1923, Nautical Chart 8457: Icy Bay, Alaska, 1st Ed., scale 1:40,000. 1964, Nautical Chart 8457: Icy Bay, Alaska, 3rd Ed., scale 1:40,000. U. S. Geological Survey 1959, Icy Bay (D2-D3) quadrangle, Alaska, topographic map, scale 1:63,350. TABLE I. ### DATA DERIVED FROM ICY BAY NAUTICAL CHARTS | Edition | Point Riou
Spit length
(km) | Spit area
(km²) | Area of
Riou Bay
(km²) | Width of Riou
Bay Mouth
(km) | |-----------------|-----------------------------------|--------------------|------------------------------|------------------------------------| | 1st (1922 data) | 3.18 | .98 | 7.3 | 5.52 | | 3rd (1948 data) | 6,02 | 2.62 | 10.65 | 3.27 | | 5th (1971 data) | 5.96 | 2.73 | 9.00 | 3.39 | TABLE II. SUMMARY OF DATA FROM AERIAL PHOTOGRAPHS | Date of
Photograph | Point Riou
Spit length
(km) | Spit area
(km ²) | Area of
Riou Bay
(km ²) | Width of Riou
Bay mouth
(km) | TABLE III, INCREMENTAL GROWTH OF POINT RIOU SPIT, 1904-1976 | |-----------------------|-----------------------------------|---------------------------------|---|------------------------------------|---| | 1941 | 5.29 | 1.89 | 9.24 | 3.73 | 1904 - 1922 177 m/yr | | 1948 | 5.53 | 2,34 | 9.14 | 2,98 | 1922 - 1941 100 m/yr | | 1954 | 6.85 | 2.52 | 8.55 | 2.36 | 1941 - 1948 34 m/yr | | 1957 | 6.86 | 2.69 | 8.55 | 2.20 | 1948 - 1954 220 m/yr | | 1970 | 5.34 | * | * | 3.25 | 1954 - 1957 3 m/yr | | 1971 | 5.53 | 2.70 | 8.94 | 3.06 | 1957 - 1971 -95 m/yr | | 1975 | 6,48 | 3.09 | 8.60 | 2.70 | 1971 - 1975 238 m/yr | | 1976 | 6.60 | * | * | 2,54 | 1975 - 1976 169 m | ^{*}incomplete photo coverage. Fig. 1 - Map of Alaska showing the location of Icy Bay. Fig. 2 – The Icy Bay area showing the location of geographic features discussed in this paper. Fig. 4 - Tracing of the 1923 U. S. Coast and Geodetic Survey Icy Bay nautical chart. Fig. 5 - Diagram based on the 1923, 1964 and 1974 Icy Bay nautical charts showing the relations of major shoreline features. Fig. 6 - Composite diagram showing the position of shorelines determined, for the Point Riou area, from aerial photographs and the 1923 Nautical Chart. Fig. 7 - 1941 vertical aerial photograph of the Point Riou area. Fig. 8 - Sketch of the 1941 aerial photograph. Fig. 9 - 1948 vertical aerial photograph of the Point Riou area. Fig. 10 - Sketch of the 1948 aerial photograph. Fig. 11 - 1957 vertical aerial photograph of the Point Riou area. Fig. 12 - Sketch of the 1957 aerial photograph. Fig. 13 - 1971 vertical aerial photograph of the Point Riou area. Fig. 14 - Sketch of the 1971 aerial photograph. Fig. 15 – 1975 vertical air photograph of the Point Riòu area. Fig. 16 - Sketch of the 1975 aerial photograph. Fig. 17 - Ground view east of Point Riou showing active wave erosion (June 1976). Fig. 18 - 1976 low vertical aerial photograph east of Point Riou showing wave-aligned trees along Malaspina Foreland. Fig. 19 - Map showing proposed development of Chugach Natives Inc., at Lcy Bay (Bomhoff and Associates 1976). ### QUARTERLY REPORT TITLE: Seismic and Volcanic Risk Studies - Western Gulf of Alaska RU: 251 PERIOD: April 1, 1977-June 30, 1977 PRINCIPAL INVESTIGATORS: H. Pulpan and J. Kienle, Geophysical Institute, University of Alaska #### I. TASK OBJECTIVES: It is the purpose of this research to determine the seismicity of the lower Cook Inlet, Kodiak, and Alaska Peninsula areas and the associated seismic risk to onshore and offshore developments, and to monitor the earthquake activity of two recently active volcanoes and evaluate their eruption potential and associated risk. # II. FIELD AND LABORATORY ACTIVITIES: Jim Siwik visited the Homer recording center to repair one of three VHF links between DMR and the recording sites. On that occasion, various calibrations on the recording system were performed. Juergen Kienle and Jim Siwik installed a new seismic station in order to be able to record the microearthquake activity associated with the formation of two new maars near Peulik Volcano. A narrative report about these maars, their relationship towards this current OCSEAP study and the field investigation conducted in association with their formation is the content of Appendix I. This field operation also allowed us to service some seismic stations of the Peninsula regional network. Laboratory work was primarily associated with preparations for the annual station service trip and the ocean bottom seismometer experiment conducted by LDGO and USGS. ### III. RESULTS AND INTERPRETATION: Hypocenter determinations (files and maps). Appendix 2 and 3 give the listings of hypocenters and epicenter maps, respectively for the period January 1, 1977-March 31, 1977. # Appendix 1 Narrative Report About the Formation of Two New Maars on the Alaska Peninsula and Associated Field Investigations ### Formation of two maars, 13 km northwest of Peulik Volcano, Alaska Peninsula ## General Observations: From March 30 to April 9, 1977, two new maars formed in lowland terrane at the southern shore of Becharof Lake, 3 km south of Gas Rocks. The eruption site lies 13 km northwest of Peulik Volcano, which erupted last in 1852. The maars appear to have formed very near or on the trace of the Bruin Bay fault, a major regional, northwest-trending fault of presumed Tertiary age. The two maars are separated by about 500 m. The eastern maar is about 100 m deep and circular with a diameter of about 250 m. It contains a lava dome and is now filling up with water. The western maar contains a lake, is elliptical, with dimensions of about 150 by 65 m, and is about 25 m deep to the lake surface. Explosive activity began on March 30, in the now water-filled western maar. The second (eastern) maar was first seen on April 2, by a bush pilot and from that date on was the main source of volcanic activity. During the 10 days of eruption ash clouds reached heights of 25,000 feet. Figure 1 shows the eastern maar in eruption on April 6, 1977. Ash from the larger eruptions fell as far away as Kodiak Island, Katmai and the Bristol Bay lowlands. On April 3, a new lava lake was discovered in the bottom of the eastern maar. The two maars are now surrounded by aprons of tan and black colored scoria and also bomb strewn fields which show a pronounced grading from fine to very coarse as one approaches the crater rims. At the rim of the eastern maar the ash has accumulated to a depth of 10 m, and the bomb sizes are up to 1 m in diameter. At a distance of a few km at the shore of Becharof Lake, the ash layer is only a few cm thick containing fist-size scoria bombs. The name "Ukinrek Maars" has been proposed by us to the U.S. Board of Geographic names. Ukinrek in Yupik Eskimo means "two holes in the ground" (Peulik means "one with smoke"). #### Scientific Value, Relevance to OCSEAP: Maar formation, the result of the initial perforation of the earth's crust by the volatiles of a rising magma front, is a rare geologic phenomenon. To our knowledge, only twice in historic times have maars been seen to form: once in Chile in 1955 (Illies, 1959), and the second time at Iwo Jima, Japan, in 1957 (Corwin and Foster, 1959). Since the Ukinrek Maars formed in the middle of our existing regional Alaska Peninsula seismic network, we saw a unique opportunity to study their deep conduit system, the source of magma, in short, their plumbing through microearthquake observations. Two aspects of this study may be of relevance to OCSEAP: (1) The tectonic setting of the maars appears to be controlled by the Bruin Bay fault. There is a possibility that we might find evidence of seismic activity along the Becharof Lake section of the fault. The question of whether or not there is any recent displacement and current seismic activity on the Bruin Bay fault is of interest to OCSEAP in lower Cook Inlet, where the fault marks the western boundary of the potential lower Cook Inlet petroleum province. Detterman et al. (1976) found no evidence for any Holocene
displacement along the Bruin Bay fault in the Kenai and Tyonek quadrangles. (2) Continued volcanic activity at or in the vicinity of the maars could constitute a volcanic hazard to the Bristol Bay offshore lease area, which would, however, be restricted to ash falls and noxious fumes and gas clouds. ### Field Work: A field party of volcanologists from the University of Alaska (J. Carden, J. Kienle, D. Lalla, and R. Motyka) and from Dartmouth College (J. Bratton and S. Self) spent 8 days at the maars from April 14-21, to conduct geologic-petrologic, gas-chemical, thermal, geodetic, and scismologic observations. Rock samples are now being analyzed. Preliminary results indicate that the lavas are alkali-basaltic or transitional from alkalic to tholeiitic. Temperatures as high as 805°C were encountered at only 1.1 m depth near the rim of the western maar within a thick lobe of black scoria. The high temperature is probably due to very rapid accumulation of hot scoria, thus trapping the heat. We also observed strong microearthquake swarm activity during these 8 days. Many of the smaller events originated at shallow depth beneath the craters, but some of the larger events originated from a few up to 20 km and were also seen at our Whale Mountain station 25 km N-NE of the maars. Roughly during the same time period, from April 8 to April 22, 1977, a University of Washington research airplane sampled volcanic aerosols and gases. From May 20 to May 29, 1977, with emergency funding from the U.S. Geological Survey, J. Kienle and J. Siwik from the University of Alaska installed a new short-period seismic station on Gas Rocks (MAA), 3 km N of the maars, field serviced station FLP, 35 km SE of the maars, and also station BMT, 25 km N-NE of the maars, where we had to install a radio receiver for MAA. The new narrow spaced tripartite array, consisting of MAA, FLP, and BMT, should allow us to delineate the tectonic setting of the maars through observations of the associated seismicity. To date, earthquake swarm activity is continuing. ### References: - Corwin, G., and Foster, H. L., 1959. The 1957 explosive eruption on Iwo Jima, Volcano Islands: Am. J. of Science, p. 161-171. - Detterman, R. L., Hudson, T., Plafker, G., Tysdal, R. G., and Hoare, J. M., 1976. Reconnaissance geologic map along Bruin Bay and Lake Clark faults in Kenai and Tyonek quadrangles, Alaska: U.S. Geol. Survey open-file report 76-477, 4 pp and map. - Illies, H., 1959. Die Entstehungsgeschichte eines Maares in Sued-Chile: Geol. Rundschau, p. 232-244. Figure 1 is a photograph of E Ukinrek Maar in eruption on the evening of April 6, 1977. Becharof Lake is pictured in the background, looking E-NE. Photograph was by Lou Gwartney. Unfortunately, a xerox copy of the photograph was submitted rather than the original photo. Since there was no visible reason for duplicating this, the author will have to be contacted if a significant version is required. # Appendix 2 List of Hypocenters Cook Inlet-Western Gulf of Alaska January 1, 1977-March 31, 1977 # COOK INLET-WESTERN GULF OF ALASKA EARTHOUAKES | | D <u>PIGI</u> | TIME
SEC | | LONG W | <u>D</u> EPTH_
KM | MAG | NO | GAP
DEG | DM
KM | RMS
SEC | ERH
KM | ERZ
KM | 3 | |---|---------------------------------------|------------------------------------|--|--|--|---|-------------------------|---------------------------------|------------------------------|--------------------------------------|---|------------------------|---------------| | JAN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 20 13
21 5
22 6 | 39.7
12.9
23.6 | 60 37.7
59 37.8
60 25.2 | 151 37.6
153 19.0
152 45.1
155 14.7 | 9•5
5•0
5•0 | 2.4
2.8
1.6
3.2 | 5
4
3
3 | 231
306
142
310 | 37
38
50
136 | 1.67
0.29
0.
0.27 | 0.
0. | 109.4
0.
0. | $C \subset C$ | | | 22 27 | 4.9 | | 151 52.7 | | 2.3 | 3 | 194
321 | 29
42 | 0.01 | 0.
J. | 0. | C | | 2
2
2 | 1 5
7 21
10 46
13 53
16 4 | 37.3
9.2
33.8
1.3
42.3 | 58 53.8
60 17.2
59 59.2 | 152 41.4
152 54.5
151 57.4
155 30.8
150 39.0 | 60•7
5•0 | 2 • 3
2 • 7
1 • 8
2 • 1
3 • 2 | 4
3
4
12 | 288
238
311
135 | 57
47
138
67 | 0.13
0.03
2.14
0.73 | 0.
0.
0.
6.5 | 0.
0.
0.
22.0 | C
C
D | | 2
3
4 | 17 15
17 53
14 25
1 36 | 29.6
6.3
16.0
50.5 | 59 56.8
59 38.3
59 54.3 | 151 17.9
152 50.7
153 40.7
152 51.3
152 36.2 | 5•1
177•3 | 3.4
1.5
3.6
0. | 13
4
5
3
7 | 111
159
162
163
304 | 96
52
35
57
52 | 1.34
0.25
0.06
0. | | n • | C
33
5 | | 4 | 14.56
15.45 | 35.4
57.5 | 59 28.6
60 19.1
59 42.9 | 153 27.8
152 33.6
152 24.3
159 53.9
152 35.9 | 119*f
258*2
167*5
5*0
120*0 | 1.6
4.0
0.
3.1
2.1 | 4
17
16
5
4 | 199
32
91
323
185 | 17
42
23
282
48 | 0.
2.26
1.28
13.93 | 25.7
3.4 | | | | . 5
. 6 | 6 43
15 37
2 32 | 27.1
55.5
42.5 | 59 32.2
60 0.3 | 151 58.6
153 6.3
151 46.2
152 51.5
154 8.8 | 5•0
106•9
5•0
#•0
21•9 | 0.8
2.3
1.2
3.
2.3 | 3
6
3
4 | 227
38
241
111
284 | 71
14
70
64
53 | 0.
0.18
0.01
1.69 | 0 • · · · · · · · · · · · · · · · · · · | 0.
4.4
5.
0. | , | | 6
6
6 | 14 27
15 24 | 35.7
42.5 | 58_43.7
60_16.5
61_51.1
60_14.6 | 153 28.9
152 19.6
151 6.8
152 10.8
153 15.6 | 5.0
5.0
5.0
4.0
174.4
5.0 | 2.5
2.4
2.2
3.4
1.8 | 9
5
4
16
7 | 177
208
332
38
153 | 66
20
192
39 | 1.87
2.40
0.38
4.14
3.17 | 70.
47.4
17.4 | * **** • **
 | | | 7
7
7 | 12 59
15 32
1 <u>4 52</u> | 25.9
35.7
0.9 | 50 55.2
59 46.7
58 46.0 | 153 58.2
150 40.9
152 28.7
154 9.0
152 3.7 | 97•1
16•1 | 2.3
2.6
2.0
2.0
2.2 | 11
4
5
6
4 | 128 | 129
44
37 | 0.19
0.45
0.05
0.16
0.45 | 2 • · · · · · · · · · · · · · · · · · · | 5.5
4.7 | | | 7 7 7 | 1° 44
27 19 | 29.7
54.4
1.1 | 60 1.2
59 55.5
59 34.7 | 154 1.6
152 47.7
150 2.9
152 45.2
153 32.9 | 3.6
63.4
5.5
7.6
124.3 | 1 • 2
1 • 6
1 • 9
-1 • -1 | 4 4 3 3 4 | 236
120
310
534
179 | 44
100
90
24 | | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | C •
* •
• | C · · | | 8
8
 | 9 57
9 46 | 31.3 | 59 23.4
59 24.1 | 152 49.1
157 25.9
152 26.2
153 29.3
157 42.3 | 5 • 3 | 1.3
2.9
0.1
1.2
3.9 | 5
8
4
7 | 139
304
204
149
324 | 20
223
49
57
343 | 0.62
3.65
1.33
0.23 | 0.
13.4 | | 1 | # COOK IMET-WESTERN GULF OF ALASKA EARTHOUAKES | 1977 | OPIGI: | TIME | | LONG W
DEG MIN | DEPTH
KM | MAG_ | МО | GAP
DEG | DM
KM | RMS
SEC | FRH
KM | ERZ
KM | o | |----------------|--|--------------------------------------|---|--|--|---------------------------------|------------------------|---------------------------------|-------------------------------|---------------------------------------|----------------------------|---|-------------| | 9 | 19 28
3 53
10 42
13 10 | 16.1
24.2
23.7
36.7 | 59 55.5
60 14.2 | 151 1.1
153 20.2
153 11.1
152 9.0 | 40 • 4
145 • 9
139 • 9
63 • 4 | 2.9
3.3
2.4
2.4 | 7
16
8
6 | 320
66
102
143 | 143
50
30
31 | 0.54
0.29
0.21
0.27 | 113.5
2.2
3.5
6.8 | 828.2
3.6
7.0
13.9 | ris
C | | | 14 24 | 50.9 | | 153 33.9 | 96•2 | 0. | 5 | 128 | 38 | 0.42 | 12.6 | 34.7 | | | 10
10 | 1 8
4 12
10 17
10 25 | 20.0
37.4
31.5
37.6 | 59 41.5
59 14.8 | 154 52.5
152 40.7
153 48.7
152 51.8 | 322.3
5.0
136.5
115.4 | 4.3
0.
2.6
1.9 | 4
4
13
6 | 315
177
70
115 | 186
58
24
42 | 1.52
0.40
0.18
0.22 | 0.
0.
1.9
5.4 | 0.
0.
3.0
8.9 | ;
, | | | 12 46 | 13.1 | 58 59.4 | 153 15.2 | 5 • C | 0.7 | 6 | 205 | 66 | 4.89 | | 463.2 | | | 10
10 | 1º 53
21 8
27 51
4 22
9 8 | 3.6
50.2
45.2
7.4
22.8 | 59 33.4
60 19.3
57 52.0
53 52.8
59 37.2 | 151 57.9
151 59.2
151 41.3
153 46.0
149 20.8 | 11.6
49.3
5.0
171.5
2.5 | 0.9
1.8
1.9
2.2
3.0 | 5
6
8
7
11 | 86°
241
253
126
286 | 21
44
49
27
127 | 0.11 | 75.5 | 467.5
100.6
175.4
10.7
59.1 | う
こ
こ | | 11
11 | 14 0
17 30
19 27
20 20
20 36 | 21.9
41.1
54.7
27.7
45.6 | 57 39.5
59 25.7
59 12.0
59 55.4
59 2.9 | 152 22.0
152 45.6
153 44.8
152 48.5
151 40.8 | 35.2
5.0
110.4
1.5
53.2 | 1.9
0.
2.4
9.
2.0 | 6
4
10
5
4 | 301
220
32
112
196 | 12
67
23
55
60 | 0.17
0.37
0.24
0.77 | 5.4
C.
2.7
4.2 | 2.1
0.
5.3
34.5 |)
} | | 12
12
12 | 0 30
2 30
11 22
14 44
15 25 | 3.0
29.8
24.3
53.7 | | 151 19.7
152 10.5
151 55.9
153 15.5
149 47.7 | 37.2
5.0
55.1
87.1
1.3 | 2.3
0.
2.2
1.3
2.2 | 6
3
9
5
6 | 287
244
171
173
295 | 152
33
39
58
104 | 0.44
11.29
0.17
0.11
2.06 | 0 •
3 • 7
• • 1 |
756.3
0.
7.5
2.5
154.1 | | | 12
12
12 | 19 1
20 3
21 15
22 56
5 27 | 5.5
38.9 | 60 C.8
62 7.9
59 49.7
59 25.0
62 40.5 | 152 38.2
145 5.1
151 42.0
149 41.0
151 47.1 | 127 • 1
35 • 7
96 • 9
10 • 1
5 • 0 | 2.8
3.4
1.0
2.1
3.1 | 18
4
4
4
9 | 67
341
211
335
309 | 45
454
17
174
254 | 0.30
3.11
0.
0.16 | 2.0
0.
0.
0. | 3.0 | | | 13
13 | 4 54
12 51
14 46 | 31.0
47.3
2.8 | 61 56.8
58 20.7
59 37.7 | 155 33.6
151 9.9
156 40.4
150 53.5
145 51.6 | 207•2
54•4 | | 11
13
11
4 | | | 0.45 | 3 • /
2 8 • 1
0 • | 147.6
454.7
27.8
0.
71.0 | | | 14
14
15 | 6 26
11 50
17 20 | 17.9
3.8
56.5 | 59 43.8
59 17.3
53 44.2 | 152 47.7
152 9.7
152 21.8
155 6.0
150 27.9 | | 2 • 2
2 • 2
1 • 9 | 6 | 164
124
153
244
122 | 11/1
6/4 | 0.05
0.05
0.14
1.11 | * • | 0.
0.
743. | | | 16
16
16 | 7 44
~ 41
? 3 | 50.0
3.8
<u>46.4</u> | 50 51.0
59 13.1
52 45.1 | 150 22.2
151 12.0
152 12.7
149 28.8
151 30.0 | 34.4
5.0
95.8
35.3
94.4 | | 5
10 | 255
337
254
147
263 | 7"
45 | 0.35 | 47.0
16.0
3.7 | 25.0
498.4
22.7
492.0 |) | # COOK INLET-WESTERN GULF OF ALASKA EARTHOUAKES | | 02161 | . 71/15 | 1 5 7 31 | Lane u | 0.00 Tu | 44.5 | | | • • • | . | | | | |--------|--------|----------------|----------------|-----------|---------|-------------|----|------------|------------------|----------------|--------------|----------------|----------| | 1977 | HR MN | 5EC | | DEC MIN | | <u>M</u> AG | NO | GAP
DEG | DI: | RM5
SEC | FRH
KM | ERZ
KM |) | | JAN_16 | 12 38 | 5.5 | 59 50-1 | 152_33•1 | 177.1 | 0. | 4 | 152 | 54 | 0.03 | 0. | 0. | C | | | 21 7 | 47.5 | 59 59.6 | 152 1.8 | | 2.6 | 8 | 191 | 43 | 0.10 | 1.9 | 3.1 | | | | 23 21 | 43.5 | 60 15.5 | 153 15.5 | | 0. | 4 | 178 | 32 | 0.30 | 0. | 0. | Ċ | | | 15 42 | 20.7 | | 154 28.7 | | 0. | 4 | 255 | 13 | 0. | 0. | 0. | Ċ | | 18 | 1 7 | | 60 11.7 | 152 4.7 | | 0. | 3 | 218 | 45 | 0.02 | Ö •. | | | | | | | | | | | _ | 4.0 | , , | 0 • , | 0 • . | . • | | | | | | | 152 26.2 | | 2.0 | 6 | 218 | 50 | 0.23 | 13.5 | 22.9 |) | | | 11 58 | 59.4 | | 152 59.1 | | 2 • 6 | 10 | 221 | . 4 8 | 0.18 | 4.6 | 6.9 | Э | | | 13 2 | 0.1 | 59 22.5 | 152 26.3 | | 1.9 | 3 | 232 | 54 | 0.01 | 0. | 0. | C | | | 13 40 | | | 152 33.8 | | 2 • 2 | 6 | 223 | 55 | 0.14 | 5 | 9.2 | ``) | | 18 | 17 54 | 4.3 | 59 44.0 | 152 49.8 | 91 • 2 | 2.2 | 7 | 169 | 24 | 0.18 | 3.5 | 6.9 | C | | 18 | 21 47 | 35.7 | <u>59 60.0</u> | 152_39.7 | 113.2 | 3.2 | 18 | 68 | 50 | 0.27 | 1.7 | 2.9 | . 3 | | 19 | 7 36 | 37.9 | 62 13.8 | 149 19.1 | 30•1 | 3.4 | 19 | 77 | 70 | 1.48 | 8.9 | 8.0 | | | | 7 45 | 44.7 | 59 44.8 | 151 51.7 | 83.9 | 2.7 | 7 | 208 | 15 | 0.22 | 7.5 | 10.9 | | | 19 | | | | _150 10.8 | 35.4 | 3 • 1 | 10 | 237 | 123 | 0.24 | 11.1 | 308 . 3 | | | 19 | 14 34 | 27.8 | 59 48.7 | 152 30.1 | 93.5 | 1.9 | 7 | 190 | 44 | 0.12 | 2.9 | 6.6 | | | 19 | 19 16 | 5.9 | 60 4.7 | 148 38.0 | 6 • 5 | 3 • 1 | 16 | 101 | 139 | 0.88 | 4.4 | 16.5 | | | | 21 2 | 44.9 | 59 21.1 | 151 37.5 | | 1.8 | 4 | 279 | 13 | 0.28 | 0. | 0. | | | 20 | 11 22 | 12.6 | 57 55.3 | 154 32.8 | 5.0 | 2.2 | 3 | 267 | | 12.70 | Ö. | | Š | | . 20 | 12,54 | 52.7 | 58 52.0 | 154 31.1 | | 2.5 | 5 | 187 | 31 | 0.04 | 2 • 4. | 4 - | | | 20 | 13 23 | 21.7 | 59 44.2 | 152 48.0 | 5 • 0 | 0. | 3 | 174 | 65 | 0. | 0. | ō. | 0 | | 20 | 22 4 | 35.4 | 59 22.0 | 152 15.3 | 137.6 | 1.9 | 4 | 227 | 4,1 | 0. | 0. | 0 | _ | | | 0 59 | | 52 0.1 | 153 9.4 | 32 • 1 | 3.1 | 9 | 143 | 164 | 8.70 | | . C
4∤4.4 | | | | 1 3 | 54.1 | 59 36.7 | 152 52.8 | 103.0 | 2.5 | 5 | 149 | 20 | 0.20 | 7.4 | 14.2 | | | | 2 30 | | 60 45 5 | 150 4.6 | 13.7 | 2.6 | 4 | 322 | 154 | 0.01 | 0. | 17•6
0• | | | | 11 4 | 13.6 | 59 30.4 | 152 36.8 | 5.0 | 1.2 | 3 | 201 | 33 | 0. | ő. | | ć. | | 21 | 11 17 | 57.6 | 59 47.8 | 153 7.6 | 134.7 | 2.0 | 4 | 174 | 1.7 | ^ | - | | | | | | | | 153 30.0 | | 2.7 | 9 | 127 | 17
15 | 0∙
0•14 | 0.
2. | | • | | | 4. 15 | | 50 6.9 | 158 44.6 | 119+1 | 2.8 | 9 | 195 | E _{CSC} | 0.17 | • | 4.5 | , | | | | | - | 152 59.2 | | 1.7 | ລ | 14.5 | 1.4 | 0.31 | ۲, | 77 . € | | | | 7 34 | 7.6 | 50 0.4 | 153 30.5 | 180.1 | 5.0 | 5 | 256 | 4.) | 0.11 | 21.5 | 47.1 | | | | | | | | 1.0741 | | - | | * ',' | / 4 [] | 210. | ** 1 • ; | | | | | | | 152 45.0 | 5•0 | 1.9 | 3 | 234 | 24 | 0.06 | 0. | 0. | <u>-</u> | | | | | | 152 14.1 | 5 • € | ე. | 3 | 175 | 3.3 | Դ• | 2. | Ç. | | | | 1 56 | | 59 33.8 | 153 1.8 | 104.0 | 3.2 | c | 131 | 1.5 | 0.15 | | 6.4 | | | | 16 43 | _ | →/ -1.3 | 152 55.8 | | 1.5 | | | | 13 * 3 € | ` • | ÷. | | | 24 | 11 / | 7.2 | 59 10.1 | 147 12.2 | 43 • 2 | 2.4 | 4 | 344 | 251 | 0.15 | 3. | C • | C | | 24 | 11, 26 | 46.5 | 59 43.5 | 152 47.4 | 107.0 | 2.0 | 5 | 117 | 20 | 2.17 | 4 . | 12.1 | | | 24 | 10 13 | 25.2 | 59 2.7 | 152 67.5 | 5.0 | | | 137 | 1.1 | 5.41 | | n. | | | | | 5 • 1 | 60 26.5 | 153 18.4 | 187.4 | 2.7 | | 1 45 24 | | 5.34 | 5 | | | | | | | | 154 51.7 | 1500 | | 10 | 205 | | | 4. · | | | | 25 | G 57 | 53.4 | 59 44.0 | 153 5.5 | 103+0 | 2.3 | 11 | d 3 | 1.1 | 0.27 | 2 • 1 | | | | 25 | 14_35 | _3 <u>5</u> .5 | 59 43.1 | 153 0.2 | 5.0 | 0. | 3 | 260 | 70 | n.n.a | | | | | | | | 52 31.0 | | 5.6 | | | 80 | 42.0 | 16.09 | C., | 16. | | | 25 | 17 12 | 19.9 | 51 3.9 | 149 57.1 | 35.4 | | | 141 | | | | 3.9 | | | 26_ | 3.49 | 24.7 | 58 16.3 | 151 22.8 | 27.9 | | 7 | 233 | | 0.36 | | | | | - 26 | 4 56 | 5:)•7 | 57 9.9 | 152 31.8 | 7.5 | 2.6 | 6 | 121 | | 0.46 | | 801.5 | | | COOK 1 | NLET-WESTERN | GULE OF | ALASKA | FARTHOUAKES | |--------|--------------|---------|--------|-------------| | T | <u>0</u> p) | IGI: | TIME | Ļ | AT N | l.o | NG W | DEPTH | MAG | NO | GAP | DМ | RMS | ERH | ERZ | a | |--------------|-------------|--------------|---|------|-------------|-------|--------|--------------|------------|-----|-----|--------------|----------|---------------|------------------------|------------| | 1977 | | MN | SEC | D.F. | G MIN | | MIN | | | – | DEG | KM | SEĆ | KM | KM | | | JAN_26 | | | | 50 | _11.6_ | _154 | 26.7 | | | | 211 | 120 | 0.03 | • = | 0. | | | | 21 | | 47.0 | | 26.3 | | | _ | 2 • 8 | 14 | 83 | 4.3 | 4.40 | 30.9 | 106.8 | <i>i</i>) | | | n | | 31.8 | | 26.9 | | | 34∙3 | 2.3 | 4 | 188 | 73 | 0. | i) • | (• | C | | 27 | | 6_ | <u> 52.9</u> | | | | | <u>194•0</u> | | . 9 | 246 | 126 | 3.91 | 112.5 | 141.0 | •) | | 27 | 5 | 58 | 27.2 | 58 | 5.4 | 151 | 36.4 | 19.7 | 2•1 | 5 | 233 | 6.4 | 0.02 | 12.8 | 6.8 | Э | | | | | | | 18.4 | | | 5.0. | 2.3 | 4 | 171 | 73 | 0.21 | 0. | 0. | C | | 27 | 18 | 31 | 36+2 | | 25.8 | | | 5 • C | 0. | 3 | 232 | 77 | 0.14 | Ð. | () • | C | | | 2] | | 11.7 | | | | 2.0 | 116+1 | 2.6 | 5 | 231 | 78 | 0.24 | 53.9 | ₹0.5 | 3 | | 27 | 23 | _1.7 | <u> </u> | | | | | 5 • <u>0</u> | 0. | 3 | 184 | 7.2 | 0.02 | つ. | O • | C | | 28 | 0 | 25 | 53.9 | 59 | 10.3 | 150 | 58.0 | 36.9 | 2.7 | 8 | 245 | 49 | 0.18 | 7 • € | 3 - 1 | Э | | 28 | 2_ | 12_ | 5.•5 | 59 | 27.2 | 152 | 18.4 | 80•7 | 2.7 | 7 | 121 | 41 | 0.32 | 5.7 | 10.1 | C | | 28 | 11 | 30 | 47.8 | 60 | 37.1 | 153 | 29.6 | 4.5 | 0. | 4 | 270 | 45 | 21.14 | O . | 0. | ٦) | | 28 | 11 | 45 | 27.5 | 59 | 56.2 | 152 | 56.7 | 5.0 | つ・ | 3 | 246 | 54 | 0.41 | 0. | .). | Э | | 28 | 13 | 31_ | 7.4 | 53 | 32.1 | _152 | 44.9 | 8# • # | 2.3 | 6 | 137 | 5.8 | 0.09 | 2.0 | 6.4 | 2 | | 28 | 14 | 18 | 41.9 | 59 | 53.4 | 153 | 31.2 | 160.5 | 3•2 | 11 | 75 | 40 | 0.29 | 3.5 | 6.5 | 3 | | | 2.3_ | _7_ | <u>0,2</u> | 57. | _22.2. | _153 | 50.7 | 34.5 | 3.7 | 10 | 273 | 37 | 0.25 | ∃•6 | 2.7 |) | | | | 19 | | | 49.7 | | | 5 • 3 | 0. | 3 | 254 | 67 | 7.50 | 13.4 | | .^ | | 29 | 8 | 11 | 11.7 | 59 | 43.9 | 151 | 38.6 | 127.0 | 0. | 4 | 212 | 7 | · • | - N. | .°. | £ | | 29 | В | 48 | 27.8 | 5.9 | 42.0 | 152 | 52.3 | 5.0 | 0. | 3 | 253 | 69 | 0.09 | a. | 0. | | | 29 | | | 14.9 | | | | 37.4 | 26.7 | 3.5 | 15 | 81 | 180 | 0.56 | 3.3 | :: ^{6, 7} • 3 | | | 29 | ۵ | 43 | 4.7 | 60 | 9.4 | 152 | 10.1 | 3.0 | э. | 4 | 201 | 4,4 | 0.53 | 0. | e. | | | | | 3 | | | | | 18.7 | 241.5 | 0. | 4 | 230 | | - | - | V.•
D.• | | | | | | 41.1 | | | | 53.1 | 54.3 | 2.5 | | 160 | 2.7 | | 0.
4.1 | | | | | | | 44.5 | | | | 20.9 | - | | 10 | 150 | ⊃ ∠
••••) | , 35; | | | | | | | | 7.∷•_/
6•8 | | | | | 37.3 | 3.0 | | - | | | 177.5 | 4 | | | 30 | 2 | 11 | ù • a | -1.9 | 20.5 | 151 | 42.1 | 9•3 | 2.2 | 4 | 244 | 16 | 0.19 | ι). | 3. | ,- | | 3.0 | 2_ | 17_ | 41.6 | 50 | 1.7 | 152 | 35.9 | 4 . 5 | 0. | 4 | 140 | 44 | 0.44 | 0. | ∽ • | 13 | | 30 | 12 | 41 | 42.7 | 5.5 | 28.1 | 150 | 52.4 | 34.5 | 1.9 | 4 | 250 | 119 | 7 V | n . | | | | 30 | 13 | 33 | 12.8 | 59 | 41.0 | 152 | 32.3 | 5.0 | O. | 3 | 237 | 6.9 | 0.32 | .7 🐞 | α_{ullet} | 1 | | 30 | 13 | 36 | 11.7 | 50 | 3.1 | | | 24.4 | 3.1 | 7 | 250 | 45 | 7 7 4 | | 4.4 | | | 30 | 18 | 57 | 5?•3 | 5.9 | 44.4 | 151 | 51.0 | 11 4.5 | ೧ • | 4 | 162 | 14 | ^. | • | - N. | | | 30 | 10 | 35 | 44_7 | 57 | 47.7 | 152 | 35-6 | 40.7 | 2 • 3 | 7 | 237 | מר | 7.43 | 12.3 | 4.7 | • | | 30 | 23 | 4 | 33.7 | 50 | 54 <u>1</u> | 152 | 48-1 | 5 • 3 | 1.8 | 5 | 111 | | 2 . A . | | | | | 31 | | 21 | 34.2 | 6.1 | 34.8 | 151 | 6.4. 3 | 2 • 1 | 2.3 | ŕ | | 137 | | | 1 ~ 1 | | | 31 | | | | 53 | 37.7 | 165 | 42.6 | 5.0 | ō. ´ | • | 252 | | 2.12 | · ; ; • | | | | 31 | Ģ | 53 | 53.6 | 5 9 | 37.3 | | 23.1 | 5.0 | ō. | 3 | | | 3.37 | d. | | | | <u>3</u> 1 . | 11 | 32 | 43.6 | 59 | 51.2 | 152 | 44.0 | 5.40 | 1.9 | 4 | 144 | 4.3 | 7 . F. 4 | 3. |) . | `` | | | | | | | | | | 7.9 | | | 113 | | 1 | | 4.4 | | | | | | 44.5 | | 10.7 | | | | 3.1 | 9 | 193 | | | | | | | 31 | | | | | | | | 130.1 | 3.1 | 10 | 107 | | 7 | 3 | | | | | | 19 -
59 - | | รว | ?5•5
 | 152 | 39.4 | 730.5 | 0. | 4 | 213 | . 1 | · ' | | * • 1
• | | | | | | _ | | |
 | | | | | • | | | | | | EE51_ | | | | | - | | | 34.7 | 1 - 7 | 6 | 174 | | 2.05 | | | | | | | 32 | | | | | 33.9 | 4 • 1 | 0. | 5 | 142 | 4.5 | | | | | | | | | 47.5 | | | | 16.4 | 55.7 | 3.6 | 21 | 57 | 94 | 0.35 | $1 \bullet c$ | 7.9 | | | <u>1</u> _ | 12 | <u> </u> | . <u>4.5 • 3 </u> | . 40 | (·4 | 152 | 36,•9 | <u>5</u> • Ω | | 4 | 136 | 46 | 0.45 | | 0 • | | | l | 15 | 59 | 49.3 | 59 | 55.4 | . 153 | 1.2 | 5+3 | 0. | 3 | 252 | 56 | 0.58 | 0. | 0. | Э | | | <u></u> | | ······································ | | <u> 2K_111</u> | <u> </u> | ESTERN | GULF OF | <u>AL</u> AS | ΚΛ Ε | AR,THQ | UŅKES | S | - | | | |---------|----------|------------|--|------------|--------------------|------------|------------------|------------------|--------------|----------|------------|------------|---|----------------|-------------|----| | | 02 | 161 | n TIME | | l At n | 1 | ONG W. | <u>DEPTH</u> | мас | NO | ć A D | DM | 245 | **** | | _ | | 1977 | Ηp | MN | SEC | ס | EG MI | N DF | G MIN | KM | | | DEG | | RMS
SEC | ERH
KM | ERZ
KM | (1 | | _FEBI | _19 | 43 | 42.6 | 5. | 2_58.0 | 015 | 1_11.2 | 33•0 | . 3.6 | 22 | 57 | 141 | 0.82 | 3.6 | 906.1 | D | | 2 | 5 | 36 | 12.0 | 5 | 9 53.6 | 5 15 | 3 16.1 | 156.7 | 3.2 | | 81 | 54 | | | | | | | 7 | 17 | 35.8
12.1 | | 5 57 . 4 | 4 15. | 2 34.5 | 33.4 | 1.8 | | 332 | 88 | | 12.1 | | | | | 7 | | 22.3 | | 5 3 • 6 | :12;
5 | 2 18.9 | 5•0
29•6 | 3.3 | 12
11 | 305
306 | 184
188 | | | 19.8 | | | | | | | | | | | | 3. | 11 | 300 | 100 | 0.47 | 35 • 7 | 589.7 | Э | | | <u>7</u> | | 5.7 | 5 | 9 23. 3 | 315 | 2 45.3
2 46.8 | | 2.0 | 6 | 83 | 38 | | 31+3 | 64.8 | 9 | | | 15 | | 36.2 | | | | 3 42.4 | 80∙1
37•ი | 0.
2.7 | 4 | 135 | 18 | - | 0. | 0. | | | 2 | 15. | 40 | 52,5 | <u> </u> | 3.31.2 | 154 | 28.9 | 11.1 | 1.9 | 17
10 | 140
118 | 35
66 | | 37.9
2.7 | | | | 2 | 18 | 47 | 17.5 | | 3.3 | | 36.4 | 190.9 | 2.5 | 8 | 156 | 36 | | 8.9 | | | | 2 | .21. | 41 | 20.2 | 51 | 52.6 | 147 | 7 46.6 | 29.0 | 3.7 | 16 | 142 | 78 | 0.22 | 1 • 4 | 1.1 | _ | | 3 | 7 | 22 | 57.7 | 5 3 | 36.2 | 153 | 49.4 | 59.7 | 2.3 | 12 | 127 | | | 18.5 | | | | 3 | 10 | 32 | 17.0 | 5.5 | 0-1 | 153 | 39.2 | 11.9 | 2.0 | 12 | 71 | 33 | | | 495.8 | | | 3 | 4.7 | 18 | 24.0 | <u>2</u> 5 | 1U.∙3
8 • 7 | 152
153 | 18.6 | 93.5
165.5 | 0.
3.2 | 4
9 | 144
170 | 73
55 | 0.15 | C. | - | | | | - | 1./ | 10 (| | | | | | | , | 110 | ,, | 0.27 | 4.3 | 8.0 | ر | | | | | 13.4
57.6 | | 46.5
39.6 | | 3.1 | 5•0 | 0. | 3 | 241 | 31 | 0.42 | 0. | • € | | | | 9 | | 17.5 | | 1.0 | | 0.1
47.2 | 5 • 0
145 • 5 | 1.9
0. | 3
4 | 178
219 | 52
40 | - 0.01 | 0. | 0. | | | 4_ | | | | | | . 153 | 1.0 | 382.5 | 4.0 | 3 | 132 | 40 | 1•16
5-13 | . 0.∎
155 5 | 0.
237.5 | , | | 4 | 15 | 12 | 57.5 | 51 | 12.7 | 154 | 38.1 | 35•₽ | 3.1 | 10 | 165 | 134 | 3.96 | | 107.2 | | | 4 | 16 | 50 | 3 • 1 | | 1.3 | | 5.5 | 30.∈ | 3.9 | 7 | 289 | 395 | 2.82 | 222.2 | 309.4 | ~ | | | | | 37.0 | | 42.7 | | 53.9 | 103.7 | 3.9 | 9 | 295 | 345 | 5.04 | 197.4 | 2.3 | , | | 5 | 10 | | 44.7 | | 55.1
32.7 | | 26.4
58.0 | 35•0 | 2.0 | 4 | 123 | 16 | 0.49 | | r . | | | 5 | 22 | 5 | 57. | | 10.4 | | 44.2 | #.^
40.∎3 | 2.4
0. | 7
5 | 74
276 | 75
59 | 1.02
0.19 | | 2047.7 | | | | | , | | | | | | | | , | r 1 (3 |) 5 | V • 1 ° | 15. | 3 • 2 | | | | ·!:
* | | 42.4 | | 30.9
24.7 | | ε.3
2.7 | 109.9 | 2.9 | 11 | 76 | 20 | 0.23 | 2.5 | 3.5 | | | | 12 | | 45.0 | | 13.4 | | 29.1 | 17•4
5•0 | 0. | 4
4 | 179
200 | 27
53 | 0.42
0.21 | | _ | | | | | | 57.1 | | 1.7 | | 49.0 | 5.0 | ö. | 3 | 233 | 43 | | .t∎
D∎ | ै∙
^• | | | 8 | 16 | 17 | 54.9 | 65 | 22.3 | 162 | 53.8 | 5•0 | 3.4 | 3 | 310 | | 13.71 | 0 | • | | | 9 . | .1 | 39 | 59.4 | 59 | 55.5 | 153 | 0.3 | 5•0 | 0. | 3 | 251 | 54. | 0.64 | | • | | | 9 | 2 | 33 | 27.7 | 2)4 | -3° • 1 | 10.5 | 9.7 | 5.5 | ō. | 3 | 234 | 93 | 7.0 | 0. | . | | | | | | 53+2 | 59 | 25.7 | 153 | 39.5 | 2 • 0 | J• | 3 | 297 | 117 | 7.71 | . • | | - | | 9 | 15 | .⊅ I | <u>27</u> •0
57•3 | | 39.5 | | 57.3
47.0 | 5.0 | 1 • 4 | | 137 | dia r | `• | · * • | • | | | | | | | | - | | | 5 • 0 | J. | 3 | 253 | 1,4 | 0.02 | U. | `• | • | | 9
10 | | | | | | | | 5.0 | 1.7 | 7 | 143 | 4, 5 | 7. | 31. | 71.4 | | | 10 | | | 10.1 | | 41.9
27.3 | 152
153 | | ÷ ^ | 2.6 | | 190 | | . Jii | 5 h • 2 | | | | 10 | | | | | 21.5 | 152 | | ي • (ي
پ • ي | 1.6.
0. | 3
3 | 171
275 | ₹.
%,* |) • \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | • | | | 10 | | | | | 17.3 | | 49.5 | 12-1 | 2.9 | .:
9 | 12 | 1.4 | 3 | | • | | | 10 | | | | | | 152 | 47.1 | 5.0 | 0. | 3 | .1.1.7 | £ 4, | a e | r. | | | | 11 | 4 4 | 45 | 25.5 | | 19.7 | 152 | 2.4 | 3.7 | ĵ. | 4 | 200 | 2.5 |), ((| • | | | | 1 I | 12 8 | 2()
2.6 | 57.7 | 50 | 55.3 | 153 | | 5•0 | 9. | 3 | 252 | E. 6, | 0.50 | 0. | O . | Y | | 11 | | - | 3.4 | | | 153
147 | | 5 • O | 1.5 | | 152 | 10) | | 0. | C . : |) | | | | | 🕶 . | J. | * • 0 | A 7 1 | | 2+5 | ð. | 14 | 141 | 124 | 14.33 | (In•C | 327 • i` . | .) | | | | | | | | | | | | | | | | | | | # COOK INLET-WESTERN GULF OF ALASKA EARTHOUAKES | 1977 | OPIG! | UI TIME | LAT
DEG N | <u>N</u> | LQ110 | G_W_
MIN | <u>DEP</u> TH
KM | MAG | NO | GAP | DM
KM | RMS
SEC | FRH
KM | FRZ
KM | ၁ | |--------|-------------------|---------------|--------------|----------------|-------|------------------|---------------------|-------|--------|------------|-----------|-------------------------------|------------|-------------|--------------| | EEB_12 | 0.46 | 55.9 | 59 13 | 3 . 2 | [15] | 43.6 | , 55•3. | 0. | 7 | 192 | 20 | 0.17 | 4.0 | 6.4 | | | 12 | | | | | 152 | | 87.4 | 2.9 | 9 | 84 | 25 | 0.17 | 1.9 | 3 • 3 | | | 12 | | | 59 26 | | 152 | | 80.49 | 0. | 5 | 119 | 72 | 0.19 | 4.5 | 25.5 | | | _12 | | | 59 58 | 3.0 | 152. | | 3 • 2 | . 0. | 5 | 140 | 50 | 0.41 | 8 • = | 83.2 | | | 12 | | | 50 21 | ١.٠٥ | 152 | 22.5 | 121•9 | 2.9 | 9 | 217 | 23 | 0.41 | 8.3 | 11.1 | \mathbf{O} | | 12 | 7 66 | 43.7 | 53 20 | 1.9 | 152 | 32.2 | 67.5 | 2.3 | 7 | 96 | 46 | 0.17 | 2.1 | 4.5 | '३ | | | 14 3 | | | / • (
 • 1 | 155 | 43.0 | 74.06 | 2.4 | | 183 | 5.3 | 0.15 | 2 • € | 3 • 1 | () | | | 14 35 | | 58 38 | | 156 | | 1-1 | 2.3 | 8 | 298 | 9 | 72.56 | 158.7 | 293.3 | O | | | 1 5 | | | | 152 | | 91.4 | 2.5 | 7 | 97 | 46 | 0.17 | 2.7 | 5.4 | C | | | 15 (| | | | 152 | | 5.0 | 0. | 3 | 247 | 63 | 0.02 | 0. | 0. | C | | 13 | 15_45 | 5 55.6 | 59_36 | 5 • 8_ | 152 | 36.3 | 5•0 | | 3 | 249 | 54 | 0.08 | 0. | 0. | | | | 17 3 | | 59 21 | 1.2 | 154 | 2.4 | 5.0 | 1.8 | 3 | 230 | 126 | 0. | 0. | 0. | | | 13 | 18 30 | 35.5 | | | 152 | | 5 • 0 | 0. | 4 | 194 | 33 | 0.59 | 0. | 0. | | | 13 | <u>20 34</u> | <u>457•1_</u> | | | 1.53 | | , 5•∩ | 1 • 8 | - 6 | 139 | 78 | 1.32 | | 279.8 | | | 13 | 23 4 | 37.7 | 63 17 | 2.7 | 150 | 30.8 | 136•6 | 3.6 | 20 | 65 | 97 | 0.35 | 1.9 | 5.3 | ., | | 14 | . 5 30 | 39.1 | 58 16 | 5.0 | 152 | 23.2 | 34.1 | 2.5 | 5 | 224 | 50 | 0.29 | 15.2 | 12.6 |) | | | 13 2 | | 59 49 | | 153 | | 5.0 | 0. | 3 | 256 | 60 | 9.55 | O • | O. | | | | 19 2 | | 59 4 | | 151 | | 2.5 | 2.7 | 8 | 250 | 22 | 48.32 | 317.0 | | | | 14 | 20 3 | 5 23.2 | | 3.1 | 152 | 35.7 | 5 • 0 | 0 • | 3 | 255 | 55 | 0. | | | | | 14 | 22 4 | 5 25.0 | | | 152 | | 5•0 | 0• | 3 | 242 | 61 | 0.16 | 0• | 0. | C | | 1/ | 10.15 | 5 _ 35•9 | 59 28 | a 4. | 151 | 56.5 | 5.0 | 0. | 3 | 246 | 20 | 0.01 | 0. | Q. | \subseteq | | | 4 1 | | 59 6 | | 153 | | 132.3 | 2.6 | 8 | 104 | 54 | 0.00 | 5.7 | 11.9 | | | | 4 2 | | 60 | | 155 | | 5.0 | o. | 3 | 327 | 141 | ٠. | €2. | 0. | | | | 6.5 | | 59 4 | | _ | 45.3 | 5.0 | 0. | 3 | 247 | 63 | 0.12 | 0 • | $C \bullet$ | | | 15 | | | 59 (| | | 49.8 | 5.0 | 1.9 | 3 | 223 | 21 | 0.01 | • 0 | 0. | C | | | | | | | | | | | | | 2.2 | | 0. | o. | | | | 11 2 | | 59 ! | | | 48.0 | 20•2 | 2 • 2 | 4 | 224
304 | 27
176 | ე•ა.
ე• | | 47.E | | | | 11 4 | | 53 5 | | | 42.5 | 5.0 | 3.8 | ? | 144 | 41 | 0.5 | 0 | 3 | | | | 14 1 | | 59 3 | | 152 | | 10.3 | | 4
4 | 32.2 | 250 | 1.0 | 0. | ÷. | | | | 15 | | 57.2 | | - | 30.7 | 116.5 | 3.0 | 5 | 134 | 77 | 1.73 | | - 4.9°2 | | | 15 | 19 3 | 9 15.0 | 59 3 | 3•6 | 152 | <u>1</u> , A • Ω | 4.0 | 2.6 | י | 1 , | . , | | | | | | 16 | 4 2 | 3 13.5 | 56 1 | 8.5 | 151 | 7.4 | 2 • 5 | | 4 | | 363 | | | | | | 16 | | | 59 4 | 9.5 | 154 | 2.5 | 52.∗7 | 2 • 5 | 6 | 1,45 | 3.7 | $\mathcal{Z} \bullet^{(x,p)}$ | | | | | 16 | 10 4 | 3 47.2 | 50 | | | 31.1 | 5 % 5 | 1.9 | 7 |] 4.2 | 4.4 | > 1.7 | .7.•1 | | , | | 16 | 11 3 | 3 40.5 | 59 | 6.S | 154 | 38.8 | 5 • ೧ | | | | | | :) • | | | | 16 | 20 2 | 2 37.0 | 58 5 | 3.7 | 154 | 26.4 | 124.5 | 2.7 | ´ 9 | 159 | 26 | ., • , . | 1.44 | ? • ° | | | 17 | 15 | 0 17.3 | 59.5 | 1.3 | 152 | 55.2 | 122.3 | 3 • 4 | 7 | 147 | 60 | 0.34 | () • = | 1 • 6 | - | | | 25 | | | | | | . = L. ·
∴ . · | 2.1 | 4 | 175 | 2 3 | 1.14 | , | n. | | | - | 16 | | | | | | 2.5 | 2.9 | 9 | 212 | 56 | 14. | 210.1 | 1 4 . 4 | | | 17 | 7 22 | 7 52-0 | 50 | 4.7 | 153 | 8.5 | 137 | 2.4 | 4 | 150 | 43 | ٠. | | € (7 | | | 19 | 3 17 3 | 5).5 | 60 1 | 1.8 | 151 | 55.0 | 79.4 | 3.8 | 15 | 110 | 53 | a. ~3 | 5 . € | •• 1 | | | 19 |) _{(*} 4 | 4 15.0 | 58 4 | 0.3 | 154 | 53.1 | 142.7 | 3.5 | 4 | 264 | 54 | | | .) • | ٠ | | | 13 5 | 6 34.1 | 5.3 | ā•3 | 153 | 6.3 | 5.0 | | 4 | 124 | 6.7 | | | ,• | | | 19 | 15 1 | 5 27.3 | 55 1 | 5.5 | 153 | | 7.9 | 2 • 9 | 4 | 313 | 505 | | | 0. | | | 20 | 22 | 3 4 • 4. | 60_1 | 4.4 | 151 | 41.2 | 104.7 | | 16 | 123 | 62 | | | | | | | 2 5 | | 59 4 | 9.7 | 152 | 49.5 | 83.5 | 3 • 4 | 13 | 89 | 59 | 2.34 | 16.2 | 27.0 | , <u>c</u> | # COOK INLET-WESTERN GULE OF ALASKA EARTHQUAKES | DRIGIT LIME | | | | | | | | | | | | | | | | | | |
---|-----|-------|------------|----------------|-----------------|--------------|----------------------|--------------|----------------|---|--------|-----|-------|--------|--------------------------|---------|---------|---------------| | ### ### 5EC OFG NIN OFG HIN KN DEG KN SCC KN KN KN FEEL 20. 4 34 16.6 59 10.3 151 10.9 32.6 0. 4 254 0.0 0.01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | | 05 | 161 | T 735 | r: : | 1 1 7 11 | | - N. | 0.C. T | | | | | | | | | | ### FEB_20_4 34 16.6 59 10.3 151 10.9 32.6 0. 4 254 60 0.01 0. 0. C 20 5 44 1.0 57 37.2 155 6.3 35.3 2.0 6 110 27 3.54 47.9 77.9 2 20 7 45 1.4 56 48.5 156 10.2 41.3 2.1 7 211 78 0.18 3.2 27.9 3 20 10.23 54.2 53.5 7.1 153 12.5 77.9 2.4 5 117 44 0.16 3.7 6.6 6 21 6 42 32.3 02 53.5 151 12.7 31.0 3.9 20 58 147 1.16 4.9 269.2 2 2 1 0.15 16.8 59.56.8 152.50.5 63.0 2.8 5 141 45 0.01 10.3 26.9 20 2 2 1 9 15 41.4 59 31.4 152 23.4 5.0 0.5 178 44 1.01 17.7 204.9 2 2 2 1 9 15 41.4 59 31.4 152 23.4 5.0 0.5 178 44 1.01 17.7 204.9 2 2 1 13 20 11.0 59 44.0 153 8.0 5.0 0.5 178 44 1.01 17.7 204.9 2 2 1 13 20 11.0 59 44.0 153 8.0 5.0 0.3 154 70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | | | | | | | | | | MAG | NO | GAP | DM | RMS | ERH | ERZ |) | | EEB. 20. 4 34 14.6 59 10.1 151 10.9 32.4 0. 4 254 60 0.01 0.0 0. 0. C 20 5 44 1.0 57 37.7 155 6.3 39.3 2.0 6 110 22 3.54 6 1.0 10. 27 3.54 6 1.0 27 3.54 6 1.0 57 37.7 155 6.3 39.3 2.0 6 110 22 3.54 6 1.0 18 4.7 270.3 5 20 10.28 54.7 53.57.1 153 16.5 10.2 41.3 2.1 7 211 78 0.18 4.7 270.3 5 20 10.28 54.7 53.57.1 153 12.5 77.0 2.4 5 117 44 0.16 3.7 6.6 5 21 64 2 32.3 62 53.5 151 12.7 31.0 3.9 20 58 147 1.14 4.0 270.2 20 20 21 13 15 40.4 59 31.4 152 23.4 50.0 0. 5 178 44 1.01 27.7 204.9 20.2 21 12 20 11.0 59 44.0 153 8.0 5.0 0. 5 178 44 1.01 27.7 204.9 5 21 13 20 11.0 59 44.0 153 8.0 5.0 0. 5 178 44 1.01 27.7 204.9 5 21 13 20 11.0 59 44.0 153 8.0 5.0 0. 5 178 44 1.01 27.7 204.9 5 21 13 20 11.0 59 44.0 153 8.0 5.0 0. 5 178 44 1.01 27.7 204.9 5 22 3 9 21.9 58 44.1 153 50.1 5.0 2.3 3 181 55 70 0. 0. 5 22 13 46 47.1 57 7.5 158 18.9 5.0 15.0 2.3 3 181 55 0.0 0. 5 22 13 40 5.4 5 9 42.6 153 11.9 10.9 2.4 6 186 57 2.61 85.1 131.0 5 22 12 13 15 5 5 5 7 32.1 153 20.1 5 5.0 2.3 3 181 55 0.0 0. 5 2.2 22 27 4.5 5 5 7 3.4 151 154 24.1 5.0 1.9 3 140 20 0.0 3 0.8 21.1 C 22 13 50 15.9 57 33.1 154 22.1 5.0 1.9 3 140 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 19 | " | Hi | . W.M | 5E | כ ח | EG MIN | DΕ | G MIN | KM. | | | DEG | K M | SEC | | | | | 20 5 44 140 57 37.2 155 6.3 39.3 2.0 6 110 22 2.4 6 7.0 77.9 77.9 2 20 7 45 1.4 95 48.5 156 10.2 41.3 2.1 7 211 78 0.14 1.2 279.3 5 20.10.28 54.2 93.57.1 153.12.5 77.0 2.4 5 117 44 0.16 3.7 4.6 0 21 64 2 32.3 62 53.5 151 12.7 31.0 3.9 20 58 147 1.14 4.9 2.69.2 0 21 32 0.15 16.8 59.56.8 152.50.5 63.0 2.8 5 141 45 0.01 0.1 0.1 0.3 C 21 9.15 40.4 59 31.4 152 23.4 5.0 0. 5 178 44 1.01 97.2 284.9 0 21 13 20 11.9 59 44.0 153 8.0 5.0 0. 5 178 44 1.01 97.2 284.9 0 21 13 20 11.9 59 44.0 153 8.0 5.0 0. 5 178 44 1.01 97.2 284.9 0 21 13 20 11.9 59 44.0 1153 8.0 5.0 0. 5 178 44 1.01 97.2 284.9 0 21 13 20 11.9 59 44.0 1153 8.0 5.0 0. 5 178 44 1.01 97.2 284.9 0 21 13 20 11.9 59 44.0 1153 8.0 5.0 0. 5 178 44 1.01 97.2 284.9 0 21 13 20 11.9 59 44.0 1153 8.0 5.0 0. 5 178 44 1.01 97.2 284.9 0 22 13 20 11.9 59 44.0 1153 8.0 5.0 0. 5 178 44 1.01 97.2 284.9 0 22 13 20 11.9 59 44.0 1153 8.0 5.0 0. 5 178 44 1.01 97.2 284.9 0 22 13 40 47.1 57.7.5 158 18.9 55.0 88.4 2.4 5 129 30 0.03 0.8 1.1 0 22 13 50 15.9 57 33.1 15.4 28.1 153 50.1 5.0 2.3 3 181 45 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 | | | | | | | | | | | | | • | | J L. C | K 141 | . 80 | | | 20 5 44 140 57 37.2 155 6.3 39.3 2.0 6 110 22 2.4 6 7.0 77.9 77.9 2 20 7 45 1.4 95 48.5 156 10.2 41.3 2.1 7 211 78 0.14 1.2 279.3 5 20.10.28 54.2 93.57.1 153.12.5 77.0 2.4 5 117 44 0.16 3.7 4.6 0 21 64 2 32.3 62 53.5 151 12.7 31.0 3.9 20 58 147 1.14 4.9 2.69.2 0 21 32 0.15 16.8 59.56.8 152.50.5 63.0 2.8 5 141 45 0.01 0.1 0.1 0.3 C 21 9.15 40.4 59 31.4 152 23.4 5.0 0. 5 178 44 1.01 97.2 284.9 0 21 13 20 11.9 59 44.0 153 8.0 5.0 0. 5 178 44 1.01 97.2 284.9 0 21 13 20 11.9 59 44.0 153 8.0 5.0 0. 5 178 44 1.01 97.2 284.9 0 21 13 20 11.9 59 44.0 1153 8.0 5.0 0. 5 178 44 1.01 97.2 284.9 0 21 13 20 11.9 59 44.0 1153 8.0 5.0 0. 5 178 44 1.01 97.2 284.9 0 21 13 20 11.9 59 44.0 1153 8.0 5.0 0. 5 178 44 1.01 97.2 284.9 0 21 13 20 11.9 59 44.0 1153 8.0 5.0 0. 5 178 44 1.01 97.2 284.9 0 22 13 20 11.9 59 44.0 1153 8.0 5.0 0. 5 178 44 1.01 97.2 284.9 0 22 13 20 11.9 59 44.0 1153 8.0 5.0 0. 5 178 44 1.01 97.2 284.9 0 22 13 40 47.1 57.7.5 158 18.9 55.0 88.4 2.4 5 129 30 0.03 0.8 1.1 0 22 13 50 15.9 57 33.1 15.4 28.1 153 50.1 5.0 2.3 3 181 45 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 | EES | 3 20 | 1 Z | . 24 | 14. | 6 5 | 0 10 3 | 1.5 | | | _ | _ | | | | | | | | 20 7.45 1.4 95 43.5 156 10.2 41.3 2.1 7 211 78 0.14 4.2 279.3 9 20 10.28 54.2 53.57.1 153.12.5 77.9 2.4 5 117 44 0.16 3.7 6.6 9 21 64 2 32.3 62 53.5 151 12.7 31.0 3.9 20 58 147 14.0 1.1 4.9 26.9 2 21 9 15 40.4 59 31.4 152 23.4 5.0 0. 5 178 44 1.01 97.2 734.9 9 21 13 20 11.9 59 44.0 153 8.0 5.0 0. 5 178 44 1.01 97.2 734.9 9 21 13 20 11.9 59 44.0 153 8.0 5.0 0. 5 178 44 1.01 97.2 734.9 9 21 13 20 11.9 59 44.0 1153 8.0 5.0 0. 5 178 44 1.01 97.2 734.9 9 21 13 20 11.9 59 44.0 1153 8.0 5.0 0. 5 178 44 1.01 97.2 734.9 9 21 13 20 11.9 59 44.0 1153 8.0 5.0 0. 5 178 44 1.01 97.2 734.9 9 21 13 20 11.9 59 44.0 1153 8.0 5.0 0. 5 178 44 1.01 97.2 734.9 9 21 13 20 11.9 59 44.0 1153 8.0 5.0 0. 5 178 49 1.0 1.1 0.3 0 22 13 9 21.8 58 44 1 153 50.1 5.0 2.3 3 181 45 0. 0. 0. 0. 0. 0. 22 7 24 25.2 59 31.5 152 55.0 88.6 2.4 5 129 30 0.03 0.8 1.1 0 22 11 44 55.4 59 42.6 153 11.9 117.3 2.7 6 157 39 0.30 1.5 2.4 0 22 13 50 15.9 57 33.1 154 28.1 5.0 1.9 3 148 26 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | JE.V | · | | k.:2,.* | 22 | 7 | | 110.4 | 32.5 | 0 • | 4 | 254 | 60 | 0.01 | 0. | 0. | C | | 20 7 45 1.4 56 48.5 156 10.2 41.3 2.1 7 211 78 0.14 1.7 270.3 5 20 10.28 594.2 53.57.1 153 12.5 77.9 2.4 5 117 44 0.16 1.7 270.3 5 21 6 42 32.3 62 53.5 151 12.7 31.0 3.9 20 58 147 1.14 49 270.2 2 2 1 6 15 43.4 59 31.4 152 23.4 5.0 0. 5 178 44 1.01 77.7 206.9 2 2 1 9 15 43.4 59 31.4 152 23.4 5.0 0. 5 178 44 1.01 77.7 206.9 2 2 1 13 20 11.0 59 44.0 153 8.0 5.0 0. 5 178 44 1.01 77.7 206.9 2 2 1 13 20 11.0 59 44.0 153 8.0 5.0 0. 5 178 44 1.01 77.7 206.9 0 2 2 1 23 40 47.1 57.7 5. 158 18.9 53.9 2.4 6 186 57 2.61 85.1 131.0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | 1 • 1 | 0 5 | 7 37.2 | 15 | 5 6 . 3 | 39.3 | 2.0 | 6 | 110 | 23 | | | | | | 20 10 28 54.2 53.57.1 153 12.5 77.0 2.4 5 117 44 0.16 3.7 6.6 0 21 6 42 32.3 62 53.5 151 12.7 31.0 3.9 20 58 147 1.14 4.9 26.2 0 21 6 43.4 59 31.4 152 23.4 5 0.0 5 178 44 1.01 87.2 20.9 9 0 21 3 20 11.0 59 44.1 152 23.4 5 0.0 5 178 44 1.01 87.2 20.9 9 0 21 3 20 11.0 59 44.0 153 8.0 5.0 0. 5 178 44 1.01 87.2 20.9 9 0 21 23 40 47.1 57 7.5 158 18.8 9 5.0 0. 3 154 77 0. 0 0. 0 0. 0 0 0 0 0 0 0 0 0 0 0 0 | | 20 | 7 | 45 | 1 | 4 5 | 5 48.5 | | | | | | | | | | | | | 21 6 42 32.3 62 53.5 151 12.7 31.0 3.9 20 58 147 1.14 4.9 26.2 5 21 9 15 16.8 58 56.8 152 50.5 63.0 2.8 5 141 45 0.01 0.1 0.3 C 21 9 15 41.4 59 31.4 152 23.4 5.0 0. 5 178 44 1.01 97.2 204.9 5 21 13 20 11.0 59 44.0 153 8.0 5.0 0. 3 154 77 0. 0. 0. 0. C 21 23 40 47.1 57 7.7 5 158.18.9 55.9 2.4 6 186 57 2.61 85.1 131.0 2 22 3 9 21.9 58 44.1 153 50.1 5.0 2.3 3 181 45 0. 6. 0. 0. C 22 7 24 25.2 59 31.5 152 55.0 88.5 2.4 5 129 30 0.03 0.8 1.1 C 22 11 44 55.4 59 42.6 153 11.9 11.3 2.7 6 157 39 0.04 1.5 2.4 C 22 11 44 55.4 59 42.6 153 11.9 11.3 2.7 6 157 39 0.04 1.5 2.4 C 22 11 44 55.4 59 42.6 153 11.9 11.3 2.7 6 157 39 0.04 1.5 2.4 C 22 11 44 55.4 59 57 3.1 154 28.1 5.0 0.1 9 3 148 26 0. 0. 0. 0. C 22 .7 24 .25.2 59 31.5 152 25.4 1.5 1.9 3 1.8 148 26 0. 0. 0. 0. C 22 .7 24 .7 59 57 .1 155 25.4 1.5 1.9 1.9 3 1.8 148 26 0. 0. 0. 0. C 22 .7 24 .7 59 57.4 151 54.1 40.2 2.9 6 195 33 0.15 6.3 83 23 23 16 49 2.4 5 95 29 152 43.6 5.0 2.1 5 145 59 2.30 3.5 18.6 0 0. 0. 0. C 23 11 35 47.4 58 34.8 152 18.1 24.2 2.3 6 204 76 0.17 3.1 3.6 9 23 11 8 52.6 5 89 17.1 150 50.6 8.0 2.5 2.1 5 145 59 2.00 2.0 2.1 3.6 12.6 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | | | | | | | | 0 10 6 7. | | | | | | 0.18 | 3.2 | 279.3 | () | | 21 9 15 16.8 59 56.8 152 50.5 6 50.0 2.8 5 141 45 0.01 0.1 0.3 0.3 0.2 1 9 15 16.8 59 56.8 152 50.5 6 50.0 0. 5 178 44 1.01 97.2 0.3 0.0 1 13 20 11.0 59 44.0 153 8.0 5.0 0. 5 178 44 1.01 97.2 0.3 0.0 21 23 46 .57.1 57. 7.5 158 18.9 5.0 0. 5 178 44 1.01 97.2 0.3 0.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | | | | | | 5 <u>⊅ /</u> . • . k | 1.5. | 3 <u>1</u> 2.5 | 77•ウ. | 2.4 | 5 | 117 | 44 | 0.15 | 3.7 | f f. | | | 21 9 15 16.8 59 56.8 152 50.5 63.0 2.8 5 141 45 0.01 0.1 0.3 C 21 9 15
43.4 59 31.4 152 23.4 5.0 0. 5 178 44 1.01 87.2 204.9 0 21 13 20 11.0 59 44.0 153 8.0 5.0 0. 5 178 44 1.01 87.2 204.9 0 21 13 20 11.0 59 44.0 153 8.0 5.0 0. 3 154 77 0. 0. 0. 0. 0. C 21 23 46 47.1 57. 7.5 158.18.9 59.2 2.4 6 186 57 2.41 851 131.0 0 0. 0. C 22 3 9 21.8 58 44.1 153 50.1 5.0 2.3 3 181 45 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | 21 | - 6 | 42 | 32. | 362 | 2 53.5 | 15 | 1 12.7 | 31.0 | 3.9 | 20 | 5.8 | 167 | | | | | | 21 9 15 64.4 69 31.4 152 23.4 5.0 0. 5 178 44 1.0 1 97.7 204.9 7 21 13 20 11.0 59 44.0 153 56.0 5.0 0. 3 154 77 0. 0. 0. 0. 0. 0 21 23 46. 47.1 57 7.8 158.18.9 57.9 2.4 6 186 77 2.41 67.1 131.0 22 3 9 21.9 58 44.1 153 50.1 5.0 2.3 3 181 45 0. 0. 0. 0. 0. 0 22 7 24 25.2 59 31.5 152 55.0 88.6 2.4 5 129 30 0.03 0.8 1.1 0 22 13 40 55.4 59 42.6 153 11.9 117.3 2.7 6 157 39 0.06 1.5 2.4 0 22 13 50 15.9 57 33.1 154 28.1 5.0 1.9 3 148 26 0. 0. 0. 0. 0. 0 22 22.27 4.9 59 52.4 151 54.1 49.2 2.9 6 195 33 0.15 5.3 8.3 0 23 10 49 2.4 59 52.9 152 43.6 5.0 2.1 5 145 59 2.30 35.5 136.0 0 23 11.35 47.4 58 34.8 152 18.1 28.2 2.3 6 204 76 0.13 5.1 3.4 0 23 13 18 52.6 59 17.1 150 50.6 5.0 2.1 5 145 59 2.30 35.5 136.0 0 23 13 18 52.6 59 17.1 150 50.6 5.0 2.5 3 284 133 0.75 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | | | | | | | | | • | 30, | | 20 | 1 -7 1 | 1 • 1 • | 4.7 | 209.2 | :) | | 21 9 15 64.4 69 31.4 152 23.4 5.0 0. 5 178 44 1.0 1 97.7 204.9 7 21 13 20 11.0 59 44.0 153 56.0 5.0 0. 3 154 77 0. 0. 0. 0. 0. 0 21 23 46. 47.1 57 7.8 158.18.9 57.9 2.4 6 186 77 2.41 67.1 131.0 22 3 9 21.9 58 44.1 153 50.1 5.0 2.3 3 181 45 0. 0. 0. 0. 0. 0 22 7 24 25.2 59 31.5 152 55.0 88.6 2.4 5 129 30 0.03 0.8 1.1 0 22 13 40 55.4 59 42.6 153 11.9 117.3 2.7 6 157 39 0.06 1.5 2.4 0 22 13 50 15.9 57 33.1 154 28.1 5.0 1.9 3 148 26 0. 0. 0. 0. 0. 0 22 22.27 4.9 59 52.4 151 54.1 49.2 2.9 6 195 33 0.15 5.3 8.3 0 23 10 49 2.4 59 52.9 152 43.6 5.0 2.1 5 145 59 2.30 35.5 136.0 0 23 11.35 47.4 58 34.8 152 18.1 28.2 2.3 6 204 76 0.13 5.1 3.4 0 23 13 18 52.6 59 17.1 150 50.6 5.0 2.1 5 145 59 2.30 35.5 136.0 0 23 13 18 52.6 59 17.1 150 50.6 5.0 2.5 3 284 133 0.75 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | 21 | _ | 15 | 1.7 | | | | | | | | | | | | | | | 21 9 15 43.4 59 31.4 152 23.4 5.0 0. 5 178 44 1.01 \$77.7214.9 5 21 13 20 11.0 59 44.0 153 8.0 5.0 0. 3 154 77 0.0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | | | ! 2 | 10. | :ر <u>:</u> | 3_ე6 აგ | <u></u> l,5. | 2,_50•5 | 63•0 | 2 • 8 | 5 | 141 | 45 | 0.01 | 0 - 1 | 0.3 | r | | 21 13 20 11:0 59 44:0 153 8:0 5.0 0. 3 152 70 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | 21 | 9 | 15 | 43.4 | 4 59 | 31.4 | 15. | 2 23.4 | | | 5 | 179 | | | | | | | 21 23 46 47.1 57 7.5 158 18.9 57.0 2.4 6 186 57 2.61 85.1 111.0 2 22 3 9 21.8 58 44.1 153 50.1 5.0 2.3 3 181 45 0. 6. 0. 0. C 22 7 24 25.2 59 31.5 152 55.0 88.6 2.4 5 129 30 0.03 0.8 1.1 C 22 11 44 54.4 59 42.6 153 11.9 117.3 2.7 6 157 39 0.04 1.5 2.4 C 22 13 50 15.9 57 33.1 154 28.1 5.0 1.9 3 148 26 0. 0. 0. 0. C 22 22.2 7.4 4.9 57.5 5.4 151 54.1 49.6 2.9 6 155 33 0.15 5.3 8.3 C 23 10 49 2.4 59 52.9 152 43.6 5.0 2.1 5 145 59 2.30 35.5 136.0 0 23 11 35 47.4 58 34.8 152 18.1 28.2 2.3 6 204 76 0.19 3.1 3.4 72 23 13 0 47.3 59 52.7 153 75.4 51. 17. 3 211 56 0.12 0. 0. 2 24 14 59 25.5 62 21. 151 14.7 5.0 4.0 14 96 222 0.1 3.4 72.6 0. 2 24 18 15 34.1 59 57.2 152 57.2 101.1 2.7 5 154 52 0.36 2.5 0.8 1 24 20 7 12.3 59 21.5 153 2.6 5.0 0. 3 213 86 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | 21 | 1.3 | 20 | 11.0 | | | | | _ | | | | | | - | | | | 22 3 9 21.9 58 44.1 153 50.1 5.0 1 5.0 2.3 3 181 45 0. | | | | | | | | | | | | 3 | | 73 | () . | 0. | ○. | | | 22 3 9 21.9 58 44.1 153 50.1 5.0 2.3 3 181 45 0.0 0.0 C 22 7 24 25.2 59 31.5 152 55.0 88.4 2.4 5 129 30 0.03 0.8 1.1 C 22 11 44 55.4 59 42.6 153 11.9 110.3 2.7 6 157 39 0.06 1.5 2.4 C 22 13 50 15.9 57 33.1 154 28.1 5.0 1.9 3 148 26 0.0 0.0 C 22 27 44.9 57 57 57.4 151 54.1 49.6 2.9 6 195 33 0.15 5.3 8.3 0 23 16 49 2.4 59 57.5 152 43.6 5.0 2.1 5 14.5 59 2.30 35.5 136.6 0 23 13 3 47.4 58 34.8 152 18.1 23.2 2.3 6 204 76 0.19 5.1 3.4 0 23 13 3 47.4 58 34.8 152 18.1 23.2 2.3 6 204 76 0.19 5.1 3.4 0 23 13 18 52.6 58 17.1 150 50.6 5.0 1.7 3 211 56 0.12 0.0 C 24 18 15 34.1 59 57.2 152 57.2 101.1 2.7 5 154 52 0.35 2.5 0.0 0. 2 24 18 15 34.1 59 57.2 152 57.2 101.1 2.7 5 154 52 0.36 2.5 0.4 0 25 3 20 31.0 58 39.5 152 5.4 2.0 3.7 16 153 15 14.4 83.6 17.6 0.2 2.5 5 3 20 31.0 58 39.5 152 46.3 0.0 0. 3 213 86 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | | | | | | (| | 31E • 9 | 5 🤄 🔸 🤋 | 2.4 | 6 | 186 | 5.7 | 2.61 | 85.1 | | | | 22 7 24 25.2 59.31.5 152.55.0 88.6 2.4 5 129 30 0.93 0.8 1.1 C 22 13 44 55.4 59 42.6 153 11.9 117.3 2.7 6 157 39 0.06 1.5 2.4 C 22 13 50 15.9 57 33.1 154 28.1 5.0 1.9 3 148 26 0. 0. 0. 0. C 22 27 24.9 59.55.4 151 54.1 49.2 2.9 6 155 33 0.15 5.3 8.3 0 23 10 49 2.4 59 52.9 152 43.6 5.0 2.1 5 145 59 2.30 35.5 136.0 0 23 10 49 2.4 59 52.9 152 43.6 5.0 2.1 5 145 59 2.30 35.5 136.0 0 23 13 9 47.3 59 52.7 153 75.4 51.0 1.7 3 211 56 0.12 0. 0. 5 23 13 9 47.3 59 52.7 153 75.4 51.0 1.7 3 211 56 0.12 0. 0. 5 23 13 18 52.6 59 17.1 150 50.6 5.0 2.1 5 145 59 2.30 35.5 136.0 0 23 13 18 52.6 59 17.1 150 50.6 5.0 2.5 3 294 138 0.75 0. 0. 5 24 14 59 25.5 6.2 7.1 151 14.7 5.0 4.0 14 96 222 0.61 3.4 774.7 3 21 14 15 3.4 15 57.2 152 57.2 101.1 2.7 5 154 52 0.05 2.5 5.4 51 2.2 5 3 20 31.0 58 39.5 152 5.2 152 57.2 101.1 2.7 5 154 52 0.05 2.5 5.4 51 2.2 5 3 24 11.5 5 5.5 54.9 152 46.3 6.6 1.9 0. 3 213 86 0. 0. 0. 5 25 3 44 11.5 5 5 54.9 152 46.3 6.6 1.9 0. 3 213 86 0. 0. 0. 5 25 3 44 11.5 5 5 54.9 152 46.3 6.6 1.9 0. 3 213 86 0. 0. 0. 5 25 5.4 1 2.5 5 54.9 152 46.3 6.6 1.9 0. 13 16.4 41 83.6 17.6 0. 2 25 7.36 56.1 59 0.4 154 44.4 157.4 2.4 5 288 32 0.0 0.0 0. 5 25 7.36 56.1 59 0.4 154 44.4 157.4 2.4 5 288 32 0.0 0.0 0. 5 25 14 33 32.7 5 9 20.9 153 4.8 11.6 12.0 2.9 7 156 51 11.1 11.1 17.7 17.1 17.1 17.1 17.1 1 | | _ 22 | 3 | 9 | 21•9 | 3 58 | 3 44.1 | 15 | 3 50 1 | | 2.3 | 3 | | - | | | | | | 22 11 44 55.4 59 42.6 153 11.9 117.3 2.7 6 157 39 0.06 1.5 2.4 C 22 13 50 15.9 57 33.1 154 28.1 5.0 1.9 3 148 26 0. 0. 0. 0. C 22 22 27 44.9 59 55.4 151 54.1 49.8 2.9 6 195 33 0.15 5.3 8.3 0.3 10 49 2.4 59 52.9 152 43.6 5.0 2.1 5 145 59 2.30 35.5 136.0 0. 23 11 35 47.4 58 34.8 152 18.1 24.2 2.3 6 204 76 0.19 3.1 3.4 9.2 23 13 18 52.6 58 17.1 150 50.6 6.0 2.5 3 294 133 0.15 5.3 8.3 0.5 24 14.5 9.2 55.5 62 7.1 151 14.7 5.0 4.0 14 98 222 0.61 3.4 724.7 5 24 18 15 34.1 59 57.2 152 57.2 101.1 2.7 5 154 52 0.66 2.5 2.4 1 2.4 2.5 2 2.3 6 0.10 2.5 2.5 2.5 3 20 33.0 58 39.5 152 57.2 101.1 2.7 5 154 52 0.66 2.5 2.5 3 20 33.0 58 39.5 152 54.2 2.0 12.3 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 | | | | | | | | | | J • | ~• > | | 101 | 4) | U. | 0. | Ų • | C | | 22 11 44 55.4 59 42.6 153 11.9 117.3 2.7 6 157 39 0.06 1.5 2.4 C 22 13 50 15.9 57 33.1 154 28.1 5.0 1.9 3 148 26 0. 0. 0. 0. C 22 22 27 44.9 59 55.4 151 54.1 49.8 2.9 6 195 33 0.15 5.3 8.3 0.3 10 49 2.4 59 52.9 152 43.6 5.0 2.1 5 145 59 2.30 35.5 136.0 0. 23 11 35 47.4 58 34.8 152 18.1 24.2 2.3 6 204 76 0.19 3.1 3.4 9.2 23 13 18 52.6 58 17.1 150 50.6 6.0 2.5 3 294 133 0.15 5.3 8.3 0.5 24 14.5 9.2 55.5 62 7.1 151 14.7 5.0 4.0 14 98 222 0.61 3.4 724.7 5 24 18 15 34.1 59 57.2 152 57.2 101.1 2.7 5 154 52 0.66 2.5 2.4 1 2.4 2.5 2 2.3 6 0.10 2.5 2.5 2.5 3 20 33.0 58 39.5 152 57.2 101.1 2.7 5 154 52 0.66 2.5 2.5 3 20 33.0 58 39.5 152 54.2 2.0 12.3 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 | | 22 | - | 27 | 2 | | | | | | | | | | | | | | | 22 11 44 55.4 59 42.6 153 11.9 117.3 2.7 6 157 39 0.06 1.5 2.4 C 22 13 50 15.9 57 33.1 154 28.1 5.0 1.9 3 148 26 0. 0. 0. 0. C 22 22 27 44.9 59 55.4 151 54.1 49.8 2.9 6 195 33 0.15 5.3 8.3 0.3 10 49 2.4 59 52.9 152 43.6 5.0 2.1 5 145 59 2.30 35.5 136.0 0. 23 11 35 47.4 58 34.8 152 18.1 24.2 2.3 6 204 76 0.19 3.1 3.4 9.2 23 13 18 52.6 58 17.1 150 50.6 6.0 2.5 3 294 133 0.15 5.3 8.3 0.5 24 14.5 9.2 55.5 62 7.1 151 14.7 5.0 4.0 14 98 222 0.61 3.4 724.7 5 24 18 15 34.1 59 57.2 152 57.2 101.1 2.7 5 154 52 0.66 2.5 2.4 1 2.4 2.5 2 2.3 6 0.10 2.5 2.5 2.5 3 20 33.0 58 39.5 152 57.2 101.1 2.7 5 154 52 0.66 2.5 2.5 3 20 33.0 58 39.5 152 54.2 2.0 12.3 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 | | | 1. | | | | | | 255•0 | 88.5 | 2 • 4 | 5 | 129 | 30 | 0.03 | 0.28 | 1 1 | _ | | 22 13 50 15.9 57 32.1 156 28.1 5.0 1.9 3 148 26 0. 0. 0. 0. 0. 0. 22 22 27 44.9 55.54 151.56.1 49.8 2.9 6 195 33 0.15 5.3 8.3 8.3 0.5 5.3 8.3 0.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8 | | 22 | 11 | 44 | 55.4 | | | | | | | | | | | | | | | 22 22 27 44.9 59 55.4 151 54.1 49.0 2.9 6 195 33 0.15 6.3 8.3 9.3 23 10 49 2.4 59 52.9 152 43.6 5.0 2.1 5 145 59 2.30 35.5 136.0 0 23 11 35 47.4 53 34.8 152 18.1 29.2 2.3 6 204 76 0.19 9.1 3.6 0 23 13 18 52.6 58 17.1 150 50.6 55.7 2.5 3 28.4 138 0.25 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 | | 22 | 12 | 50 | 15.5 | | | | | | | _ | | | | | | (_ | | 23 10 49 2.4 59 52.9 152 43.6 5.0 2.1 5 145 59 2.30 35.5 136.0 0 23 11 35 47.4 58.34.8 152 18.1 24.2 2.3 6 204 76 0.19 8.1 3.6 0 23 13 18 9 47.3 59 52.7 153 25.4 5.0 1.7 3 211 56 0.12 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | | | | | | | | . 20.1 | | | 3 | 148 | 26 | 0. | 0 • | 0. | \sim | | 23 10 49 2.4 59 52.9 152 43.6 5.0 2.1 5 145 59 2.30 39.5 136.0 0 23 11 35 47.4 58 34.8 152 18.1 24.2 2.3 6 204 76 0.19 5.1 3.6 0 23 13 9 47.3 59 52.7 153 25.4 5.4 1.7 3 211 56 0.12 0. 0 0. 0 24 18 25.6 58 17.1 150 50.6 5.0 1.7 3 211 56 0.12 0. 0 0. 0 24 18 15 34.1 59 77.2 151 151 14.7 5.0
4.0 14 96 222 0.61 3.4 724.7 7 24 18 15 34.1 59 57.2 152 57.2 101.1 2.7 5 154 52 0.55 2.5 0.05 2.5 0.05 25 3 20 31.0 58 39.5 152 5.4 2.0 3.7 165 153 15 14.41 83.6 127.8 2 25 7 36 55.1 59 0.4 152 46.3 4.6 1.3 4 150 56 0.10 0. 0 25 9 30 23.2 58 30.3 153 19.9 5.0 11.1 3 186 43 0. 0 0. 0 25 9 30 23.2 58 30.3 153 19.9 5.0 2.2 5 143 57 0.24 3.8 832.4 2 25 14 3 32.7 59 20.9 153 4.8 112.6 2.3 4 144 19 0. 0 0. 0 25 25 14 3 32.7 59 20.9 153 4.8 112.6 2.3 4 144 19 0. 0 0. 0 25 20 4 51.6 56 57.9 152 58.1 114.1 2.9 7 156 51 0.11 1.0 1.0 10.0 10.0 10.0 10.0 10. | | | | | | <u>ريح</u> | <u> </u> | 151 | L_54•1 | 49•€ | 2.9 | . 5 | 195 | 33 | 0.15 | 5.3 | | | | 23 11 35 47.4 58 34.8 152 18.1 28.2 2.3 6 204 76 0.19 5.1 3.6 7 23 13 18 52.6 58 17.1 150 50.6 5.0 1.7 3 211 56 0.12 0.0 0. C 24.14.59 25.5 6.2 2.1 151 14.7 5.0 4.0 14 96 272 0.41 3.4 724.7 7 24 18 15 34.1 59 57.2 152 57.2 101.1 2.7 5 154 52 0.55 2.5 5.2 5.5 5.2 5.5 5.4 2.0 101.1 2.7 5 154 52 0.55 2.5 5.2 5.5 5.2 5.4 2.0 101.1 2.7 5 154 52 0.55 2.5 5.2 5 5.4 2.0 101.1 2.7 5 154 52 0.55 2.5 5.4 17.4 7 0.25 3 20 31.0 58 39.5 152 5.4 7.0 3.7 16 153 15 14.4 1 83.6 17.4 7 0.25 3 20 31.0 58 39.5 152 5.4 7.0 3.7 16 153 15 14.4 1 83.6 17.4 7 0.25 3 20 31.0 58 39.5 152 5.4 7.0 3.7 16 153 15 14.4 1 83.6 17.4 7 0.25 7 36 5.1 59 0.4 154 44.4 157.4 2.4 5 283 32 0.19 2.0 7 7.2 1 2.5 7 36 5.1 59 0.4 154 44.4 157.4 2.4 5 283 32 0.19 2.0 7 7.2 1 2.5 9 15 45.0 58 31.3 153 9.6 5.0 1.1 3 18.6 48 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | 23 | 1.0 | 49 | 2.4 | 59 | 52.9 | 152 | 43.6 | | | | | | | | | | | 23 13 9 47.3 59 52.7 153 25.4 5.0 1.7 3 211 56 0.12 0. 0. 0. 2 23 13 18 52.6 59 17.1 150 50.6 5.0 2.5 3 284 138 0.25 0. 0. 0. 0 24 18 15 34.1 57 57.2 152 57.2 101.1 2.7 5 154 52 0.05 2.5 0.05 24 18 15 34.1 57 57.2 152 57.2 101.1 2.7 5 154 52 0.05 2.5 0.4 726.7 7 24 18 15 34.1 57 57.2 152 57.2 101.1 2.7 5 154 52 0.05 2.5 0.4 7 25 3 20 31.0 58 39.5 152 5.4 2.0 3.7 16 153 15 14.41 83.6 17.7 6 25 3 20 31.0 58 39.5 152 5.4 2.0 3.7 16 153 15 14.41 83.6 17.7 6 25 7 36 55.1 57 9.4 154 44.4 157.4 2.4 5 283 32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 | | | | | | - | | | . ,,, | 7 . 7 | ۷. • ۱ | , | 140 | 2.9 | 2 - 30 | 35 • 5 | 136.0 | L) | | 23 13 9 47.3 59 52.7 153 25.4 5.0 1.7 3 211 56 0.12 0. 0. 0. 2 23 13 18 52.6 59 17.1 150 50.6 5.0 2.5 3 284 138 0.25 0. 0. 0. 0 24 18 15 34.1 57 57.2 152 57.2 101.1 2.7 5 154 52 0.05 2.5 0.05 24 18 15 34.1 57 57.2 152 57.2 101.1 2.7 5 154 52 0.05 2.5 0.4 726.7 7 24 18 15 34.1 57 57.2 152 57.2 101.1 2.7 5 154 52 0.05 2.5 0.4 7 25 3 20 31.0 58 39.5 152 5.4 2.0 3.7 16 153 15 14.41 83.6 17.7 6 25 3 20 31.0 58 39.5 152 5.4 2.0 3.7 16 153 15 14.41 83.6 17.7 6 25 7 36 55.1 57 9.4 154 44.4 157.4 2.4 5 283 32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 | | | | 2.5 | | | | _ | | | | | | | | | | | | 23 13 9 47.3 59 52.7 163 25.4 5.0 1.7 3 211 56 0.12 0. 0. C 23 13 18 52.6 58 17.1 150 50.6 5.8 2.5 3 294 138 0.25 0. 0. C 24 14 59 25.5 62 2.1 151 14.7 5.0 4.0 14 96 222 0.61 3.4 72.7 7 24 18 15 34.1 59 57.2 152 57.2 101.1 2.7 5 154 52 0.55 2.5 0.4 3 24 20 7 12.3 59 21.5 153 2.6 5.0 0. 3 213 96 0. 0. 0. C 25 3 20 33.0 58 39.5 152 5.4 2.0 3.7 16 153 15 1.4 15 5.5 5.4 2.5 3.2 101.2 2.7 3 15 15 1.4 15 5.7 5.4 15 15 15 15 15 15 15 15 15 15 15 15 15 | | | | | <u>-4./.• 4</u> | : 5 8 | 34 • 8 | 1,52 | 18.1 | 23 • 2 | 2.3 | 6 | 204 | 76 | 0.19 | a 1 | 3 6 | 13 | | 23 13 18 52.6 58 17.1 150 50.6 | | 23 | 13 | Q | 47.3 | 59 | 52.7 | 157 | 25.4 | | | _ | | | | | | | | 24.14.59 | | | | | | | | | | | | | | | | () • | ∩ • | ×. | | 24 18 15 34-1 59 57-2 152 57-2 101-1 2-7 5 154 52 0.95 2.5 6.4 3 24 20 7 12-3 59 21-5 153 2.6 5.0 0. 3 213 86 0. 0. 0. 0. 0. 0. 0. 25 3 20 33.0 58 39-5 152 5.4 7.0 3.7 16 153 15 14.41 83.6 127-6 0. 25 3 20 33.0 58 39-5 152 5.4 7.0 3.7 16 153 15 14.41 83.6 127-6 0. 25 7.36 .56.1 59 0.4 154 44.4 157-4 2.4 5 283 32 0.32 0.32 0.0 22 0.0 12 25 9 15 45.0 58 31.3 153 9.6 5.0 1.1 3 166 48 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | | | | | | | 100 | 20.0 | | 2.5 | 3 | 284 | 133 | 0.25 | 0. | C • | (| | 24 18 15 34.1 59 57.2 152 57.2 101.1 2.7 5 154 52 0.35 2.5 6.4 9 24 20 7 12.3 59 21.5 153 2.6 5.0 0. 3 213 86 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | · | | | | | | 2 • 1 | _, 151 | 14.7 | 5 • 0 | 4 • C | 14 | 94 | 222 | 0.61 | 3.4 | | | | 24 20 7 12.3 59 21.5 153 2.6 5.0 0. 3 213 86 0. 0. 0. 0. 0. C 25 3 20 33.0 58 39.5 152 5.4 7.0 3.7 16 153 15 14.41 83.6 117.6 0 25 5 34 11.5 59 54.9 152 46.3 6.5 1.9 4 150 56 6.10 0. 0. 0. 0 25 7.36 56.1 59 0.4 154 44.4 157.4 2.4 5 283 32 0.37 2.6 2.6 12.5 7.36 56.1 59 0.4 154 44.4 157.4 2.4 5 283 32 0.37 2.6 2.6 2.7 2.5 9 15 45.0 58 31.3 153 9.6 5.0 1.1 3 186 48 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | 24 | 18 | 15 | 34.1 | 53 | 57.2 | 152 | 57.2 | | | | | | | | | | | 25 3 20 31.0 58 39.5 152 5.4 2.0 3.7 16 153 15 14.41 83.6 127.7 20 25 5 34 11.5 59 54.9 152 46.3 6.6 1.8 4 150 56 0.14 6.2 2.7 25 7.36 56.1 59 0.4 154 44.4 157.4 2.4 5 283 32 0.32 0.32 0.0 2.2 25 9.15 45.0 58 31.3 153 9.6 5.0 1.1 3 186 48 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | | | _ | | | | 1 , 7 | 21.02 | 101.1 | 2 * 1 | • | 124 | 5.5 | 0.15 | と・う | 6.4 |) | | 25 3 20 31.0 58 39.5 152 5.4 2.0 3.7 16 153 15 14.41 83.6 127.7 20 25 5 34 11.5 59 54.9 152 46.3 6.6 1.8 4 150 56 0.14 6.2 2.7 25 7.36 56.1 59 0.4 154 44.4 157.4 2.4 5 283 32 0.32 0.32 0.0 2.2 25 9.15 45.0 58 31.3 153 9.6 5.0 1.1 3 186 48 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | ٠. | - - | _ | | | | | | | | | | | | | | | | 25 3 20 31.0 58 39.5 152 5.4 2.0 3.7 16 153 15 14.41 83.6 127.7 20 25 5 34 11.5 59 54.9 152 46.3 6.6 1.3 4 150 56 0.15 6. 1.2 7. 22 25 7.36 55.1 59 0.4 154 44.4 157.4 2.4 5 283 32 0.32 0.0 7.0 7.0 2.2 25 9.15 45.0 58 31.3 153 9.6 5.0 1.1 3 186 43 0.32 0.0 7.0 7.0 25 14 3 32.7 59 20.9 153 4.8 112.6 2.3 4 144 18 0. 0. 0. 0. 0. 0. 0. 0. 0. | | 24 | 20 | /. | .12.3 | 59 | 21.5 | 153 | 2.6 | 5 • C | 0. | 3 | 213 | 9.6 | Λ | 0 | 0 | _ | | 25 | | 25 | 3 | 20 | 33.0 | 58 | 30.5 | | | | | | | | | | | | | 25 7 36 55.1 59 0.4 154 44.4 157.4 2.4 5 283 32 0.12 0.0 2.2 2.5 9 15 45.0 58 31.3 153 9.6 5.0 1.1 3 186 48 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | | | | | | | | | | | | | 15 | [4.4] | 83.6 | | | | 25 9 15 45.0 58 31.3 153 9.6 5.0 1.1 3 186 48 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | | | | | | | | | | l • 3 | 4 | 150 | 56 | 0.14 | ć • | ٠ | • | | 25 9 15 45.0 58 31.3 153 9.6 5.0 1.1 3 186 48 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | . 2.5 | - 7., | 35 | _ეებ.1 | 5.9 | 0.4 | 154 | 44.4 | 157.4 | 2.4 | 5 | 283 | 3.2 | | | ~ ~ ~ | | | 25 | | 25 | Ç | 15 | 45.0 | 5.8 | 31_3 | | | | | | | | | | | | | 25 14 3 32.7 59 20.9 153 4.8 111.6 2.3 4 144 10 0. 0. 0. 0. 25 25 27 4 51.6 59 57.9 152 58.1 114.1 2.9 7 156 51 0.11 0.0 5. 25 25 21 6 44.6 57 57.9 152 38.0 8.4 2.1 6 130 51 1.17 17.2 171.4 25 25 23 1 47.1 62 49.0 150 58.7 20.3 3.2 14 77 142 0.61 3.4 77 26 0.17 46.7 59 26.3 153 28.2 105.5 2.0 4 152 11 0. 0. 0. 0. 0. 26 1 12 1.6 53 35.9 153 13.5 5.0 1.2 3 191 51 0. 0. 0. 0. 0. 26 9 11 25.9 60 11.3 152 57.6 117.4 2.0 4 174 20.0 174 20.0 0. 0. 0. 26 14 15 24.9 57 12.8 155 19.0 41.3 2.2 10 180 43 0.27 2.7 1.5 26 14 17 23.2 60 7.0 153 5.3 136.5 1.0 4 197 37 0. 0. 0. 2. 26 14 17 23.2 60 7.0 153 5.3 136.5 1.0 4 197 37 0. 0. 0. 2. 26 19 14 31.0 58 18.6 153 4.0 5.0 1.9 5 165 29 3.67 110.4 10.0 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. | | | • | _ | | • | J. • J | 1 / 5 | 7.0 | 7 • 17 | 1 + 1 | 3 | 100 | 4 원 | ું • | Ð. | € • | $\overline{}$ | | 25 14 3 32.7 59 20.9 153 4.8 111.6 2.3 4 144 10 0. 0. 0. 0. 25 25 27 4 51.6 59 57.9 152 58.1 114.1 2.9 7 156 51 0.11 0.0 5. 25 25 21 6 44.6 57 57.9 152 38.0 8.4 2.1 6 130 51 1.17 17.2 171.4 25 25 23 1 47.1 62 49.0 150 58.7 20.3 3.2 14 77 142 0.61 3.4 77 26 0.17 46.7 59 26.3 153 28.2 105.5 2.0 4 152 11 0. 0. 0. 0. 0. 26 1 12 1.6 53 35.9 153 13.5 5.0 1.2 3 191 51 0. 0. 0. 0. 0. 26 9 11 25.9 60 11.3 152 57.6 117.4 2.0 4 174 20.0 174 20.0 0. 0. 0. 26 14 15 24.9 57 12.8 155 19.0 41.3 2.2 10 180 43 0.27 2.7 1.5 26 14 17 23.2 60 7.0 153 5.3 136.5 1.0 4 197 37 0. 0. 0. 2. 26 14 17 23.2 60 7.0 153 5.3 136.5 1.0 4 197 37 0. 0. 0. 2. 26 19 14 31.0 58 18.6 153 4.0 5.0 1.9 5 165 29 3.67 110.4 10.0 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. | | ~ - | _ | | | | | | | | | | | | | | | | | 25 14 3 32.7 59 20.9 153 4.8 113.6 2.3 4 144 10 0. 0. 0. 0. 25 25 27 4 51.6 59 57.9 152 58.1 114.1 2.9 7 156 51 0.11 0.0 2. 25 21 6 44.6 59 57.9 152 38.0 2.4 2.1 6 130 51 1.10 17.2 171.4 25 25 23 1 43.1 62 49.0 150 58.7 20.3 3.2 14 72 142 0.61 3.6 17.2 171.4 25 26 1 12 1.6 53 35.9 153 13.5 5.0 1.2 3 191 51 0. 0. 0. 0. 2 26 9 11 25.9 60 11.3 152 57.6 117.4 2.9 4 174 20.0 2.0 0. 0. 2 26 14 17 23.2 60 7.0 153 5.3 136.5 1.0 4 197 37 0. 0. 0. 2 26 14 17 23.2 60 7.0 153 5.3 136.5 1.0 4 197 37 0. 0. 0. 2 2 2 10 180 43 6.27 2.7 1.5 2 2 2 10 180 43 6.27 2.7 1.5 2 2 2 10 180 43 6.27 2.7 1.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | | 23.2 | 59 | 30.3 | 153 | 19.9 | 5.0 | 2.2 | 5 | 143 | 5.7 | 0 26 | 2 2 | 8 3 C 7 | | | 25 27 4 51.6 59 57.9 152 58.1 114.1 2.9 7 156 51 0.11 0.8 8.2 25 21 6 44.6 57 57.9 152 38.0 3.4 2.1 6 130 51 1.11 17.2 71.4 25 25 23 1 47.1 62 49.0 150 58.7 20.3 3.2 14 77 142 0.61 3.6 7.5 7.5 26 1 12 1.6 53 35.9 153 13.5 5.0 1.2 3 191 51 0. 0. 0. 0. 0. 0. 26 1 12 1.6 53 35.9 153 13.5 5.0 1.2 3 191 51 0. 0. 0. 0. 0. 26 9 11 25.9 60 11.3 152 57.6 117.4 2.0 4 174 2.6 0. 0. 0. 0. 26 14 15 24.7 57 12.8 155 19.0 41.3 2.2 10 180 43 0.27 2.7 1.5 26 14 17 23.2 60 7.0 153 5.3 136.8 1.0 4 197 37 7. 0. 0. 0. 0. 26 14 17 23.2 60 7.0 153 5.3 136.8 1.0 4 197 37 7. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | 25 | 14 | 3 | 32.7 | | | | | | | | | | | | | | | 25 21 6 44.6 50 57.9 152 38.0 4.4 2.1 6 130 51 1.11 17.9 171.4 25 23 1 43.1 62 49.0 150 58.7 20.3 3.2 14 72 142 0.61 3.6 77 26 0.17 66.7 59 26.3 153 28.2 105.5 2.0 4 152 11 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | | | | | | | | | | | | | 10 | | | | | | 25 23 1 43.1 62 49.0 150 58.7 20.3 3.2 14 72 142 0.61 3.6 712.4 26 0.17 46.7 59 26.3 153 28.2 105.5 2.0 4 152 11 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | | | | | | | | | 114.1 | . 2.9 | 7 | 156 | 5.1 | 0.11 | 2 4 50 | E | , | | 25
23 1 49.1 62 49.0 150 58.7 20.3 3.2 14 72 142 0.61 3.6 77 26 0.17 46.7 59 26.3 153 28.2 105.5 2.0 4 157 11 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | | | ູ 5 | 44.5 | . 53 | 57.9 | 152 | 38.0 | 1.4 | 2.1 | 6 | 130 | 5.1 | | | | | | 26 0.17 46.7 59 26.3 153 28.2 105.5 2.0 4 157 11 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | 25 | 23 | 1 | 47.1 | 6.2 | 45.0 | 150 | 59 7 | | | | | • | | | | , | | 26 1 12 1.6 53 35.9 153 13.5 5.0 1.2 3 191 51 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | | | - | | 0- | - 7 . C | 1 2 2 | J.C. | 29.5 | 3 • 2 | 14 | 12 | 14.2 | 0.61 | 3 € | | | | 26 1 12 1.6 53 35.9 153 13.5 5.0 1.2 3 191 51 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | • | | | | | | | | | | | | | | | | | | 26 1 12 1.6 53 35.9 153 13.5 5.0 1.2 3 191 51 0. | , | | | | 45.7 | 5.9 | 26.3 | 153 | 28.2 | 105.5 | 2-3 | 4 | 152 | 1 1 | Ο. | . 1 | - 1 | -1 | | 26 | | 26 | 1 | 12 | 1.6 | 54 | 35.0 | 152 | 13 5 | | | | | | - | | | | | 26 14 15 24.0 57 12.8 155 19.0 41.1 2.2 10 180 43 0.27 2.7 1.5 26 14 17 23.2 60 7.0 153 5.3 136.6 1.0 4 193 37 7. 0. 0. 2.7 2.7 1.5 2.8 15.1 13.2 15.4 58.8 5.0 1.4 3 296 46 0.16 0. 2.7 2.7 1.5 2.8 19.0 1.9 5 165 28 3.67 110.4 10.1 2.0 2.0 1.9 5 165 28 3.67 110.4 10.1 2.0 2.0 1.9 5 1.0 1.9 5 1.0 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | | | | | | | | | | | | | | _ | | | | | | 26 14 15 24.9 57 12.8 155 19.0 41.0 2.2 10 180 43 0.77 2.7 1.5 26 14 17. 23.2 60 7.0 153 5.3 136.6 1.0 4 199 37 7. 0. 0. 26 16 49 13.1 59 13.2 154 58.8 5.0 1.4 3 296 46 0.16 0. 0. 0. 26 19 14 31.0 58 18.6 153 4.0 5.0 1.9 5 165 28 3.67 110.4 128.2 26 19 54 5.9 60 2.8 152 48.0 95.5 2.1 6 145 41 7.07 1.4 3.1 27 0.40 27.8 60 21.0 152 9.1 36.0 2.4 5 237 36 1.53 5.4 2.7 27 5 2 59.7 60 15.2 151 33.8 39.0 2.1 4 258 64 0.0 7. 3. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. | | 20 | , | | 2.147 | 0.7 | 11.5 | 155 | つと。も | 117•4 | 2.0 | 4 | 174 | 26 | ~ . | ∴ _ | ٠. | | | 26 14 17 23.2 60 7.0 153 5.3 136.6 1.0 4 197 37 7. | | 26_ | 1,4 | 15 | 24.0 | . 57 | 12.8 | 155 | 19.0 | 41.3 | 2-2 | 10 | 180 | | | | | | | 26 16 49 13.1 52 13.2 154 58.8 5.0 1.4 3 296 46 0.16 0. 7. 5 26 19 14 31.0 58 18.6 153 4.0 5.0 1.9 5 165 28 3.67 110.9 128.1 26 19 54 5.0 60 2.8 152 48.0 95.5 2.1 6 145 41 7.07 1.9 3.1 27 0.40 27.8 60 21.0 152 9.1 36.0 2.4 5 237 36 7.33 5.4 27 5 2 59.7 60 15.2 151 33.8 39.0 2.1 4 258 64 7.07 7. 27 7 11 16.0 59 44.3 152 35.1 92.1 2.1 5 127 37 0.05 1.6 27 10 50 33.2 59 20.9 151 3.8 5.0 1.3 4 261 109 7.07 0. 27 15 4 35.1 53 40.1 153 4.9 164.2 2.7 7 113 3 1.31 41.6 71.8 0 27 19 55 10.4 59 75.8 153 13.8 117.9 2.7 8 124 9 0.15 2.9 4.9 2 | | 26 | 14 | 17. | 23.2 | 60 | 7.0 | | | | | | | | | | | | | 26 19 14 31.0 58 18.6 153 4.0 5.0 1.9 5 165 28 3.67 110.9 150.2 26 19 54 5.9 60 2.8 152 48.0 95.5 2.1 6 145 41 7.07 1.9 3.1 27 0.40 27.8 60 21.0 152 9.1 36.0 2.4 5 237 36 1.33 6.4 27 5 2 59.7 60 15.2 151 33.8 39.0 2.1 4 258 64 7.07 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7. | | | | | -, , | ., . | | 100 | 7.0 | 1 3 - 1 4 - 1 | 1 • 17 | 4 | 17, | 3.7 | | U • | • | | | 26 19 14 31.0 58 18.6 153 4.0 5.0 1.9 5 165 28 3.67 110.9 150.2 26 19 54 5.9 60 2.8 152 48.0 95.5 2.1 6 145 41 7.07 1.9 3.1 27 0.40 27.8 60 21.0 152 9.1 36.0 2.4 5 237 36 1.33 6.4 27 5 2 59.7 60 15.2 151 33.8 39.0 2.1 4 258 64 7.07 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7. | | 27 | | | | | | | | | | | | | | | | | | 26 19 14 31.0 58 18.6 153 4.0 5.0 1.9 5 165 28 3.67 110.0 150.2 26 19 54 5.9 60 2.8 152 48.0 95.5 2.1 6 145 41 7.77 1.0 3.1 27 0.40 27.8 60 21.0 152 9.1 36.0 2.4 5 237 36 1.53 6.4 27 5 2 59.7 60 15.2 151 33.8 39.0 2.1 4 258 64 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | | | | | l•F⊥ | | | 154 | 58.8 | 5.0 | 1 • 4 | 3 | 294 | 44 | 0.15 | 1 | ,e- | - | | 26 19 54 5.9 60 2.8 152 48.0 95.5 2.1 6 145 41 7.07 1.0 3.1 27 0.40 27.8 60 21.0 152 9.1 36.0 2.4 5 237 36 7.33 6.4 27 5 2 59.7 60 15.2 151 33.8 39.0 2.1 4 258 64 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | | 26 | 10 | 14 | 31.0 | | | | | | | | | | | | | ٠. | | 27 0 40 27.8 60 21.0 152 9.1 36.0 2.4 5 237 35 1.33 5.4 27 5 2 59.7 60 15.2 151 33.8 39.0 2.1 4 258 66 2.0 7 37 0.05 1.6 2.7 10 50 33.2 59 20.9 151 3.8 5.0 1.3 4 261 109 0.07 0. 27 15 4 35.1 59 40.1 153 4.9 164.2 2.7 7 113 3 1.31 41.6 71.8 (2.7 19 55 10.4 59 27.8 153 13.8 11).9 2.7 8 124 9 0.15 2.9 4.9 2 27 23 36 15.2 60 10.1 153 8.8 17.9 2.7 8 124 9 0.15 2.9 4.9 2 | | | | | | | | | | | | | | ₹ 5 | | 110. | | | | 27 5 2 59.7 60 15.2 151 33.8 39.0 2.1 4 25% ft 1.33 6.4 2.1 27 10 50 33.2 59 20.9 151 3.8 5.0 1.3 4 261 109 3.37 0.95 1.6 27 15 4 35.1 53 4.9 164.2 2.7 7 113 3 1.31 41.6 11.8 0 27 19 55 19.4 59 27.8 153 13.8 113.9 2.7 8 124 9 0.15 2.9 4.9 5 27 23 36 15.2 60 10.1 152 8 8 17.9 2.7 8 124 9 0.15 2.9 4.9 5 | | | | | | | | | | 95.5 | 2 • I | 6 | 145 | 4.1 | 0.01 | 1 | , | | | 27 5 2 59.7 60 15.2 151 33.8 39.0 2.1 4 258 62 9. 27 7 11 16.0 59 44.3 152 35.1 92.1 2.1 5 127 37 0.95 1.6 27 10 50 33.2 59 20.9 151 3.8 5.0 1.3 4 261 109 9.37 0. 27 15 4 35.1 57 40.1 153 4.9 164.2 2.7 7 113 3 1.31 41.5 11.8 0 27 19 55 19.4 59 27.8 153 13.8 113.9 2.7 8 124 9 0.15 2.9 4.9 2 27 23 36 15.2 60 10.1 152 6.8 77.0 2.7 8 124 9 0.15 2.9 4.9 2 | | | Ō, | 40 | 2,7 • 9 | ຼ 50 | 21.0 | 152 | 9.1 | 36.0 | 2.4 | 5 | 237 | 3.6 | | | | | | 27 7 11 16.0 59 44.3 152 35.1 92.1 2.1 5 127 37 0.05 1.6 2.1 10 50 33.2 59 20.9 151 3.8 5.0 1.3 4 261 109 0.07 0. 27 15 4 35.1 50 40.1 153 4.9 164.2 2.7 7 113 3 1.31 41.5 71.5 0 27 19 55 10.4 59 25.8 153 13.8 11).9 2.7 8 124 9 0.15 2.9 4.9 2 27 23 36 15.2 60 10.1 152 6 8 70.0 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 27 | 5 | 2 | 59.7 | | | | | | | | | | | = | | | | 27 7 11 16.0 59 44.3 152 35.1 92.1 2.1 5 127 37 0.05 1.6 2.1 27 10 50 33.2 59 20.9 151 3.8 5.0 1.3 4 261 109 7.37 0.0 2.1 27 15 4 35.1 57 40.1 153 4.9 164.2 2.7 7 113 3 1.31 41.5 11.5 0.2 27 19 55 10.4 59 27.8 153 13.8 117.9 2.7 8 124 9 0.15 2.9 4.9 2 27 23 36 15.2 60 10.1 152 68 70.0 2.7 | | | | - | - • | , , | x 2 • 6 | 171 | 7 9 0 | 3.4. | 2 • L | 4 | Z 5 B | F - | $(a,b,\phi) \in \Phi(a)$ | ે • | • | | | 27 10 50 33.2 59 20.9 151 3.8 5.0 1.3 4 261 109 3.37 0. 27 15 4 35.1 59 40.1 153 4.9 164.2 2.7 7 113 3 1.31 41.6 11.8 (2.7 19 55 10.4 59 25.8 153 13.8 113.9 2.7 8 124 9 0.15 2.9 4.9 2 27 23 36 15.2 60 10.1 152 6.8 77.9 2.7 8 124 9 0.15 2.9 4.9 2 | | | _ | | | _ | | | | | | | | | | | | | | 27 10 50 33.2 59 20.9 151 3.8 5.0 1.3 4 261 109 3.37 0. 27 15 4 35.1 59 40.1 153 4.9 164.2 2.7 7 113 3 1.31 41.6 11.8 (2.7 19 55 10.4 59 25.8 153 13.8 113.9 2.7 8 124 9 0.15 2.9 4.9 2 27 23 36 15.2 60 10.1 152 6.8 77.9 2.7 8 124 9 0.15 2.9 4.9 2 | | 27 | | 11 | I5•0 | 59 | 44.3 | 152 | 35.1 | 92.1 | 2.1 | 5 | 127 | 3.7 | A . 184 | V - 2 | • | | | 27 15 4 35.1 52 40.1 153 4.9 164.2 2.7 7 113 3 1.31 41.5 1.8 (
27 19 55 10.4 59 25.8 153 13.8 112.9 2.7 8 124 2 0.15 2.0 4.9 2
27 23 36 15.2 60 10.1 152 8 8 77.9 2.7 8 124 2 0.15 2.0 4.9 2 | | 27 | 10 | 50 🗀 | | | | | | | | | | | | | | | | 27 19 55 10.4 59 25.8 153 13.8 117.9 2.7 8 124 9 0.15 2.9 4.9 2 27 23 36 35.2 60 10 1 152 68 70 0.2 7 8 124 | | | | | | | | | | | | | | 143.3 | 1. 17 | € • | 7. | | | $\frac{27.23.36}{27.23.36}$ $\frac{19.4}{15.2}$ $\frac{59.75.8}{153.13.8}$ $\frac{117.9}{117.9}$ $\frac{2.7}{2.7}$ 8 124 9 0.15 2.9 4.9 3 | | 4.1 | • • | , | I | | | | | 154.2 | 2.7 | 7 | 113 | 3 | 1.31 | 4 1 . 5 | | | | 27 23 36 .15.2 60 10 1 155 6 6 70 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | | | | | 5.9 | 25.8 | 153 | 13.8 | 117.5 | 2.7 | 8 | | | | | | | | | | 27 2 | 2 2 | 36 | 15.2 | | | | | | | | | | | | | | | | | | - ' | ' | | 50 | 11/01 | 1 72 | 0 • 0 | 111-4 | 2 • i | > | 205 | 44 | 0.05 | 4.3 | 9.7 |) | # COOK INLET-WESTERN GULF OF ALASKA EARTHQUAKES | | | TIME | LAT N | LOUG W | ก <u>EaTu</u> | MAG | NO. | | DM | RM5 | ERH | ERZ | q | |--------|--------|-------|-----------------|-------------------|---------------|-------|-----|------------|-----------------------|-----------|---------|---------------|-----| | 1977 | HR MN | SEC | DEG MIN | LEC WIN | ΚM | | | DEG | KM | SEC | KM | KM | | | FFA 28 | 5 14 | 53.6 | 63 9.7 | 150 46.2 | 27.•0, | 3,8 | 18 | _ 78 | 174 | 0.45 | | 732.3 | | | 28 | | 42.8 | 57 44.2 | 154 31.5 | 34.3 | 2.3 | | 122 | 45 | 0.21 | 2 • 7 | 2.6 | | | 28 | | 1.5 | 60 21.3 | 153 20.7 | 183•1 | 3 • 3 | 8 | 238 | 3.2 | 0.14 | 6.7 | 10.2 | | | 28 | | 0.9 | 59 48.4 | 154 31.1 | 127.4 | 2 • 4 | | 252 | 37 | 0.16 | 8.3 | 9.0 | | | | 14 4 | 7.4 | 59 0.5 | 152 41.3 | 100•4 | 2 • C | 5 | 157 | 46 | 0.52 | 22.3 | 28.0 | D | | 28 | 14 33 | 15.5 | 59 40.0 | 152 37.1 | 91•1 | 2.0 | 6 | 97 | 34 | 0.03 | 0.7 | 1.6 | | | | 16 9 | | 59 33.4 | 152 38.2 | 96 • 4 | 2.2 | 6 | 175 | 3.5 | 0.08 | 3 • 4 | 4.0 | | | | 16 19 | | 56 41.3 | 157 57.7 | 88.9 | 2.6 | 8 | 194 | 26 | 0.50 | 14.1 | 12.3 | | | | 16 51 | | 59 35 <u>.5</u> | <u> 153 6.1</u> | 114-0 | 2.5 | 7 | 84 | 9 | 0.10 | 2 • 1 | 3.7 | | | | 18 18 | | 59 57.1 | 153 11.7 | 121.7 | 2.2 | 4 | 194 | 33 | 0.09 | 0. | () 6 | Ç | | 28 | 20 54 | 0.2 | 59 47.3 | 151 59.4 | 5 • C ; | 1.4 | 3 | 221 | 71 | 0. | 0. | 0. | | | 28 | 21 49 | 10.4 | | 152 18.6 | 5 • 0 | 2 • 1 | 5 | 190 | 37 | 1.16 | 33.3 | 70.9 | | | MAR 1 | | 19.1 | | 152 49.7 | 97.6 | 2.6 | 6 | 110 | 23 | 0.15 | 3.2 | 6 • 0 | | | 1 | _ | | 59 36.9 | 151 18.5 | 5.0 | 2.0 | 3 | 315 | | 22.30 | 0. | 0. | | | 1 | | 49.1 | | 151 52.3 | 0•9 | 2.3 | 4 | 240 | 52 | 0.54 | 0. | 0 • | C | | 1 | _F 54 | 55.4 | 59 54.7 | 152 18.0 | 5 • € | 1.2 | 3 | 152 | 46 | 0. | 0. | 0. | | | | 10 31 | | | 152 29.0 | 121.5 | 2.6 | 5 | 165 | 35 | 0.06 | 2.5 | 4.1 | | | | 10 52 | 3.7 | | 151 28.6 | 2 • 3 | 2.5 | 6 | 255 | 50 | 1.12 | 33.4 | · 6 • 4 | | | _ | 22 3 | | 59 21.9 | 152 14.8 | 63.3 | 2.0 | 4 | 221 | 47 | 0.05 | 0.* | 0. | | | | 0 17 | | 62 1.6 | 150 41.9 | 0.7 | 4.0 | 15 | 62 | 60 | 1 • 0 7 | 5.3 | 22.8 | 1) | | 2 | 101 | 44.6 | 59 32.7 | 153 9.2 | 135.7 | 0• | 4 | 142 | 77 | 0. | 0. | O • | | | 2 | 13 5 | 13.4 | 59 59.3 | 152 38.2 | 5.0 | 0.3 | 3 | 132 | 4.8 | 0.01 | Q • | C_{\bullet} | | | | 14 45 | | 50 22.3 | 152 12.6 | 45.4 | 2 • 1 | 5 | 239 | 3.1 | | | 141.5 | | | | 18 34 | | 59 50 B | 152 40.3 | 92.2 | 1 - 8 | 4 | 119 | 33 | O.◆ | ψ. | | |
 | 5 38 | | 59 18.6 | 153 4.0 | 101.2 | 2.5 | 8 | 87 | ך ן | 0.20 | 3 • ∂ | 5.5 | *** | | 3 | ્ર 16 | 31.7 | 60 19.2 | 152 20.4 | 99.3 | 2 • 8 | 3 | 213 | 27 | 0.03 | | 4.0 | | | э | 9 19 | 23.0 | 57 34.9 | 154 54.8 | 81.3 | 2.3 | 5 | 152 | 3.2 | 0.12 | 5 • · | 7 | ` | | | c 34 | | 59 10.9 | 152 10.0 | 5 • 3 | 1.2 | 3 | 204 | 62 | C • | O • | ្. | | | | 10 35 | | 59 53.3 | 151 39.3 | 75.4 | 2 • 5 | 3 | 225 | 25 | 0.12 | 4 . | ς | | | | 11 33 | | 60 14.1 | 152 39.9 | 106•8 | 2 • 1 | 4 | 155 | 21 | 0. | ი• | | | | 2 | 14 9 | 30.1 | 53 48.7 | 156, 2.5 | 5.0 | 2.2 | ٦ | 242 | 215 | | | ∂ • | .• | | | 19 14 | 26.49 | 50 16.4 | 152 18.5 | 91.7 | 3 • 2 | 9 | 209 | 3.0 | | | | . , | | _ | 2c 9 | | 59 78.1 | 152 20.9 | 91.6 | 2.5 | . 3 | 101 | 2 1 | | 5.0 | 7.1 | | | 3 | 22 52 | 33.4 | 60 13.6 | 153 13.8 | 123.4 | 1.9 | 5 | 23.3 | 3.3 | 0.37 | ", e' • | | | | 3 | 22 5 | 10.6 | 59 35.9 | 152 25.0 | 5 • ♥ | 1.0 | 3 | 191 | 4.3 | () • | ઈ.• | ', * | - | | 4 | , , 40 | 2.6 | 59 46 - 1 | 151 45.7 | 43•° | 2.3 | 5 | 18 • | 14 | 7.73 | 3.4 | | | | | 5 1 | 1.)-4 | 58 28.5 | 154 4.2 | 97.5 | 2.6 | 7 | 223 | 70 | 0.17 | | | | | | 31 | 22.9 | 59 15-4 | 153 21.6 | | 2.7 | 5 | 120 | . 3 | | | | | | | | 2.3 | 59 51.4 | 153 33.6 | 143.2 | 2.3 | * | | 5 , 4) | • | 1 • • | ~ · | | | 4 | 21 20 | 2.6 | 59 13.9 | 154 11.9 | 5.0 | 1.5 | 3 | 211 | 1 4 | 71 | 7. | • • | | | 6 | | 40.0 | 60 25.4 | 15 <u>1</u> _38.0 | 5.0 | 2.3 | 3 | , S. 4. 4. | 62 | , Y . F. | | O. | , | | | 7 19 | 51.4 | 54 15.7 | 151 35.4 | 25.0 | 2.4 | Ó | 214 | 44 | (• · ·) | | 7 🔩 🤻 | | | | 11 33 | | 53 44.4 | 153 8.8 | | 2.6 | 6 | 155 | 10 | 0-13 | | | | | Ĩ | 1 11 | 54.9 | 50 14.3 | 153, 12.9 | 151•A | 1.0 | 4 | 213 | 29 | | 0. | e • | | | 6 | 7 6 | 50.4 | 59 21.0 | 152 0.5 | 5 • 0 | 1 • 8 | 3 | 213 | 76 | 0. | 0 - | 0 • | C. | # <u>COOK INLET-WESTERN GULF OF ALASKA EARTHOUAKES</u> | 1977 | ORIGI: | | LAT N. | LONG W. | DEBIN T | MAG | NO | GAP
CEG | DM
KM | PMS
SEC | ERH
KM | ERZ
KM | a | |----------------|---|--------------------------------------|---|--|--|---|------------------------|---------------------------------|----------------------------|--------------------------------------|----------------------------------|--|---------------| | 6
6 | 10 9
13 33 | 30.6
32.2
37.4 | 60 17.6
59 52.3
60 10.1 | 153 47.7
152 20.3
152 7.8
152 31.9
152 33.1 | 232 • 0
37 • 9
69 • 7
95 • 9 | 3.7
1.9
2.0
2.6
3.2 | 8
4
6
5
21 | 268
211
161
164
77 | 56
27
36
31
38 | 0.14
9.37
0.05
0.01
1.66 | 9.4
0.
1.1
0.4
9.1 | 14.3
0.
2.2
0.7
11.9 | 0
0
0 | | 7
7
7 | 1 30
12 27
14 16
16 5
18 31 | 4.7
5.8
35.3
58.7
42.5 | 59 54.3
58 56.6 | 153 7.3
152 18.7
153 36.2
153 33.5
152 36.0 | 9•1
85•2
100•3
110•4
49•9 | 1.2
2.2
1.7
1.7 | 6
7
4
4 | 142
150
210
242
177 | 13
46
80
7
51 | 4.44
0.16
0.
0.07
1.41 | 56.6
3.1
0.
0. | 0. | | | 8
8
8 | 21 57
4 44
10 25
13 33
13 59 | 47.2
33.8 | 58 50.7
59 49.2 | 153,48.1
154,43.7
152,28.9
151,52.5
152,21.1 | 14.0
139.3
80.9
5.0 | 1.8
2.4
2.3
0.9
1.8 | 5
6
3
6 | 143
259
125
226
180 | 39
41
46
77
39 | 0.06
9.11
9.16
0.01
1.03 | 1.6
6.9
2.4
0.
1.5 | 2.8
7.1
4.4
0.
3.5 |)
() | | 9
9 | 14, 25
14, 50
0, 18
5, 23
6, 20 | 17.0
55.4
45.9
52.0
27.0 | 59 35.5
59 57.6
58 42.5
59 32.4
60 15.6 | 153 3.2
152 29.5
152 53.7
152 30.3
152 29.0 | 104 • 3
9 • • •
63 • 6
8 5 • 6
9 9 • 1 | 2.4
2.9
2.1
2.1
1.9 | 7
10
5
5
4 | 75
142
144
100
187 | 12
53
32
42
23 | 0.09
0.25
0.04
0.01 | 1.7
4.0
1.5
0.3 | 3.0
5.4
2.2
0.7 | 3 6 5 | | .9
9 | 6 55
n 7
15 56
19 10
19 19 | 15.4
20.4
33.2
30.7
37.6 | | 154 0.6
152 51.2
152 24.7
151 51.3
152 56.0 | 95.4
80.7
52.4
33.3 | 1.9
1.9
1.9
2.8
1.2 | 5
. 7
10
5 | 258
160
182
253
113 | 39
32
41
53
28 | 0.03
0.21
0.24
0.34
3.45 | 6.9
10.3
3.9
7.9
8.1 | 2.8
10.7
5.8
2.5
25.4 | ر
ز | | | 6 41 | 33.2
42.3
43.0
34.3
25.0 | 58 52.5
61 17.6
58 0.8
59 14.2
60 28.1 | 151 14.7
153 44.2
153 54.6
152 26.7
152 47.4 | 1 • 0
2 • 8
31 • 7
66 • 8
0 • 1 | 2.1
2.3
1.8
1.7
2.4 | 5
5
5
6 | 257
326
285
183
309 | 69
110
44
53 | 0.25
0.19
0.03 | 11.5
21.4
3.1 | 494.3
9.9
17.9
1.6.5
497.2 |)
()
() | | 10
10
11 | 14 52
22 47
23 38
0 14
11 31 | 25+2
44+3
5+0 | 59 57.9
57 13.6
53 4.7 | 153 12.3
152 53.2
152 52.5
154 15.9
151 37.8 | 71.5
116.0
80.0
27.4
5.0 | 2 • 1
2 • 7
2 • 2
2 • 1
1 • 3 | 3
7
8
5
3 | 108
158
100
270
241 | 44
39
31
65
48 | 0.22
0.10
0.16
0.10
0.01 | 2.9
2.8
2.1
5.0 | 5.5
4.4
3.8
1.6 | 3 5 | | 11
12
12 | 15 43
3 18 | 37.4
33.4 | 53 51.7
59 6.1
58 46.1 | 152 38.9
153 26.1
153 22.3
153 36.7
151 13.4 | 109.4
142.7
5.0
0.4
17.6 | 2 • 1
1 • 3
1 • 4
2 • 1
2 • 3 | 4
4
3
6
6 | 137
186
349
156
267 | 41
26
30
50
65 | 0.
0.
5.97
0.22
0.56 | 0.
0.
3.2
37.9 | 0.
0.
0.
13.8
31.5 | 0 0 | | 12
13
13 | 21 30
C 36 | 23.6
45.3 | 59 42.5
58 31.5
60 34.1 | 154 26.3 | 32.7
111.3
5.1
15.0
112.6 | 2.7
2.0
2.4
3.7
2.0 | 6
4
5
8
6 | 267
193
297
286
157 | 86
93 | 4.37 | | 0.
489.0
171.5 | ζ
3
3 | | | COOK INLE | T-WESTERN | GULF_OF | ALÄSK | A EA | RTHOU | AKE5 | | | 2 | | |---------------------------------------|------------------|----------------------|------------------|---------------|----------|---------------------------------|---------------------------------------|--------------|------------------|-------------------|----| | 001GIN TIME
1977 HP MN SEC | LAT N
DEG MIN | LEC WIN | DEPTHKM | MAG | МO | GAP
DEG | DM
KM | RMS
SEC | ERH
KM, | ERZ
KM | a | | MAR 13 15 39 25.7 | 59 58-9 | 152 22.7 | 5•0 | 1.3 | 3 | 204 | 53 | 1.46 | 0. | 0. | C | | 13 17 19 17.5 | | | 5•0 | 1 • 1 | 3 | 211 | 73 | 0. | 0. | 0. | C | | 13 18 31 41.9 | 60 24.2 | 151 20.3 | 5.0 | 1.9 | 3 | 285 | 73 | 0.37 | O•_ | 0. | ') | | 13 23 31 15.6 | | 152 41.8 | 75 <u>•</u> 1 | | 6 | 130 | 37 | 0.04 | 0.7 | 1.2 | | | 14 1 23 15.8 | 58 43.8 | 153 48.0 | 5•0 | 2•1 | 6 | 134 | 70 | 0.26 | 3 • 1 | 456 • 2 | J | | 14 1 55 43.0 | 58 32.7 | 15332.8 | 54.8 | 2.3 | 6 | 113 | 58 | 3.46 | 0.03 | 259.2 | | | 14 4 40 50.8 | | 151 48.9 | 5 • C | 2.1 | 3 | 231 | 81 | 0. | 0 • | 0. | Ċ | | 14 5 27 36.9 | | 152 8.9 | 7.9 | 2.0 | 4 | 207 | 47 | 0.55 | 0. | 0. | 0 | | 14 9 48 7.5 | 59 38.7 | <u>153 38 8.</u> | <u></u> .9.♦6 | 1.0 | 4 | 229
231 | 23
42 | 0.02
0.04 | 0.
1.6 | 0 •
2 • 3 | | | 14 9 51 8.7 | 60 2.4 | 151 41.4 | 75 • 1 | 2.1 | 6 | 231 | 46 | () • ·) ·* | 1 • (. | 2 • 3 | _ | | 14 11 47 10.9 | 59 45 9 | 153 18.5 | 5.0 | 0. | 3 | 226, | | 0. | 0. | 0. | | | 15 0 42 17.6 | 56 37.8 | 157 58.1 | 74.3 | 2.8 | . 7 | 211. | 30 | 0.11 | 3.5 | 2.8 | | | 15 13 19 23.6 | 50 3.5 | 152 37.3 | 94•1 | 1.3 | 5
9 | 141
154 | 41
18 | 0.03
0.24 | 3.4
3.9 | 7•2
6•7 | | | 16 2 47 5.8 | | 153 4.0
151 30.4 | 107•4
23•9 | 2.6
2.4 | 5 | 287 | 154 | 0.11 | 14.9 | 6.5 | | | 16 6 3 5.7 | 01 394. | 151 5044 | 2.34 | | , | | - | | | | _ | | 16 6 51 32 • 3 | 59_59•1 | 152, 29.4 | 5.0 | 1.2 | 5 | 145 | 50 | 1.44 | 9+1 | 17.4 | | | 16 9.55 17.9 | 59 45.4 | 151 23.8 | 43.6 | 1.9 | 4 | 244 | 33 | 0.01 | 0.
3.7 | | | | 16 15 19 24 • 1 | 59 17.4 | 151 53.8 | 72.7 | 2.0 | 7
7 | 206
292 | 27
29 | 0•11
0•21 | 11.9 | | | | 16_19_3341.5 | | 150 29.2
152 15.6 | 35 • 9
5 • 0 | 2.5 | 3 | 156 | 52 | 0. | 0. | 0. | | | 17 10 18 9.1 | 59 4/s9 | 152 15.0 | , · • · · | 9. 3 | , | | , | • | | | | | 17 15 52 41.5 | 60 44.6 | 153 11.7 | 199•1 | 2.4 | 7 | 319 | 43 | 0.22 | 32.0 | | | | 17 16 35 4.3 | 59 33.7 | 153 46.7 | _2•5 | 1.6 | 8 | 194 | | 15.36 | 30.1 | -114.3
63.6 | | | 17 17 58 5.9 | | 152 22.5 | 51.5 | 2 • 2 | 6
7 | 210
200 | 62
30 | 1.47
0.17 | 6.3 | | | | 17 15 3 42 • 3 | | 153 17.1
152 15.5 | 150•²
85•9 | 1•7
2•2 | 12 | 150 | 30 | 0.30 | 8.7 | | | | 18 0 5 55.4 | 59 58.9 | 102 1000 | 53 3 4 17 | £, € Æ | 16. | € <i>p</i> ^{−1} | , | | | | | | 19 1 1 53.0 | 60 27.8 | 151 56.8 | 5.0 | 2.0 | 9 | 256 | 4.5 | 1 • 32 | 50.7 | | | | 18 → 9 33.5 | | 152 14.4 | F • 3 | 0 • 3 | <u>۸</u> | 146 | 3.9 | | 3.* | سینت چا۔
میلان | | | 18 10 11 16.0 | | 152 10.5 | 32.3 | 1 - 1 | 7
7 | 170 | 21 | 0.16 | 12.5 | 44 A | | | 18 17 235.5 | | 153 3.7
152 35.4 | 163.44
114.49 | 1.3 | 4 | 748 | | 0.00 | 0. | | | | 19 / 10 43.3 | 59 18.0 | 122 02•4 | IIV. | I • -4 | - | , | | | | | | | 19 21 30 25.4 | 59 18.7 | 153 10.6 | 90.1 | 1.9 | 9 | 101 | | 0.51 | 3.1 | | • | | 19 22 37 34.8 | | 152 3.2 | 200•3 | $1 \bullet 9$ | 4 | 301 | 5.3 | 0.5 | ψ. | Ů. | | | 20 0 13 13•B | | 153 17.3 | _ 5 • ∩ | 0 • 4 | 3 | 1 7 1 | , , , , , , , , , , , , , , , , , , , | ").
"). | 7. •
O • | (' • | ; | | 20 , 5 48 , _3•9 | | 157 10.8 | 25.1 | 1.0 | 4 | 251
167 | 32
21 | 0.25 | | | - | | 20 13 39 43.5 | 60 14.7 | 152 36.0 | 135+7 | 1 - 1 | - | 101 | | . • | | | | | 20 13 46 45.6
 51 0.7 | 147 21.9 | 34.7 | 2.7 | 17 | 135 | 114 | 1.17 | 9.7 | | | | 21 / 54 47.6 | | 153 22.2 | 103+3 | 2.0 | ÷ | 14.2 | 3.3 | 0.1. | 3 • 3
3 • 1 | | | | 21 17 53 23.8 | | 152 53.1 | 105.4 | 1 • 3 | 5 | 107 | 20 | 0.12
0.64 | | | | | 22 <u>- 14 42 65</u>
22 19 59 53 2 | | 149 38.8
153 38.6 | 34.5
120.7 | 3•?
2•0 | 19 | 135
137 | - 67
55 | 1.17 | 16. | 26, | | | 22 10 59 53.2 | 90 Y•€ | 173 30 40 | | | - | • | | | | | | | 22 20 50 42.2 | | 152 0.9 | સવ•વ | 1 • 5 | 7 | 144 | 23 | 0.49 | 9.3 | | | | 23 9 44 3.6 | | 150 27.4 | 5 • 3 | 2.3 | 5 | 247 | 100 | 0.47 | - 42•1
- 39•0 | | | | 23 17 16 15.6 | | 152 34.6 | 2•5
53.5 | J.9
J.5 | 5
4 | 291
195 | 54
57 | 1.95
0. | J. | | | | 23 17 56 12.0 | | 151 59.3
153 11.8 | 53•3
110•3 | 0.9 | 5 | 93 | 1 | 0.03 | 0.0 | | | | 23 21 13 24.7 | 7- 36 € T | 1.5 | 1 4 | ~ · | | - / | - | _ | | | | | COOK INLET-WESTERN GULF OF ALASKA EARTHQUAKE | \$ | |--|----| |--|----| | 1977 | OPIGI: | I <u>IIME</u>
SEC | LAT M | LONG
DEG | G_W_
MIN | EPTH | MAG | 110 | GAP | DM
KM | RMS
SEC | ERH
KM | ERZ
KM | ġ | |--------------------|---|--------------------------------------|---|---|----------------------|--|---|-------------------------|----------------------------------|-------------------------------|--------------------------------------|-----------------------------------|-------------------------------------|-------------| | 24
24 | 23 51
4 31
11 17 | 35.3
13.5
37.2 | 59 48.5
61 34.1
55 26.5
59 23.0
60 24.8 | 151
150
151 | 30.8
47.7
20.1 | 146.6
220.2
25.0
85.8
2.5 | 1.0
2.6
2.5
1.4 | | 197
238
284
279
314 | 18
145
245
17
135 | | 143.7
119.5
6.9 | 145.8
407.0
7.3 |)
0
7 | | 24
24
25 | 16 13
21 43 | ")•
22•0 | 60 41.6
59 52.8
60 2.9
59 51.5
61 15.1 | 153 2
153 1
151 1 | 24.6
14.0
18.0 | 86.4
165.4
145.0
61.4
1.3 | 2 • 3
3 • 1
1 • 6
2 • 0
2 • 7 | 22
6 | 258
84
184
253
241 | 72
27
44
29
44 | 0.24 | 8.9
9.6
15.9 | 8.2
11.9
25.1
14.3
54.8 | 0 | | 26
26
26 | 4 15
7 51 | 1.9
31.6
_12.9 | 59.16.0
59.49.4
57.42.6
60.18.5
60.17.8 | 153 1
153 3
152 1 | 3.0
86.3
8.6 | 1•3
127•1
35•2
122•9
48•6 | 0.9
1.9
1.3
1.1 | 4
10
10
5
5 | 299
103
- 36
217
188 | 107
19
47
28
13 | 2.71
0.20
0.35
0.23
0.56 | 0.
2.5
4.2
20.9
25.4 | 0.
4.4
3.9
41.5
40.2 | 000 | | 26
- 26
- 26 | 16 58
19 44 | 45.5
49.1 | 58 33.9
59 28.7
59 1.3
50 10.0
59 2.4 | 152 1
152 2
152 5
152 3
154 3 | 2.8
6.8
10.8 | 2.5
73.7
5.0
125.4
1.2 | 0.7
1.0
0.9
1.3
).8 | 4
4
4
4 | 279
138
188
173
275 | 83
45
39
31
65 | 0.93
0.
0.98
0.21 | 0. | 0.
0.
0. | 0.0 | | 27
27,
27 | 3 10
13 29
13 57
14 32
15 8 | 21.3
27.1
50.2
24.7
16.8 | 59 12.3
59 39.4
59 35.8
59 29.0
59 46.0 | 151 5
149 4
152 3
154
152 4 | 2.9
0.6
2.2 | 5.0
21.6
61.7
407.5
113.0 | 1.1
2.1
1.5
2.8
2.2 | 4 | 231
322
91
279
98 | 91
107
41
33
26 | 0.60
0.64
4.00
0.08
0.96 | 0.
159.7
36.0
0.
11.2 | 0.
42.0
72.5
0.
19.2 |)
(
: | | 27
27
28 | 14 17
25 9
23 3
2 7
4 12 | 15.5
21.3
24.5
33.6 | 59 49.6
59 5.5
59 50.7
50 10.3
60 50.6 | 155 3
153 1
153 3
152 3
150 2 | 6.4
8.0
6.7 | 61.7
125.7
119.7
47.7
5.0 | 1.5
1.7
2.0
1.5
1.8 | 9 | 297
110
172
154
333 | 132
21
38
28
144 | 0.02
1.54
0.62
1.32
5.43 | 24.2
24.4
13.1
41.1 | 55.8
44.1
22.5
21.8 | () | | 28
28
28 | 5 35
4 24
10 7
10 41
21 34 | 55.4
5.1
30.0 | 57 11.9
89 40.8
59 36.0
56 8.9
59 51.8 | 151
152 5
146 2 | 9.6
7.2
4.9 | 33.0 | 1.0
1.3
1.3
2.9 | 4 7
5 | 184
287
104
346 | 116
16
480 | 0.30
1.00
0.29 | 6.6
0.
6.7
316.9 | 14.8
0.
20.7
152.3 | 00000 | | 29
29 | 2 35
11 19 | 17.7
12.0
12.9 | 51 26.0
50 2.8
59 39.6
59 47.7
60 19.8 | 152 1
153 1
152 1
152 5
151 5 | 8.8
5.4
9.9 | 115.5
153.4
25.1
91.3
2.5 | 1.9
1.4
1.2 | 7
7 | 191
132
151 <u></u> | 44
34
20 | 1.34
0.56
5.54
0.70
1.86 | 20.4
59.3
23.2 | 46.5
222.5
49.5 | 0 0 | | 30 | 2 47
7 58
9 5
3 19
17 22 | 7.1
10.7
44.0 | 59 41.6
59 16.3
59 33.7
60 1.0
59 30.7 | 150 4
152 2
153 4
153
153 1 | 8.4
5.7
7.1 | 5.0
22.5
154.4
143.5
123.5 | 1.6
1.3
1.4
1.3
1.5 | 8
4
7 | 296
130
221
190
132 | 136
51
31
41
16 | 1.01
2.23
0.
0.71
0.40 | 0.
18.7
0.
25.2
10.6 | 0.
105.7
0.
70.6
26.4 |)
(
(| # COOK INLET-WESTERN GULF OF ALASKA EARTHQUAKES | | 051617 | | | Lone_w | | MAG | _NO | GAP | DM. | PM5 | FRH | ERZ |) | |---------|---------------|------|---------|----------|---------|-------|-----|-----|-----|--------|---------|---------------|----| | 1977 | Ho MI | SEC | DEG MIN | DEG MIN | KM | | | DEG | KM | SEC | KM | KM | | | !'AR_30 | 15 5 | 21.6 | 59 58.3 | 153 16.6 | 129.5 | 1.6 | . 8 | 181 | 35 | 0.56 | 13.9 | 32.8 | ') | | 30 | 20 8 | 43.8 | 60 28.6 | 152 41.4 | 159•7 | 1.6 | 6 | 296 | 7 | 1.01 | 102 • 1 | 192.3 | | | 31 | · 0 16 | 50.6 | 59 59.3 | 153 13.1 | 129 • 8 | 1.4 | 5 | 198 | 37 | 0.68 | 37.€ | 97. • 0 | 0 | | 31 | <u>. c 53</u> | 4.2 | | 153 9.3 | | _ 1.0 | 6 | 186 | 27 | 0.67 | 19.4 | 47.5 | ٠, | | 31 | 6 15 | 8.0 | 58 18.4 | 153 50.1 | 65.5 | 2.2 | 12 | 111 | 48 | 1.28 | 10.8 | 22.6 | Ç | | 31 | 9 1 | 31.2 | 60 1.2 | 154 32.0 | 84.2 | 1.1 | 4 | 271 | 83 | 0.58 | 0. | 0. | O. | | | ۶ 22 | 57.8 | 50 13.0 | 152 44.5 | 105.0 | | 6 | 152 | 2.2 | 1.07 | 44.5 | 101.5 | Ð | | 31 | 11 26 | 51.9 | 59 52.4 | 153 4.9 | 117.4 | 1.2 | 6 | 177 | 26 | 0.70 | 23.1 | 55.0 | D. | | | 11 55 | 47.5 | | 153 14.5 | 135./ | 2 • 0 | . 8 | 121 | 36 | 0.75 | 12.9 | 27.5 | C | | 31 | 12 46 | 10.4 | 58 57.7 | | 7 • € | 8.0 | 6 | 203 | l | 2.49 | 147.2 | 4.8 | Ö | | 31 | 13 24 | 17.2 | 59 59 5 | 146 33.2 | 26.4 | 2.6 | 5 | 341 | 283 | 0.62 | 734.8 | 12.4 | Э | | | 14 29 | 44.4 | 60 12.9 | 152 20.4 | 93.5 | 1.8 | 8 | 194 | 33 | 1.09 | 19.2 | 3.0 € 4 | n | | 31 | 16 33 | 35.2 | 60 23.9 | 152 23.4 | 49.4 | 1.7 | 6 | 237 | 21 | 1.47 | 304.5 | 376.7 |) | | 31 | 17 23 | 15.6 | 59 44.6 | 153 18.2 | 121 - 1 | 1.5 | 6 | 193 | 10 | 0.40 | 14.5 | 7 4 | .) | | 31 | 19 10 | 32.1 | 58 37.3 | 152 4.8 | 5 • 0 | 1.7 | 9 | 177 | 88 | 3.79 | 31.9 | ∃3 . 0 |) | | 31 | 19 41 | 37.4 | 60_5.2_ | 152 25.0 | ,5 • O | 1 • 2 | 6 | 174 | 41 | 5.68 | | | | | 31 | 21 19 | 42.2 | 60 39.0 | 149 43.4 | 1 • ? | 2 • 4 | 10 | 295 | 152 | Re _55 | 975.4 | 364.49 | • | # Appendix 3 Epicenter Maps Lower Cook Inlet-Western Gulf of Alaska January 1, 1977-March 31, 1977 Lower Cook Inlet epicenters (Class 1) - January 1, 1977-March 31, 1977 Kodiak-Alaska Peninsula epicenters (all locatable events) - January 1, 1977-March 31, 1977 Lower Cook Inlet epicenters (all locatable events) - January 1, 1977-March 31, 1977 Quarterly Report: R.U. #253 Title: Offshore permafrost: probing, thermal regime, and data analysis Period: April 1, 1977, to June 30, 1977 P.I.'s: T. E. Osterkamp and W. D. Harrison I. Task Objectives: To determine the subsea permafrost regime in selected near-shore areas in the Chukchi and Beaufort Seas using light weight probing techniques and appropriate data analysis (D-9). II. Field and Laboratory Work: The first two weeks of April were spent completing the design and construction of our probes and equipment. On April 12, Dr. Osterkamp traveled from CRREL to the Geophysical Institute. The following week was spent on preparation for the field work and on calibration and testing of the equipment. We were in the field from April 25-May 18. The field party consisted of W. Harrison, R. March, T. Osterkamp, and M. Smith (for the last two weeks only). One man returned to Barrow May 26-28, to re-log boreholes there. Holes were driven or jetted into the sea bed at Kotzebue, Cape Blossom, Rabbit Creek, and Barrow in the Chukchi Sea, and Harrison Bay, Prudhoe Bay, and Elson Lagoon in the Beaufort Sea. A brief description of the type of data obtained follows: 1. Southeastern Chukchi Sea-Rabbit Creek hole Location: Approximately 36 km north of Cape Krusenstern Method: Driving Distance offshore: 75 m Water depth: 4.0 m Ice thickness: 1.2 m Depth reached: 18 m below sea bed Data obtained: Temperature profile, blow count profile Jetting into the sandy bottom was attempted, but abandoned when what seemed to be coarse gravel was encountered at $\simeq 1$ m below the sea bed. The ice was rafted in several places near the hole. A fairly detailed sea bed profile and temperatures under the ice near the hole were measured. ## 2. Kotzebue Sound-Cape Blossom hole Location: Approximately 18 km south of Kotzebue Method: Jetting Distance offshore: 730 - 20 m along a line bearing 308° (true) from Cape Blossom bench mark. Distance to closest shore about 300 m. Water depth: 1.37 m Ice thickness: 1.07 m Depth reached: 10 m below sea bed Data obtained: Temperature profile Jet probably stopped by gravel, some of it fairly coarse. ## 3. Kotzebue Sound-Kotzebue hole Location: On a line offshore approximately in line with the runway of Kotzebue airport
Method: Jetting Distance offshore: About 310 m (372 m from lights at end of airport runway). Water depth: 1.8 m Ice thickness: ≈ 1.2 m Depth reached: 25 m below sea bed Data obtained: Temperature profile Jetting was easy and the total time required was two hours. What appeared to be sand or gravel was encountered at 15-20 m. The jet was finally stopped at 25 m by what seemed to be a cobble or possibly bedrock. A sea bed profile was obtained near the hole. ## 4. Kotzebue Sound Sea bed temperatures were measured at several points along two lines across Kotzebue Sound; one from Cape Blossom toward Cape Espenberg and one from Cape Espenberg toward Cape Krusenstern. ## 5. Barrow, Chukchi Sea-NARL hole Location: Offshore near NARL Method: Jetting Distance offshore: \approx 705 m (750 m from sea ice radar mast) Water depth: 6.57 m Ice thickness: 1.63 m Depth reached: 16 m below sea bed Data obtained: Temperature profile Jetting was slow. ## 6. Harrison Bay-Thetis Island hole Location: About due south of Thetis Island and about 8.5 km due west of Oliktok DEW station beacon Method: Driving Distance offshore: About 5.7 km perpendicular to coast southwest of Oliktok DEW station. Water depth: 2.95 m Ice thickness: About 2.0 m. Depth reached: 15 m below sea bed Data obtained: Temperature, salinity and blow count profiles. The salinity of the water under the ice was 38°/00. Very hard driving was encountered at 16 m. ### 7. Harrison Bay-Oliktok hole Location: About 550 m west of a point where the projection of DEW station runway intersects the coast Method: Jetting Distance offshore: Closest shore roughly 400 m Water depth: 2.4 m Ice thickness: 2.1 m Depth reached: 8 m below sea bed Data obtained: Temperature profile The first 3 m of pipe went in easily. Sandy gravel was encountered at 3 m. Penetration of the next 5 m was with great difficulty due to caving in the hole. ### 8. Prudhoe Bay-Hole 1252 Location: On our old line bearing about 30.5° (true) from north Prudhoe Bay State #1 well, about even with the end of the original section of the west Arco dock Method: Driving Distance offshore: 1252 m Water depth: 1.97 m Ice thickness: 1.87 m Depth reached: 15 m below sea bed Data obtained: Temperature, salinity and blow count profiles. Hydraulic conductivity measurements. Considerable time on probe development was spent in this hole. ### 9. Prudhoe Bay-Hole 2114 Location: On our old line, bearing about 30.5° (true) from north Prudhoe Bay State #1 well Method: Driving Distance offshore: 2114 m Water depth: 1.85 m Ice thickness: $\approx 1.9 \text{ m}$ Depth reached: 26 m below sea bed Data obtained: Temperature and blow count profiles This hole was also an experiment to learn what depths could be reached at Prudhoe Bay with our light-weight driving equipment. Driving was suspended when all our drill rod was used up; driving was still proceeding efficiently. ## 10. Prudhoe Bay-Offshore hole Location: N70°34.0', W148°21' (NOAA helicopter global navigation system coordinates) about 8.9 km due north of Reindeer Island Method: Jetting Distance offshore: 22.1 km from point of intersection of west Arco dock with land Water depth: 20.86 m Ice thickness: 2.09 m Depth reached: \simeq 38 m below sea bed Data obtained: Pipe broken off at sea bed by ice movement before temperature logging was possible. Logging was delayed by bad flying weather. The jetting progressed very easily to the 38 m depth (when all the pipe was used up) indicating that the gravel horizon lies below this depth. Experience gained indicates that this experiment can be performed next year, possibly using some flexible hose to allow for ice movement. # 11. Elson Lagoon-Tekegakrok Point-Hole 575 Location: On a line bearing 56.(0)° (true) offshore from bench mark on Tekegakrok Point Method: Jetting Distance offshore: 575 m Water depth: Ice frozen to bottom Ice thickness: 1.25 m Depth reached: 19 m below sea bed Data obtained: Temperature profile Ice-bonded sediment to a depth of about 2.5 m below the sea bed was encountered, followed by an ice-unbonded layer extending to about 4.3 m, and an ice-bonded layer extending to the depth reached. ## 12. Elson Lagoon-Tekegakrok Point-Hole 611 Location: On a line bearing 56.(0)° (true) offshore from benchmark on Tekegakrok Point Method: Jetting Distance offshore: 611 m Water depth: 1.7 m Ice thickness: 1.68 m Depth reached: 27 m below sea bed Data obtained: Temperature profile What appeared to be bonded permafrost was reached at 11 m. This hole froze up and temperature could only be logged to a depth of 21 m. ## 13. Elson Lagoon-Tekegakrok Point-Hole 798 Location: On a line bearing 56.(0)° (true) offshore from Tekegakrok Point Method: Driving and jetting Distance offshore: 798 m Water depth: 2.22 m Ice thickness: 1.65 m Data obtained: Temperature, salinity and blow count profiles. Hydraulic conductivity measurements. Hard sediment (clay horizon?) was encountered at about 12 m below the sea bed. ## 14. Elson Lagoon-Tekegakrok Point-Hole 1036 Location: On a line bearing 56.(0)° (true) offshore from benchmark on Tekegakrok Point Method: Jetting Distance offshore: 1036 m Water depth: 2.5 m Ice thickness: About 1.7 m Depth reached: 17 m below sea bed Data obtained: Temperature profile What appeared to be a rock of at least cobble size was encountered at 4 m below sea bed. The jet was moved over 3 m where it penetrated 17 m below sea bed. Very hard sediment was encountered (a clay horizon?) at 15 m. ## 15. Elson Lagoon-Tekegakrok Point-Hole 1466 Location: On a line bearing 56.(0)° (true) offshore from benchmark on Tekegakrok Point Method: Jetting Distance offshore: 1466 m Water depth: 2.80 m Ice thickness: 1.8 m Depth reached: 20 m below sea bed Data obtained: Temperature profile - III. Results and Interpretation We have just begun our data reduction and analysis. - IV. Problems Lack of support (flying) at NARL due to high priority Navy research. - VI. Funds expended: \$168,179 as of June 14, 1977 # Quarterly Report Contract #03-5-022-55 Research Unit #271 Report Period: 9th Quarter Ending June 30 Number of Pages: 3 ## BEAUFORT SEACOAST PERMAFROST STUDIES James C. Rogers John L. Morack Geophysical Institute University of Alaska Fairbanks, Alaska 99701 (907) 272-5522 June 25, 1977 - I. Task objectives: The objectives of this study are to develop an understanding of the nature and distribution of offshore permafrost along the Alaskan Beaufort Seacoast. Also of interest is the distribution of permafrost beneath the barrier islands. Emphasis is placed upon seismic methods but close cooperation with others using thermal, chemical and geological methods is an important part of the work. - II. Field work: Two types of seismic investigations are planned for the summer field season. Refraction work will be carried out in cooperation with the USGS aboard the "Karluk" around the drill line from the west dock in Prudhoe Bay to Reindeer Island. Also, Cross Island will be investigated as well as the area around the Sag river. Some seismic reconnaisance work on the barrier islands will also be conducted. The sketch map below indicates tentative seismic lines for the work which was scheduled in mid August to minimize ice related problems. - III. Results: Information has been gathered on offshore permafrost near Prudhoe Bay. Several general features including surface slope and surface roughness have been observed. Several of these are to be found in the Beaufort Sea Synthesis Report (Arctic Project Bulletin #15, NOAA) where they have been coupled with information from other investigators. - IV. Preliminary Interpretation of Results: Data taken by this research unit has been synthesized with data from others in the Beaufort Sea Synthesis Report. Among the most important interpretation is that the offshore islands appear not to be uniformly underlain by ice bonded permafrost which suggests that the high salinity interstitial fluid is a dominant factor in the growth and decay of offshore permafrost. - V. Problems encountered/recommended changes: Continued efforts are being expended to diversify the seismic investigation. These have included the addition of portable land seismic equipment for island work. The result of this diversification is the recuction of the dependency upon one vessel and the attendant environmental/scheduling problems. - VI. Estimate of Funds Expended to Date: Approximately \$97,000. ## Quarterly Report Contract 03-5-022-56 Task Order #3 Research Unit #290 Reporting Period 4/1/77-6/30/77 Benthos - Sedimentary Substrate Interactions Charles M. Hoskin Institute of Marine Science University of Alaska Dr. C. Hoskin is currently on leave from the University of Alaska. He is continuing to work on the correlation of major benthic organisms with sediment size analysis data. No results are available at this time. Dr. Hoskin is scheduled to return to the University in September. A full report on the progress of this project will be submitted on September 30, 1977. As the following Data Submission Schedule indicates, data have been submitted for the analysis of sediment samples received, as proposed. June 30, 1977 # 3rd Quarterly Report OCSEAP RU #327 Shallow faulting, bottom instability, and movement of sediments in lower Cook Inlet and western Gulf of Alaska Principal Investigators: Monty A. Hampton Arnold H. Bouma U.S. Geological Survey 345 Middlefield Road Menlo Park, CA 94025 ## I. Task Objectives Assessment of the environmental geologic hazards of lower Cook Inlet and the western Gulf of Alaska; in particular the identification and mapping of active surface faults and areas of sediment instability. ## II. Field or laboratory activities During the past quarter we continued our laboratory analyses of sediment samples collected in 1976, including computer processing of size analyses and scanning electron microscopy. Also, we were active in preparing our vessel, the R/V SEA SOUNDER, for this summer's field season, as well as preparing for
our own cruises in lower Cook Inlet and on the Kodiak Shelf, which we are trying to coordinate with the NOAA group in Seattle. ## III. Results None of the above-mentioned analyses are completed yet. #### IV. Preliminary interpretation of results Refer to the last Annual Report, #### V. Problems encountered - recommended changes None #### VI. Estimate of funds expended As of May 21, 1977: \$45,000 ## Quarterly Report Contract: RK6 - 6074 Research Unit: RU-429 Reporting periods: 1 April 1977 - 1 July 1977 Faulting, Sediment, Instability, Erosion and Deposition Hazards of Norton Basin Sea Floor Hans Nelson Devin Thor Pacific-Arctic Branch of Marine Geology 345 Middlefield Road Menlo Park, California 95025 July, 1977 Activities this quarter included: A) analysis of seismic records from the Fall, 1977 cruise in Norton Basin, B) data summary, preparation and presentation of sand wave studies at the national AAPG-SEPM convention, June, 1977 in Washington D.C., and C) preparation for the Summer, 1977 cruise beginning in early July. Analysis of high resolution seismic profiles continued at the Menlo Park and Seattle offices of the USGS. The primary missions were to continue assessment of active faulting, determine tectonic setting for the Pt. Clarence ridge and trough and sandwave field areas, isopach Holocene sediment thickness, and determine location of buried channels with thick fill of Holocene sediment. Essentially all seismic, stratigraphic, sedimentologic, hydrographic, and photographic data were synthesized for the Port Clarence sandwave area because of the preparation for a talk at the Alaska OCS symposium for the AAPG-SEPM convention. These data suggest that active scour may occur in swales between the major ridges off Port Clarence and that sandwaves have modified recent ice gouges. On the other hand, unmodified gouges indicate that movement of mobile bedforms is not continual, but occurs intermittently, probably during major storm events. The greatest amount of time this past quarter has been consumed by preparation for the upcoming cruise to Norton Basin. Primary effort was concentrated on procuring and setting up a 200 kHz high resolution, narrow beam echo sounder for determining precise height and/or depth measurements of mobile bedforms, ice gouges, and gas craters. Experimentation and development of adequate side-scan sonar targets for permanent underwater installation also was a significant effort. We wish to emplace these systems to reoccupy transects in mobile bedform, ice gouge and gas crater areas, so that rate of movement and formation of these hazardous features can be assessed. # Quarterly Report Contract RK6-6074 Research Unit: 430 Reporting Period: 1 April 1977 30 June 1977 Bottom and Near-Bottom Sediment Dynamics in Norton Basin > David A. Cacchione David E. Drake Pacific-Arctic Branch of Marine Geology U. S. Geological Survey 345 Middlefield Road Menlo Park, California 94025 July 1, 1977 #### I. Objectives - A. Development of quantitative relationship between hydrodynamic bottom velocity shear and induced sediment entrainment for a specific site in Norton Sound. - B. Estimation of near-bottom sediment flux at various locations in Norton Sound, with particular attention to the movements of Yukon River materials. - C. Comparison of bottom sediment movements during quiescent and stormy periods at specific sites in Norton Sound. - D. Monitoring of bottom currents and light scattering/transmission (within two meters of the sea floor) to enable prediction of sediment and pollutant flux vectors at future times. - E. Measurement of subsurface and surface suspended sediment distribution in Norton Basin. - II. Field and Laboratory Activities - A. Field activities: none - B. Laboratory work: - 1. Sediment samples collected at GEOPROBE tripod site (5 gravity cores) were processed in the USGS sediment laboratory, Menlo Park. Textural parameters were determined using sieves and settling tubes, hydrophotometer and pipettes. - 2. GEOPROBE cassette tapes have been converted to 9-track computer tapes. GEOPROBE data has been processed and plotted as time series data. Calibrations and corrections to the raw data have been applied; present results are in usable physical units. - 3. Nome National Weather Service wind, air pressure, air temperature data for the period 19 September 1976 thru 15 October 1976 has been plotted and placed on computer tape. - 4. Extensive calibration of the Marsh-McBirney electromagnetic current meters used on the GEOPROBE tripod has been completed. A recirculating water flume at Stanford University was used for the calibrations. Outputs of the e-m current meters were compared to measurements taken with a DISA laser water velocimeter. - 5. Modifications to the GEOPROBE electronics system have been in progress to enable better performance of the current meters and pressure sensing components. The Montedoro nephelometer-transmissometer (N-T) instrument was returned to the manufacturer for refurbishment and sensitivity increase. A new temperature-compensating circuit was added to both N-T's. - 6. Analysis of suspended sediment filter samples is still in progress. - C. Methods: same as discussed in OCSEAP Annual Report, Sediment transport in Norton Sound-Northern Bering Sea, Alaska, 1 April 1977, Cacchione and Drake. - D. Sample localities: no new samples were collected. - E. Data collection: no new data except for calibration data described above. - F. Milestone chart: no changes #### III. Results During the period of the GEOPROBE tripod recording no unusually large storm events crossed through the Norton Sound region. Air temperatures averaged about 12.0°C, falling more rapidly to about 0°C during the last week (Oct 6-14). Surface wind speeds were generally low to moderate (5 to 15 knots), except for a 1.5 day period of 20-30 knot winds during the tripod recovery. Bottom currents at the GEOPROBE site were poorly correlated with the surface wind speed and direction measured at Nome. This latter relationship has also been reported by NOAA (PMEL) researchers. Figure 1 shows the half-hourly bottom current speed averages over the entire experimental duration measured with the Bendix rotor. The peak current speed of about 30 cm/s early on September 29 correlates with a decrease in light transmission (TRANS) and a sudden increase in light scattering (NEPH). This relationship suggests local resuspension by the high bottom current speed. Note that speeds typically were 10-15 cm/s and did not appreciably change the light scattering measurement. In Figure 2 we have expanded the time scale to show in detail the postulated resuspension event. The light scattering (NEPH) peak correlates with the time of peak bottom current. The light transmission (TRANS) appears to lead the peak activity in bottom current by about 6 hours, responding to a gradual increase in the bottom current. In Figure 3 we present actual time series data taken from the GEOPROBE electromagnetic current sensors at 15 cm (speed 2) and 40 cm (speed 1) above the sea floor. The data were sampled every second for a burst duration of 132 seconds. Two such samples for each current sensor are displayed. The two burst samples are separated in time by one-half hour. The dominant features in each record are: 1) wave induced currents with periods of 5-7 seconds and about 5-10 cm/s peak speeds; 2) a mean level of about 5 cm/s for the first burst and increasing to about 8 cm/s for the second burst. This increase possibly represents a tidal effect. Further analysis of both burst and averaged current meter data is proceeding. #### IV. Preliminary Interpretation of Results - 1. Resuspension of bottom materials dominated by modern Yukon silty sand occurred at flow speeds of 30 cm/s. The minimum threshold has not yet been determined. - 2. Local transport of bottom and near-bottom sediment is induced by a complicated flow regime caused by waves, tidal and mean flow. Bottom currents of at least 12 cm/s can theoretically move the materials at the tripod location; speeds of 12 cm/s were the average measured conditions. This suggests some equilibrium between mean size and average (or mean) bottom currents. - 3. Storm generated currents presumably entrain the sediments; the dominant mean flow, directed toward the Bering Strait, removes all but the coarse fraction. #### V. Problems encountered The Marsh-McBirney electromagnetic current meters have had several electronic and performance problems that have necessitated a careful, time-consuming calibration process to be established. The results of this calibration will be published under separate cover. #### VI. Estimate of funds expended About \$5,000 of project funds have been expended during this quarter. #### FIGURE CAPTIONS - Figure 1. Current speed and direction measured with the Bendix savonius rotor/vane sensor located on the GEOPROBE tripod at 1.5 meters above the sea floor. Current speeds are one-half hour averages; vane readings were taken at the mid-sample period for the rotor measurement. Both are plotted as continuous curves. Light transmission (TRANS) and nephelometer (NEPH) values were measured with a Montedoro-Whitney instrument at half hourly intervals. Values are plotted on a relative scale. - Figure 2. Similar data as for figure 1 except horizontal scale has been expanded to cover a three-day period. - Figure 3. Burst e-m current meter measurements taken with the GEOPROBE vertical current meter array. Speed 2 and Speed 1 are one second values of current magnitude at 15 cm and 40 cm above the sea floor, respectively. Two consecutive bursts of 132 samples (seconds) are shown. Each burst occurs on the half hour. FIG. 2 Research Unit 473: Quarterly Report, April-May-June 1977 SHORELINE HISTORY OF CHUKCHI AND BEAUFORT SEAS AS AN AID TO PREDICTING OFFSHORE PERMAFROST CONDITIONS #### I. Abstract of Highlights Hopkins participated in meeting convened by B.L.M. in Anchorage on April 6th to evaluate
probability of existence of identifiable archaeological sites on the continental shelf of Beaufort Sea and to decide whether a study should be funded to rank different areas on the Beaufort Shelf according to probability of containing identifiable archaeological sites. - II. Task Objectives: D-9 - III. Field or Laboratory Activities - A. No field activities. - B. Scientific Party - D. M. Hopkins, geologist and P.I. Louie Marincovich, molluscan paleontologist - R. E. Nelson, palynologist, compile paleoclimatic data - R. W. Hartz, compile coastal maps - C. Methods of Analysis Study of maps and air photographs Synthesis of field observations Amino-acid racemization study of fossil mollusks - D. Sample Localities: No new ones. - E. Data collected or analyzed Compile maps of direction of sediment transport, height of highest driftwood line, localities of rapid erosion, Icy Cape to Skull Cliff. Identify modern mollusks from beach collections from Beaufort Sea coast. Compile and synthesize data on history of sea level, temperatures, and snow cover in northern Beringia (Chukchi Sea shelf, Beaufort Sea shelf, and northern Alaska) during the last 30,000 years. #### IV. Results Hopkins participated in meeting convened by B.L.M. in Anchorage on April 6th to evaluate probability of existence of identifiable archaeological sites on the continental shelf of Beaufort Sea and to decide whether a study should be funded to rank different areas on the Beaufort Shelf according to probability of containing identifiable archaeological sites. - V. Interpretation: Nothing new to report. - VI. Problems encountered and recommended changes: No problems encountered. Fieldwork will be conducted between July 15 and September 1st on Beaufort Sea coast. All barrier islands between Point Barrow and Flaxman Island will be visted and mainland coast will be examined between Oliktok Point and Flaxman Island. Activity is shifted from Chukchi Sea to Beaufort Sea coast because shoreline information urgently needed there in order to interpret results of 1977 borehole program and to gather information upon which estimates of distribution of offshore permafrost can be based in accordance with leasing schedule. - VII. Estimate of funds expended to date: \$10,900 (Remaining funds will be expended on salaries, travel, and field expenses during July 15-Sept. 1st fieldwork.) ## SECOND QUARTERLY REPORT Period: April 1, 1977 - June 30, 1977 Title: Evaluation of Earthquake Activity Around Norton and Kotzebue Sounds - RU 483 Principal Investigators: N. N. Biswas and L. Gedney, Geophysical Institute University of Alaska ## I. Task Objectives (1) Standarize system response of the seismographic station of the network. (2) Scale and assemble the data for processing by the computer. # II. Field and Laboratory Activities: - A. SYSTEM CALIBRATION: The seismographic stations of the network were calibrated in the laboratory before installation. The amplitude data for a given earthquake recorded by different stations showed a higher level of scatter than could be explained by path or source effects indicating calibration deficiencies. Thus, the station (ANV) near Nome was calibrated through the entire system. The procedure for the calibration has been standarized which will be utilized during the field season of 1977 for the entire network. - B. INSTRUMENTATION: Continued studies for the improvement of the signal-to-noise ratio carried out. - C. DATA TELEMETRY AND RECORDING: Microwave telemetry of the data to the central recording site at Fairbanks maintained without any difficulty. - D. DATA REDUCTION: The daily data (160 ft) in form of 16mm film recorded during the last quarter of 1976 and the first two quarters of 1977 have been scaled and punched on cards for processing on the computer. The computer program for the determination of the hypocentral parameters has been supplemented to plot the epicenters simultaneously on a Marcater projection of the outline of the study area. - III. RESULTS: None. - IV. PRELIMINARY INTERPRETATION: None. - V. PROBLEMS ENCOUNTERED: None. - VI. ESTIMATED OF THE FUND EXPENDED: \$26,000 ## QUARTERLY REPORT A GEOGRAPHIC BASED INFORMATION MANAGEMENT SYSTEM FOR PERMAFROST IN THE BEAUFORT AND CHUKCHI SEAS. Michael Vigdorchik Institute of Arctic and Alpine Research University of Colorado Boulder, Colorado 80309 April - June 1977 ## Prepared for: U. S. Department of Commerce National Oceanic and Atmospheric Administration Environmental Research Laboratories Outer Continental Shelf Environmental Assessment Program Research Unit Number: 516 Contract Number: 3-7-022-35127 # CONTENT OF QUARTERLY REPORT | I. | Tas | k Objectives | |------|------|---| | II. | Sum | mary of Results | | III. | | marine Permafrost on Arctic Shelf of Eurasia (Data and Ideas lysis and Bibliography) | | | A. | Introduction * | | | В. | Division of the bibliography according to the different aspects of submarine permafrost study * | | | С. | Submarine permafrost regional distribution, composition and structure * | | | | 1. Thickness of the rock zone with subzero temperature on the Eurasia Arctic coast * | | | | 2. Data on submarine permafrost extension in Laptev East Siberian and Kara Seas * | | | | 3. Depth and thickness, cryogenic structures and their formation ** | | | | 4. Thermal regime and genesis | | | D. | History of development, paleogeographical conditions (changing of the sea level, regressions and transgressions, Pleistocene and recent tectonics, paleoclimatic data) | | | Е. | Geological and geomorphological environments, thermal erosion, coastal dynamics, arctic shoreline processes, shelf bottom relief and deposits, the ice processes in the coastal zone connected with the bottom freezing | | | F. | Hydrological peculiarities (influence of the river flow, thermal and chemical characteristics of the sea water, currents) | | | G. | Physics, physical chemistry, mechanics, thermal processes and methods of their study, including mathematical simulation | | | н. | Engineering geology and principles of construction | | | I. | Surveying and predicting | | * | Chap | oters included in Annual Report (October 1976 - April 1977) | ** Chapter included in Quarterly Report (April - June 1977) ⁶⁶⁷ | | J. General problems connected with submarine permafrost development | | |-------|---|----| | | in the polar regions | | | IV. | List of Figures ** | 31 | | ٧. | List of Tables ** | 33 | | VI. | Bibliography * | | | VII. | The meaning of some Russian words and terms * | | | VTTT. | Financial Status** | ₹4 | ^{*} Chapters included in Annual Report ^{**} Chapters included in Quarterly Report ## I. <u>Task Objectives</u> The content of this Quarterly Report includes two independent parts according to the two principal objectives of the work. The <u>first principal objective</u> of this work is to develop a computerized system which will aid in predicting the distribution and characteristics of offshore permafrost. A special computerized system should divide the offshore territory into areas which are suitable or unsuitable for relict permafrost. Computer-based mapping of the distribution, thickness and character in modern offshore conditions will be the main part of the program. The approach to solving this problem involves the gathering and study of all the source data about direct and indirect indicators of permafrost in the given area (depth, temperature and salinity of water, topography, bottom deposits, ice conditions, etc.) The <u>second objective of this work</u> is to undertake a comprehensive review and analysis of past and current Societ literature on subsea permafrost and related coastal processes, and where appropriate, translate selected materials for general dissemination. The available materials relate to problems of the submarine permafrost origin and development such as Quaternary Arctic history, especially Quaternary transgressions and regressions in Eurasiatic arctic shelf should be summarized and evaluated with respect to their significance. ## II. Summary of Results According to the first objective connected with the data management system, all existing data on depth, temperature and salinity of the Beaufort and Chukchi Seas shelf have been gathered. Some of the data are on magnetic tapes. It makes it possible to begin to compile the source data maps as a second step of Data Management System development. Two base maps have also been prepared: A Geographyic Base Map as a basis for mapping all source data at the same scale and in a common format (each data category can be mapped onto a separate copy of the GBM) and a Grid Base Map in order to facilitate the referencing of mappable data for computer processing. It is used as an overlay for encoding the data. The individual cells on the Grid Base Map serve to represent discrete geographic areas which act as depositories for data. Each grid cell is indexed by its row and column number to provide a discrete address identifying a specific location. Both kinds of maps have been prepared in two scales: 1:50,000 and 1:1,000,000 (in the same coordinates system). The first scale is directly connected with submarine permafrost investigations in nearshore areas with more high density of data; second one is oriented on the maps generated during the Point Barrow meeting. The size of the grid cell is determined by several factors: the overall goals of the study; the character and density of the data; and the size of the study area. A grid cell size is 2.5 minutes by 2.5 minutes for the scale 1:50,000 and 30 minutes by 30 minutes for the scale 1:1,000,000. Identifying the particular data characteristics for each grid cell, the computer is able to record
the type, location, and extent of all mappable data within the study area. The Universal Transverse Mercator (UTM) coordinate system for the scale 1:50,000 was selected because it is the contiguous coordinate system throughout the entire study area. In order to prepare a source data map for imput to the computer, the map must first be converted into a computer-readable form. This is referred to as "the process of encoding data." Encoding of a specific source data map is done by aligning a transparent copy of the Grid Base Map over the respective source data map. The data is encoded by writing into each grid cell on the transparent grid map the appropriate data label number, that is, the number used to represent a particular data characteristic. Specific techniques are used for manipulating the data. The portions of the maps are shown on Figures 1, 2, 3, and 4. We also made some preliminary computer generated maps trying to work out an approach to generating the source data maps. The data assimilation problem is the problem of creating of equal-distance network of grid points from very sparsely distributed observation stations. We started from the most simple approach to this problem dividing our region (Alaskan shelf) on generally small rectangular areas. Some of them include shorelines and others are totally in the ocean. We have produced some preliminary contour maps on CDC-7600 (water salinity, sampling depth and temperature), we have made also the half-tones intensity maps of these characteristics. These maps have also been produced on the printer without using the plotting machine. It is well known that in order to draw reasonably accurate contour maps of different physical charactieristics like temperature, depth, salinity, pressure and so on, one will need fairly dense data for the region of interest. Our primary interest lies in the Arctic zone, or more specifically, in different features of the ocean near the Alaskan shore. The main problem is that this area has a very poor observational network; so in our work we have to rely on very low density of observations. At the beginning of our research we see three different approaches to the data assimilation problem, but all of them have the same main goal: to build the grid point network of data by mathematical and statistical means, very densely and equally spaced (let's say from 2' to 5') in latitudinal and longitudinal directions. Sometimes this procedure of data assimilation is called "objective analysis". Each rectangle has from 50 to 100 observation points or stations. We divide this region on N points in latitudinal direction and M points in longitudinal. Then $\Delta\lambda$ = $(\lambda \max - \lambda \min)/M$ and $\Delta\emptyset$ = $(\emptyset \max - \emptyset \min)/N$. Next task is to interpolate from stations to grid points. We decided to use only a linear interpolation technique at this stage of research. Let's consider the examples in Figs. 5 and 6. If several * points lie in $\Delta\emptyset$ -strip of $\Delta\lambda$ -strip we associate them with the same latitude or longitude. So all * points between horizontal lines 3 and 4 we associate with line 3 and * points between vertical lines 5 and 6 with line 5. This way we put all observational data on intersection of horizonal and vertical lines of the chosen grid-point network. Then by linear interpolation we compute values at grid-points. Let us say we have data at points 2 and 5 on latitudinal lines (Fig. 5). Then value of function (temperature, salinity): $F_3 = F_2 + \frac{(\emptyset_3 - \emptyset_2)}{\emptyset_5 - \emptyset_2}$. $(F_5 - F_2)$ The same way we compute F4. In this way we will have all missing points on horizontal lines and then do the same procedure for vertical lines. Sometimes it is necessary to do several sweeps in horizontal and then vertical directions in order to fill in the region. From output, it is easy to follow up this process. We start from Tables 1 and 4 where 1 denotes the stations, 0 = missing points, and 2 = land. Tables 2 and 5 show the same region after use of our interpolation. It is worth mentioning that after using interpolation procedure we still have a few points left unfilled (not calculated). To avoid extrapolation, which is very inaccurate numerically, we assign to these points some fixed value. Let's say $\lambda=2$ 3 4 5 6 We know value of point 6, so we assign to points λ ,=2, 3, 4, 5 the value at point 6. The Table 3 and 6 show the cut-off region which is used to draw the contour maps. But because this area is not square we once move the linear interpolation from Table 2 (rectangular region) to the square region. Now we can use two-dimensional interpolation (Fig. 5). Let's say we have values of function (temperature, salinity and so on) at points 1, 2, 3, 4 and we wish to calculate f_0 , then: $$f_{A} = f_{1} + \frac{(\emptyset_{0} - \emptyset_{1})}{\emptyset_{2} - \emptyset_{1}} \cdot (f_{2} - f_{1})$$ $$f_{B} = f_{3} + \frac{(\emptyset_{0} - \emptyset_{B})}{\emptyset_{2} - \emptyset_{1}} \cdot (f_{4} - f_{1})$$ $$f_{0} = f_{A} + \frac{(\lambda_{0} - \lambda_{1})}{\lambda_{3} - \lambda_{1}} \cdot (f_{B} - f_{A})$$ Meantime we discuss the simples approach to the data assimilation problem, and we give several contour maps which were produced by this technique. Next step, we would like to order from World Data Center the already calculated data for the Alaskan region. But the problem is that (as is mentioned in the brochure) they will give us data only for 1°, .5° or .25° degrees. If this is so, we again have to make linear, two-dimensional interpolation; and we hope that this way we can improve somehow our previous results. We still have to investigate this possibility. The most sophisticated approach is the statistical one, where we will use observational data from all stations to calculate the values of different physical characteristics at every grid-point. The philosophy after this is that we have so little real data, that it is very wasteful not to use all possible information to compute the values at every point. It is clear that we have to assign the different weights to stations. Let's say we wish to compute value at grid-points when all station points are given (Fig. 5). It is clear the information from nearest stations λ and 2 is more important than data from points 5 and 6. So if we want to calculate f_0 as combination of f_1 , f_2 , f_3 , f_4 , f_5 ; $f_0 = A_1$ $f_1 + A_2 f_2 + A_3 f_3 + A_4 f_4 + A_5 f_5 + A_6 f_6$ we have to give the biggest values to A_1 and A_2 and the smallest to A_5 and A_6 . We will then be using the statistical method (variances, covariances, and so on). The approach is now in initial stage of research. A third kind of preliminary maps have been made by printer (Figs. 19-23). The explanation is as follows: We have a matrix A $(N \times M)$. $$\Delta A = (AMAX - AMIN) / q$$ The program works the following way: - 1. If Aij is a shore point, we print 0. - 2. If AMIN + $\Delta A(K-1) \leq Aij \leq AMIN + \Delta A \cdot K$; $K = 1 \dots q$, we print value of K. Of course all these examples only demonstrate an approach to the computer mapping of the area with sparse data which will give us later the possibility to generate source data maps for our Data Management System. According to another objective of the work, an in-depth search of the Soviet literature has been performed and the bibliography has been compiled. We have included this bibliography and the primary part of analysis of the Soviet data and results in subsea permafrost study in the annual report. This Quarterly Report is a continuation of the "Analysis". It includes the chapter "Submarine depth and thickness, cryogenic structures and their formation" on the 23 pages, 3 tables and 15 schemes, cross-sections and illustrations. 1. GEOGRAPHIC BASE MAP (PORTION) POINT BARROW 154° 30'/ 158° 30'--- 70° 30'/ 72° 00' 1:1,000,000 Illustration for our approach to mapping of physical field over geographical region. - * STATIONS - GRID POINTS 8. Example of the preliminary half-tone map of the ocean water salinity 10. Example of the preliminary half-tone map of the ocean water temperatute 12. Example of the preliminary half-tone map of the maximum depth of the ocean water sampling 14. Example of the preliminary half-tone map of the ocean water temperature 16. Example of the preliminary half-tone map of the water salinity MAND LAND 17. Example of the preliminary contour map of the maximum ocean water sampling depth Example of the preliminary half-tone map of the maximum ocean water 18. sampling depth 692 | 19. | Example of the | preliminary map of | the ocean water temperature | ≩ | |---|---|--
--|--| | | | | made by printer. | - >z | | 'v- u a | | | · · | ↓ | | 14 H H | - Handanianian | علمه ما مراد والدوام والحوا | of evel expended and a development | To a grant of | | | Harriste was aki. | | | | | 219
617
936 | 1! | | | and the market of | | m m | - 1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 17 0 1 1 1 1 N N N N N N N N N N N N N N N | | c c c | 440 200000 | | 000000000000000000000000000000000000000 | בו מימים מים | | F 7- 1 - | + + 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | entre de la transfer
Van Lee de marke | | + + + | | 1 + + + 10 00 00 00 00 00 00 00 00 00 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | | | 22.3 | + + + 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | VI W W | 1 1 1 1 1 1 1 1 1 | I u m m m m m m m t t m m | and an etchania and a so a so a so and a | 121 00 00 00 00 | | 3 2 2 | H H M M M M M M M + | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 | | 14 A B B B B B B B B B B B B B B B B B B | -catacara anama | | A TO CHANGE TO LOT OF THE STORE | 14/20/40/1 | | 1 153 E | 44000000000- | | 100 (+ 00 (+ + + + + + + + + + + + + + + | | | n n n | 4 4 0 0 0 0 0 0 0 0 0 | Nama a a a a a a a a a a a a a a a a a a | mm d r d r d r mm m d m n n d d n m m w | 10 are area | | # # # # | | | 10 40 10 10 10 10 10 10 10 10 10 10 10 10 10 | | | 5 | 440000000- | the thanknynn hadi | The way was a for a for the was a way | 1 4 M M CI | | 2:5 | | | on and the set of a particular of the set | | | | | tt thamwwww. | ME ANDONO NO TO BE TO THE OF THE OF | ayen whater | | 313 | | | O M Y C E L DO A E D A D O A A D A D A A A A A A A A A A A | 1 1 ! | | + + + | + - 10000000000 | I t t t mondonalini | mmanananan marin + as + + to m + a | 10000000 | | har piller
har right
har no e | | | no cam cite el a la cama cam | | | | +-4 70 10 10 10 10 10 10 | THE CHARLENGER OF THE | DIO COLOR CE E ES OFE PERO COLOR DE LO COLOR COL | 3 10 20 15 23 20 10 | | | | | | | | 15 C Z | THE FIND WWW WAR | *********** | Manual tant namenananan manan | n un m m m m | | u ii ii | | | TO CHART TO BE TO AND | | | n 11 11 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | TETEMPONICOMMI | ME O A CI | 0 12 m m m m 0 | | 13 4 34 | 1 ! 1 | | | | | # # 10 B | | THE TEMPORAL AND A PARTY HE | or mart tante win ion win ion win was | a un m m un un | | 600 | | | o man of the strong of the | 1 1 1 | | w | सराचनचनचनचर | t t t t muununguru | TO MIN CE LA DE DO DO NO NO DO COM | 1 M L 1 1 2 M | | 55.5 | | | O M M M T T A T D T D D D D D D D D D D D D D D | | | | | tt removonon | 10 mm of E to at E do ala la la la la cola cola | ~ ~ ~ ~ ~ ~ ~ ~ ~ | | | ्नित्स्य निस्त्र स्थानारी
१४ छाला निस्त्र स्थानारी | | 0 4 4 4 4 4 0 4 5 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 1 1 1 | | 4 (c) (| जन्न सन्तन्त्र स | * * * * * * * * * * * * * * * * * * * | Manda de la vera de la la colo de | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | | 4. E | | | | | | 200 | | | | | | 9.50
2.00
3.00
3.00
3.00
3.00
3.00
3.00
3.0 | 4 00 10 10 10 10 m m | ilando alorgio de obra
ala ala ala ala da do do | to all of the same all all the same all of the same all all the same all all all all the same all all all the same s | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | 21. Example of the preliminary map of the water salinity | |--| | | | made by printer. FROM 3.204E+01 TO 3.262E+01 = 5 | | FROM 2.974E+C1 TO 3.629E+G1 = 1 FROM 3.262E+G1 TO 3.321E+G1 = 5. | | FROM 3.029E+01 TO 3.087E+01 = 2 FROM 3.321E+01 TO 3.379E+31 = 7 | | FROM 3.087E+01 70 3.145E+01 = $\frac{3}{2}$ FROM 3.379E+01 TO 3.438E+01 = 3 | | FROM 3.145E+01 TO 3.234E+01 = + FROM 3.438E+01 TO 3.436E+01 = 9 | | 1 3333333333222222222222222222222222222 | | 2 3333333333222222222222222222222222222 | | 3 3333333322222323222222222222222222222 | | 4 33333322222213233222222222222222222222 | | 5 3322222222213233332222222222222222330J0000000000 | | <u>5 2222222222333352222222222222</u> 2223350000000000 | | 7 222222222213244333333333333333333333333 | | 8 22222222222324443333333333333333333333 | | 9 22222222222424443333333333333333333333 | | | | 11 111122222234255+4333333333333333333333333333 | | 13 22222233334-26554433322111112222222333333333333 | | 14 2223333333444536555+433222111222222223333322222222 | | 15 23333344444454695554444333333333333333333 | | 16 3333444-4555555555555555555555555555555 | | 17 33444455555555555555555555554644444444433333333 | | 18 33445555555555555555555555555555555555 | | 19 4556666666655555554444444444444444433333333 | | | | 21 5999999887766544333333333333333333333333333333333 | | 22 69999987776665543-444-33333333322222224444333333 | | 23 79998889777666666445554444533332222222222444433333333 | | | | 25 8888883399999999883388877777766566555555555555553333333333 | | 27 888888899999996888888378687776665555546555554444433 | | 28 888889999999999999888889983775655++366655555+44433 | | 29 898888999999999999388888899987765544316665555+444+4 | | 37 8883883999999999999998888889998878655443565655544-4-4 | | 31 888888399999999999888989998377655-4355555555555555444-44 | | 32 8338886933399499949985338939887755554-66555444444 | | 33 8888868999999999999999999999999999999 | | 34 9595999999999999999999999999999999999 | | 35 99399939939999999999999999988877666555666595++44
36 999999999999999999999999999998877766656566555554+4 | | | | 37 99999999999999999999999999999958877776667c666665555544
38 9399999999999999999999999999999988877776666665555544 | | 39 99999999999999999999999999399777657766666555555 | | 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | 41 99999999999999999999999999988887 <i>"?77</i> 6666655555 | | 42 9999999999999999999999999999999999 | | <u> </u> | | 4. 9939999999999999999999999999999999999 | | 45 999999999999999999999999999999955888877777786663655 | | 45 999999999999999999999999999999999999 | | 47 999999999999999999999999999999999999 | | 44 933399339999999999999999999999999999 | | 49 9939993333999333993399339333333337777777 | | <u>5. 9999999999999999999999999</u> 5355555777777666656
51 999999999999999999999999999999 | | シャー コンスカンシスススコンソングシングングランスファンファン・イン・バック (in 1 to 1 元を2000円) | | 22. E | example of the preliminary map of the water temperature | | |----------------|---|---| | | made by printer. | • | | | FRO 1.0735+00 TO | 1.729E+30 = 5 | | FRCM | | 2.335E+38 = 6 | | FROM | | 3.041E+ :0 = 7 | | FF.CM | | · · · · · · · · · · · · | | FROM | 4.175E-61 TO 1.673E+68 = 4 FROM 3.697E+68 TO | $\frac{3.6975+30}{4.3535+30} = \frac{8}{9}$ | | 1 | 333344444444444444444444444444444444444 | . 410302430 4 . 9 | | - = | 333444444444454444444444444444444444444 | | | 3 | 33344444455554544-444444444444444444444 | | | - | 333444455556645334444444444444444444444 | • | | 5 | 333444555566735333444444444444444444303333333333 | S | | - 6 | 3334445566677363333444444444444444444444 | T | | 7 | 23344556677736233344242444444444444444444444444 | | | • | . 233445566778636223344444444444444444444444444444444 | E ← → W | | 9 | 2334456677886372233444444444444444444444444444444 | | | 10 | 233+550675695372223+++444-44444-444 | | | 11 | 23345567789953812233333333333333333333333333333333 | Y | | 12 | 3344556677884381123344495556959595959544444444444444 | N | | 13 | 344455556667-2811233455677887776666555555555555555 | | | 14 | 444445555555327112234-5667877775656555555555555555 | | | 15 | 554444444444443241122233444555555554444444444 | | | 16 | 55554444433332222222222222333333344444444 | • | | 17 | 655443333222222222333333344444445555555566666555555 | | | 18 | 65443222222222333334+44455555555555555555 | | | 19 | 65+332222223333444-4455555556566667777763888955555 | | | 20 | 54433333334444-5555566666666666666666677777777755556 | | | 21 | 433333+4-55555667777777777777565666666666666666 | | | 2.2 |
3333333333344445555555555566665666666666 | | | 23 | 3333222221122222333233344455555555555555 | | | 2+ | 23222211111111123212223334-+555+++++++4+3+4484-554 | | | 25 | 222222122222222332222223333333333333333 | | | 25 | 2222222333333333333322222222222111111222222 | | | 27 | 22222223333333333332222222222222211111222222 | | | 28 | 222222223333333333333333222222222222221111222222 | | | 20 | 222222233333333333332222223322222222222 | | | 3 | 222222233333333333333222222332222222222 | | | 31 | 222222333333333333322222233322222222222 | | | 32 | 22222233333333333333332222222222222222 | | | 33 | 222222333333333333332222223322222222222 | | | 3 → | 222222233333333333333333322222222222222 | | | 35 | 222222223333333322222222222222222222222 | | | | 222222222223333322222223222222222333333 | | | 37 | 222222222222222333322222222222222231333333 | | | 38 | 222222222222222233222222222222331333333444442 | | | 39 | 22222222222222233222222222222233331333333 | | | 4. | 22222222222222222222222222222333323333444444 | | | 41 | 2222222222222222222222222222222222333333 | | | 42 | 222222222222222222222222222222222222222 | | | <u> </u> | 222222222222222222222222222222222222222 | | | ÷ ÷
, ∈ | 222222222222222222222222222222222222222 | | | 45 | 222222222222222222222222222222222222222 | | | - b | 222222222222222222222222222222222222222 | | | 4.7 | 222222222222223333333733373333722222222 | | | 43 | | | | | 333333333333333333333333333333333222222 | | | 5⊹
51 | - 0 | | | J | | | | | • | 1 | made by printer. | | |------------------|---|--------------------------------|---|--| | | | FROM | 8.954E+12 TO | 1.1168+33 = | | ROM | | FRCM | 1.1168+03 70 | 1.3372+33 = | | ROM | 2.3272+02 TO 4.5362+32 = | FROM | 1.337E+03 TO | 1.5585+63 = | | ROM | | 3 FROM | 1.558E+03 TO | 1.7798+13 = | | 207 | | FROM | 1.779E+03 TO | 2.530E+33 = | | 1 | 111111111111111111111111111111111 | 11111111 | . 0000000000000000000000000000000000000 | , | | 2 | 11111111111111111111111111111111 | 111111111 | .9308398888868 | ; | | 3 | 11111111111111111111111111111111 | 111111111 | . 6 0 6 3 6 6 3 6 6 3 6 6 6 6 | | | 4 | 111111111111111111111111111111111 | 111111111 | . 3 3 3 3 3 3 3 3 3 5 5 6 5 6 5 6 5 6 5 | | | 5 | 1111111111111111111111111111111 | 11111111 | 303333333333333 | <u></u> | | 6 | 11111111111111111111111111111111 | 11111111 | . 3 3 3 8 3 8 8 8 8 8 8 8 8 8 8 8 8 | T | | 7 | 1111111111111111111111111111111 | 11111111 | 1111111111111 | | | 3 | 111111111111111111111111111111111 | 111111111 | .111111111111111 | E ← | | 9 | 11111111111111111111111111111111 | 11111111 | 1111111111111 | | | 10 | 11111111111111111111111111111111 | 111111111 | . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 11 | 111111111111111111111111111111111 | 111111111 | .111111111111111 | Y | | 12 | 11111111111111111111111111111111 | 11111111 | . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | , IV | | 13 | 11111111111111111111111111111111 | 111111111 | 11111111111111 | | | 1 - | 111111111111111111111111111111111111111 | 11111111 | 11111111111111 | | | 15 | 11111111111111111111111111111111 | 11111111 | 1111111111111 | - | | 16 | 11111111111111111111111111111111 | 111111111 | 11111111111111 | _ | | 17 | 11111111111111111111111111111111 | 11111111 | 111111111111111 | | | 18 | 111111111111111111111111111111 | 111111111 | 111111111111111 | | | 19 | 1111111111111111111111111111111 | 11111111 | 11:11:11:11:11:1 | | | 2 . | 1222222211111111111111111111111 | 11111111 | 1441744444444 | • | | 21 | 12222222221111111111111111 | 11111111 | 111111111111 | | | 2.5 | 13333222222111111111111111111 | • • • • • • • • • | | • | | 23 | 13333322222111111111111111111 | | | e
 | | 24 | 23333332222111111111111111111 | * * - * * * * * * - | | - | | 25 | 2333333222222111111111111111 | • • • • • • • • • | <u> </u> | | | 26 | 333333322222222222111111111 | * - * * * + + - * | | • | | 27 | 3333333522222222222222222222 | <u></u> | . | • | | 23 | 444444333333333222222222222 | 4 | | | | 29 | 44444433333333333222222222222 | | . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | : <u> </u> | | -, | | | | | | 31 | <u>- 4444444333344443333233232222-32</u>
- 55555553334444-4-33233333333432 | | | | | 32 | | | | • | | 33 | _55555553344455444527333333432
_5555553444555544433333333432 | | | <u>. </u> | | - | | | . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | • | | <u> 34</u>
35 | 66566664455566554-3444444532
66666655566666554344444532 | | -1-1-1111111111 | <u>. </u> | | | | | .11111111111111 | • | | $\frac{30}{37}$ | <u>_6666666677777766944444443434</u> | | | . | | _ | 77777777777777777555454444543 | | 111111111111111 | | | 33 | 7777777773833756535555 ₄ 4543. | | | | | 39 | 7777777766666377655555555543 | | | | | 4.3 | 88868838833999876655555555543 | | 1111111111111 | | | 4 - | 868833889999977605655555+3 | | · · · · · · · · · · · · · · · · · · · | | | 4,2 | 88388388888938776656655555- | | | | | 4.3 | 99999993338887776686695555- | | | | | <u> </u> | 933999333333377777666555555 | | | | | 45 | 999999999656677776566655655 | | | | | 46 | <u> 99999999999888777766665555++</u> | <u> </u> | <u>33322222211111</u> | _ | | 47 | 7777777777777766556555555555-4 | | | | | <u>.</u> = | <u> 555555555555555555555555555555555555</u> | | | · _ | | <u>د</u> چ | ا الله الله الله الله الله الله الله ال | | 33321212211111 | | | <u> </u> | | | | | Table 1 Geographical region matrix with observational stations le roccesson de la conseque de Consistent de la constant cons ინინიშის განინი მემინი მემინი მენინინინი მენინი მემინინინი მენინინი მენინი მენინინინინი მენინინი მენინი მენინი , canseptode no accompanda de aucompanta de acompanda de activa de accompanda de accompanda de companda de Com egaceano escendence a constante de constante de constante de constante de constante de constante de constante d 20065511626803560360505 onnoconcon anno con constante de constante de constante de contrante de constante d racosopous apadebour esopeo apegos casas comentantes comentantes de sobre a subsecte de sobre esta de sobre co e soposopous comentantes de sobre a subsectiva de comunicante esta de sobre a subsectiva de sobre de subsectiva <u>ინინენის მინიმებიც წვინები მებინიმიმენები მინიმიმიმის გებიმის მებინიმის განინიმების მების მების გები</u> ; go octopopano po popano pano a su popano da se capa do capa do capa da capa da capa da capa da capa da capa d counservante consequence and the control of con 0.000.0 acosopas acomas consciones en especiales per especial constitue de particular de constitue co 1000101 6000000 Table 4 Geographical region matrix with observational stations <u>ინინინინიში მინინიშების მენიშების მენემშეშემიშე შემეშეშე შემეშე შემეშენიშე ქმეში ქმენიშენები მენიშე მენინებებ</u> მინენინინინი მენინინი მენინი მენიშები მენიშე მენიშე მენიშე მენიშები მენინინი მენიშე მენიშები მენიშები მენიშები მენინინინინი მენინინი მენიშები მენიშები მენიშები მენიშები მენიშები მენინინი მენიშები მენიშები მენიშები მენიშები ᲔᲛᲧᲔᲛᲔᲛᲔᲛᲘᲗᲔᲛᲘᲗᲔᲛᲓᲘᲗᲛᲓᲘᲓᲛᲛᲝᲗᲛᲔᲗᲓᲛᲗᲥᲛᲓᲔᲔᲡᲛᲔᲛᲓᲛᲛᲓᲐᲓᲔᲛᲔᲓᲓᲐᲝᲓᲛᲨᲔᲛᲗᲐᲓᲐᲓᲓ ᲗᲚᲚᲚᲚᲓᲚᲚᲚᲚᲚᲚᲚᲚᲚᲚᲚᲚᲚᲚᲚᲚᲚᲚᲚᲚᲚᲚᲚ 0100010 3303466666646333035363000006666 # Data Management System # List of Figures | 1. | A portion of our Geographic Base Map (Point Barrow) in scale | |-----|--| | | 1:1,000,000 | | 2. | Corresponding portion of our Grid Base Map in scale 1:1,000,000 9 | | 3. | A portion of our Geographic Base Map (Point Barrow) in scale | | | 1:50,000 | | 4. | Corresponding portion of our Grid Base Map in scale 1:50,00011 | | 5. | Illustration for our approach to mapping of physical field over | | | geographical region | | 6. | Illustration for our approach to mapping of physical field over | | | geographical region | | 7. | Example of the preliminary contour map of the ocean water salinity | | | (reduced) | | 8. | Example of the preliminary half-tone map of the ocean water | | | alinity (reduced) | | 9. | Example of the preliminary contour map of the ocean temperature | | | (reduced) | | 10. | Example of the preliminary half-tone map of the ocean water | | | temperature (reduced) | | 11. | Example of the preliminary contour map of the maximum depth of the | | | ocean water sampling (reduced) | # List of Figures (continued) | 12. | Example of the preliminary half-tone map of the maximum depth of | |-----|---| | | the ocean water sampling | | 13. | Example of the preliminary contour map of the ocean water | | | temperature (reduced) | | 14. | Example of the preliminary half-tone map of the ocean water | | | temperature (reduced) | | 15. | Example of the preliminary contour map of the water salinity | | | (reduced) | | 16. | Example of the preliminary half-tone map of the water salinity | | | (reduced) | | 17. | Example of the preliminary contour map of the maximum ocean water | | | sampling depth (reduced) | | 18. | Example of the preliminary half-tone map of the maximum ocean | | | water sampling depth (reduced) | | 19. | Example of the preliminary map of the ocean water temperature | | | (made by printer) | | 20. | Example of the preliminary map of the water sampling depth (made | | | by printer) | | 21. | Example of the preliminary map of the water salinity (made by | | | printer) | | 22. | Example of the preliminary map of the water temperature (made by | | | printer) | | 23. | | | | Example of the preliminary map of the water sampling depth (made by | | | printer) | ### Data Management System #### List of Tables | Table 1 | Geographical region matrix with observational stations 31 | |---------|---| | Table 2 | The same region's matrix
but after interpolations between | | | stations | | Table 3 | "Cut off" region matrix from south and north | | Table 4 | Geographical region matrix with observational stations 34 | | Table 5 | The same region's matrix but after interpolations between | | | stations | | Table 6 | "Cut off' region matrix from the south and north 36 | The same region's matrix but after interpolations between stations. | 100 Table 5 Submarine Permafrost on Arctic Shelf of Eurasia (Continuation) #### 3. Depth and thickness, cryogenic structures and their formation. Regional details concerning the area, distribution, thickness and depth of the upper boundary of the permafrost are known in the Arctic seas of the Eurasian, thanks to investigations of many geologists, especially V.M. Ponomarev (1940, 1960, 1961), N.F. Grigoriev (1952, 1964, 1966), V.A. Usov (1967, 1970), Ye. W. Molochushkin (1972), U.A. Zhigarev and T.R. Plakht (1974) and others. The scientists usually specify the kind of submarine permafrost they describe as: simple sediment or rock at a year round temperature below 0°C, ice bonded, brine soaked sediment or cold dry rock at a negative temperature. They specify the permafrost as that: which is in equilibrium with the modern temperature regime and the relict permafrost, which was formed when the climate was colder than now or, in the case of submerged shelf areas, which was formed before submergence. Sometimes the authors try to use the terminology "zone of the negative temperature," not "permafrost" empasizing that the deposits are not ice bonded in spite of their very low temperatures. Usually they explain this phenomena by hydrological, especially hydrochemical conditions of the layers and water (Table 9). One of the first attempts to show the complicated structure and position of the submarine permafrost in connection with its depth and the sea depth was made by Zyukov et al. (414) in 1953 for the Ob bay area in the Kara Sea (near Ust Port). In Fig. 15 we can see some of the divisions of submarine permafrost. The seasonally freezing and cooled deposits lay directly on the bottom of the bay. Their thicknesses (about 1 m) decrease sharply, when the sea depth reaches 2 m. The authors divide permafrost into (1) seasonally freezing and cooled layers, (2) those separated from the seasonal layers, (3) those separated, and (4) "pereletok" (short term permafrost). The thickness of permafrost in the Kara sea near Anderma and Vaigach Islands reaches 100 m at the water depth of 4 m, at 5 km offshore, and 60 m at the depth Table 11-Weight moisture content of coastal delta deposits (for typical boreholes) on the beach near the mouth of the Yana River (in % of dry weight after Grigoriev, 1966 | DEPTH m | вю | BII | B 16 | B 17 | B 19 | B20 | B 25 | |---------|----|-----|----------|----------|------|-----|------| | 0.5 | _ | 56 | 39 | _ | 28 | 49 | 73 | | 1.0 | _ | 229 | 61 | | 41 | 58 | 50 | | 1,5 | _ | 172 | 52 | 74 | 45 | 52 | 89 | | 2.0 | _ | 32 | 76 | 25 | 77 | 144 | 48 | | 2.5 | - | 29 | 55 | 44 | 52 | 53 | 26 | | 3.0 | _ | 35 | 56 | 31 | 42 | 35 | 33 | | 3,5 | | 33 | -33 | 28 | 56 | 52 | 20 | | 4.0 | _ | 27 | 58 | 30 | 55 | 42 | 26 | | 4.5 | _ | 37 | 49 | 28 | _ | 35 | 40 | | 5.0 | _ | 142 | 46 | 29 | _ | 58 | 43 | | 5.5 | _ | 40 | 43 | 33 | | 45 | 30 | | 6.0 | - | 27 | 48 | 50 | _ | 30 | 47 | | 6,5 | _ | 26 | 31 | _ | _ | 34 | 27 | | 7.0 | - | 24 | 47 | _ | _ | 57 | 26 | | 7.5 | _ | 47 | _ | | _ | 31 | 40 | | 8.0 | - | 23 | _ | _ | _ | 33 | 39 | | 8,5 | 27 | 24 | _ | - | _ | 30 | 38 | | 9.0 | 27 | 25 | | _ | | 18 | _ | | 9.5 | 25 | 24 | _ | _ | - | 19 | | | 10.0 | 26 | 22 | - | <u> </u> | _ | 21 | - | | 0.0 | 35 | _ | _ | _ | _ | 23 | _ | | 12.0 | 36 | _ | | _ | _ | 22 | _ | | 13.0 | 34 | | _ | | _ | 25 | | | 14.0 | 35 | _ | <u> </u> | _ | _ | _ | _ | | 15.0 | 66 | _ | _ | _ | - | - | | | 16.0 | 40 | _ | _ | _ | | _ | | | 17.0 | 60 | - | _ | _ | _ | _ | _ | | 18.0 | 21 | - | _ | _ | _ | _ | _ | | 19.0 | 22 | _ | _ | - | _ | | _ | | 20,0 | 22 | _ | _ | _ | | | _ | or acicular shape of the air bubbles characteristic for river and lake ice. The size of the air bubbles in the ice varies from 0.5 to 3 mm. In the coastal zone of alluvial-lacustrine plains N.G. Grigoriev (1966, 110) discriminated the following regions with different ice saturation of the disperse deposits (Fig. 21): - 1. Regions with primary development of ancient thick secondary vein ice (the ice is associated with remnants of ancient alluvial plains). The dimensions of the ice veins are up to 10 m in width to 40--50 m in height. - 2. A region with primary distribution of an intermediate density of the network of ice veins (the ice is associated with alassy depressions and floodplains). The dimensions of the ice veins are: up to 2-3 m in width and up to 10-12 m in height. - 3. A region with primary distribution of a thin network of thin secondary ice veins. The dimensions of the ice veins are: up to 1-2 m in width and up to 3-5 m in height. - 4. A region of primary distribution of bedrock outcrops in which there are no large formations of underground ice. The thickest and oldest ice veins are encountered in deposits of an ancient alluvial plain. This ice is not developed at the present time. The study of secondary vein ice in shore scarps of coastal plain revealed that the ice veins have a considerable thickness. In width they attain 10 m and are locally traced to a depth of more than 30 m. In many cases the ice veins occupy about 60-70% of the volume of the entire ground mass. In coastal show the form of the ice veins frequently is dependent on the angle at which these veins are cut by the shore. If in their strike the ice veins are directed perpendicular to the shore they usually have the rather regular form of narrow wedges or vertical columns. In those cases where the ice veins (especially intersecting ones) are cut by the shows at an angle, their form is more complex. Thus, in natural shows, as a result of intensive melting and destruction of the shore scarp, the form of the cross sections of the ice veins can change very rapidly, even in the course of a single summer season. The depth of the upper parts of the secondary vein ice is not everywhere the same. This depth varies from 0.7 to 3 m and the depth of the upper parts of the ice veins is usually greater than the depth of summer thawing. The upper parts of the ice veins in general have a mostly even surface as if they had been melted. The lower parts of the ice veins, in rare cases, are clearly visible in the shows; more frequently they are covered by land slips or extend deeper than the bottom of the shows. Ice veins are also encountered on the bottom of alassy basins forming as a result of the melting of thick masses of ancient secondary vein ice. On the even surface of the alassy with thick peat bogs and a dense mossy cover extremely favorable conditions exists for frost cleft formation and the formation of secondary vein ice. Some of these ice veins were formed at the time of draining of the lake and others are forming at the present time. The ice veins in the alassy usually have a small thickness and a regular wedgelike form. The depth of the upper surface of the ice veins generally does not exceed the depth of seasonal melting of the ground, which is from 20 to 40-50 cm. In the sandy deposits of the coastal marine plain, the secondary vein ice is poorly developed and is characterized by a small thickness. The upper parts of the ice veins are usually found at a depth of $0.5 - 0.6 \, \mathrm{m}$; their width is $0.5 - 1.0 \, \mathrm{m}$. They are traced most frequently to a depth of 1.0 - 1.5 m. In the sandy deposits of the coastal marine plain secondary vein ice is extensively developed only in places which have peaty, silted and glazed horizons. Secondary vein ice is developed very extensively in deposits of the present-day floodplains. The upper parts of the ice veins are usually encountered
at a depth of 0.5 m. The width of the ice Fig. 16 -Schematic cross section of the bonded permafrost position and thickness in the area of the Vaigach Islands and Amderma, according to Vittenburg ,1940(377) and Neizvestnov,1973 (245). veins is $1.2 \, \mathrm{m}$ and in rare cases $4 \, \mathrm{m}$. There is a vertical extent of the ice veins of $1-3 \, \mathrm{m}$ and in rare cases $8 \, \mathrm{m}$. On the coastal zone of Yakutia the development of the ice in deluvial deposits can frequently be judged from the forms of clumplike microrelief which are extensively developed on the slopes of the bedrock masses. Among the structural peculiarities of the layers of frozen disperse deposits, the geologists include the appearance of "ice tectonics." In the numerous scarps of the ancient alluvial plain and the scarps of the alassy and the flood-plains it is common to observe singular forms of folds and layered frozen ground along side contacts with the ice vein. The clear separation of the layers of frozen ground, which is observed in the polygonal blocks between the ice veins, is caused in most cases by ice inclusions in the form of horizonal intercalations with a thickness of 1-3 cm, less frequently 10 and even 20 cm. This is the so-called "spurious stratification" caused by the inclusion of ice intercalations forming at the boundary with the seasonally thawing layer and not having anything in common with the primary stratification of the frozen ground. As a result of this clear stratification of the frozen ground, the flexure of the layers along the side contacts with the ice veins is clearly visible. A smooth flexure of the layers occurs as a result of the gradual growth of secondary vein ice. Despite the monolithic nature and density of the frozen ground, and as a result of the enormous lateral pressure, which increases in the width of the ice vein, the ice can become denser and be bent into folds. The flexure of the layers thus can not be regarded only as a result of nonuniform thawing within the polygons. The development of the polygons is caused primarily by growth of the ice veins and the ridges forming on the surface of the polygons are a result of pressure exerted on the ground by the growing ice veins. Table 9-Freezing temperature of sea water of different salinity (from N.N.Zubov,1944) | SALINITY
% | FREEZING
TEMPERATURE
OF SEA
WATER °C | |---------------|---| | 0 | 0.0 | | 10 | - 0.5 | | 20 | - 1.1 | | 30 | — 1.7 | | 40 | - 2.2 | | 50 | - 2.8 | | 60 | — 3.4 | | 70 | - 4.1 | | 80 | - 4.8 | | 90 | - 5.6 | | 100 | - 6.4 | | 110 | — 7.1 | | 120 | — 8. 0 | | 130 | - 8,8 | | 140 | – 9.8 | | 150 | 10.5 | 15 m, at 8 km, offshore (Fig. 16). In the Laptev Sea (Kojevnikov Bay) the thickness of the permafrost at the distance 3 km offshore is more than 66 m and the permafrost body is separated by several layers of unfrozen rocks (Fig. 17). In the eastern part of the sea the surface of the bonded permafrost becomes lower from 35 m to 2 km to 85 m at 10 km offshore (Fig. 18). The borehole reached the big lense of buried ground ice at a depth of 86 m. The geologists did not give the data about submarine ice thickness in this area, but lenses of ground ice in submarine conditions in the Euroasiatic shelf of the Arctic ocean are the usual phenomena. For example, in the Kara Sea near Amderma the ice lense was reached at a depth interval of 28.55 to 42 k in the "ancient valley" continuing from the continent to the shelf. Fig. 19 shows the position of this lense, Fig. 20 the temperature data for the same lense. The almost universal presence of underground ice, which varies in form, dimensions and origin, is the most characteristic peculiarity in the structure of permanently frozen Quaternary deposits, developed on the seacoast. It has been established that this underground ice, of considerable thickness, is not buried or fossil remnants of valley glaciers or continental glaciation, but is an entirely independent formation having a water, not a firm origin. According to the classification formulated by P.A. Shumskiy (1955), all the main ice formations present in the upper layers of the frozen stratum can be classified as the ice cement of frozen rocks, segregation ice and secondary vein ice. It is also possible to differentiate ice forming during the burial of snow "pereletoks" and drifts, during the freezing and burial of floodplain lakes and other variants of underground ice. In the considered regions, those underground ice formations of greatest Table 10 -Moisture and salts content in shelf deposits, April-May 1969. according to Katasonov and Pudov 1972 (147) | DEPTH
m | MOISTURE IN % OF DRY WEIGHT | РΗ | SALTS
CONTENT
(g IN 100g) | SALINITY | |------------|-----------------------------|---------|----------------------------------|------------| | | В | OREHOLE | 64 | | | | 22.0 | 5,5 | 2.245 | HIGH | | 3 | 25.6 | 7.2 | 0.757 | MODERATE | | 11 | 32.0 | 6.0 | 1.273 | нівн | | 15 | 17.0 | 7.9 | 0.451 | WEAK | | 20 | 26.0 | 7.0 | 0.541 | MODERATE | | 25 | 28.0 | 7.26 | 0.320 | WEAK | | 35 | 29.6 | 6.0 | 0.606 | MODERATE | | 40 | 23.5 | 6.72 | 0.256 | NON SALINE | | 50 | 22.2 | 6.0 | 0.292 | NON SALINE | | | В | OREHOLE | 96 | | | 1 | 19.4 | 6,38 | 1.421 | HIGH | | 8 | 36.8 | 7.22 | 1.160 | нівн | | 25 | 23.6 | 7.94 | 0.411 | WEAK | wolume are the secondary vein ice formations. The general features of the mechanism for the formation of ice veins can be represented in the following form. In the case of great vertical temperature gradients in the upper horizons of the stratum of permanently frozen rocks frostlike tracks are formed. The annual repetition of cracking in the permanently frozen layers and the freezing of the water penetrating into the frost clefts, appearing in one and the same place, leads to the formation of the large frost vein. Horizontally, such ice veins usually form a polygonal lattice. As a rule, the cracking of the permafrost layer occurs at the depth greater than the thickness of the seasonally thawing layer and therefore the ice veins forming during winter do not thaw during the summer. Intensive frost cracking on the coast occurs primarily in highly icy peat and silty ground. The depth of the frost clefts can be different (from 1 to 4 m) depending on the thickness of these horizons and on the nature of the underlying rocks. The most favorable conditions for the growth of secondary vein ice are the conditions of a floodplain regime. Here the surface horizons are always greatly moistened, peaty and silted. In addition, under floodplain regime conditions the growth of secondary vein ice can occur syngenetically, that is, simultaneously with the accumulation of precipitation, and thus ice veins can grow both in width and height. Secondary vein ice can grow both syngenetically and epigenetically, that is, can form after there has been an accumulation and freezing of the entire stratum of deposits. The most distinguishing characteristic of secondary vein ice is vertical stratification caused by the inclusion of mineral and plant admixtures entering the frost clefts with the water. Another of the distinguishing characteristics of the structure of secondary vein ice are the fine air bubbles dispersed in the ice mass. In the secondary vein ice the air bubbles have been rounded, elongated or slightly dendritic form, in contrast or a true cylindrical The slight smooth concavity of the ice intercalations in the polygonal blocks probably corresponds to the lower isothermal surface of the once-existing seasonally melted layer. However, deep "coffer" folds outlined by ice intercalations scarcely coincide with the position of the surface of the seasonally melted layer. In Grigoriev's opinion (110), the position of the isothermal surface is caused by pressure from the growing ice vein (the direction of the ice intercalations along the lateral contacts with a vein is almost vertical). As a result of such pressure the smoothly warping ice intercalations are deformed, sometimes folded and in many cases bent back almost at right angles. The nature of the contact between the ice veins and the ground mass is evidence that the main masses of secondary vein ice in ancient and modern alluvial deposits of the coastal lowlands increased simultaneously with the accumulation of sediments in the floodplain regime. At the present time, intensive growth of syngenetic secondary vein ice is observed in extensive sectors of floodplains (this is graphically indicated by the presence of growing ridges on the surface of the polygonal floodplains). However, on the ancient alluvial plain the growth of ice veins is not noted at this time. In the coastal scarps of the ancient coastal plains, one also finds vertical thin veins of ice from 10 to 30 cm in thickness which have been traced to a depth of only 3-4 m. The nature of ice stratification and the bedding of the surrounding ground indicated that these veins have an epigenetic origin. This kind of thin epigenetic ice vein is also formed in thick ancient synegentic ice veins, but the growth there is evidently difficult. The age of the deposits one the coastal plain is indicated by the ancient age of the syngenetic secondary vein ice. If the onset of formation of the ancient coastal alluvial plain is related to the beginning of the Middle Pleistocene, the onset of freezing of the unconsolidated Quaternary deposits and the formation of thick underground ice is telated to the same time. However, the main mass of epigenetic vein ice has a Holocene age. The broad development of secondary vien ice in all elements of Quaternary deposits is evidence that the conditions for the development and growth of ice were favorable during the course of the entire second half of the Quaternary period. Simultaneously with the secondary vein ice of syngenetic and epigenetic orgin,
constitutional ice, scattered through the entire mass of frozen ground, developed extensively in the layers of permanently frozen ground in the coastal and shelf parts of the Arctic on the north of Eurasia. This ice is represented for the most part by ice cement and segregation ice. The first was formed as a result of the rapid freezing of moisture present in the ground pores and the second as a result of the segregation and freezing of moisture migrating in the ground pores toward the freezing front. This increased ice content constitutes the most characteristic peculiarities of the permanently frozen ground layers developed in the coastal shelf zone. The thickness of the permafrost on the Arctic islands sometimes reaches 220 m but in the submarine conditions around the islands it usually decreases by 35-5 m at the distance offshore of 10-15 km. In general the picture of the main features of the submarine permafrost distribution in the Arctic seas looks as it is shown in Fig. 22. Of course, this figure shows only the scheme of the relict Pleistocene and Holocene permafrost of the coastal plains, shelf and islands. The characteristics and distribution of recent permafrost, including submarine permafrost characterized by seasonal and partly multi-year cryogenic stages, will be considered later and be shown in greater scale. In the illustration (Fig. 22), we can see that the permafrost is usually not monolithic but often a discontinous body, half being separated by unfrozedn deposits. We can see also the trend in the Fig. 19-Geological cross section of the "anceint valley" innundated by sea water in Amderma (Kara Sea), according to Ponomarev 1960 (269) permafrost depth and thickness decreasing in the offshore direction and the limits of these characteristics are typical for the Arctic shelf of Eurasia. Cryogenic phenomena found in Pleistocene formations on the shelf provide evidence of the existence of permafrsot, although the mere fact of their presence or absence in the cross-section affords no basis for paleogeographic conclusions. In order to reconstruct the history of permafrost formation, to determine the time of freezing of the sediments whose age has been ascertained on paleontological and chronological data or by means of other methods, one must find convincing proof that a given cryogenic phenomenon developed together with accumulation of deposits i.e. syngenetically. This is the prime condition. Furthermore, cyrogenic phenomena do not occur everywhere, even under the most severe climatic conditions. They are characteristic of only definite sediments and particular facies. Sometimes horizons which lack any "traces of frozen ground" may therefore be erroneously attributed to a warmer period. It seems very difficult to solve the problems relating to the syngenesis of cryogenic phenomena and their association with those or other formations, even if the physical substance of all these phenomena could be ascertained. The geologic-cryogenic regularities controlling the development of these phenomena can only be explained with the aid of adequate research methods. One of those methods is the frozen-ground facial analysis of Quaternary formations. It is justified by the following facts. In cross-sections, properties of the sediments are studies as may provide distinguishing evidence of their genesis (mineral composition, stratification pattern, faunal and floral remains, etc.) and facies. At the same time such syngenetic cryogenic phenomena are identified that are already known to bear traces of permafrost action. In subaqueous sediments, they appear in two forms: either oblique or vertical cryogenic forms. In subaerial formations, the leading features are a stratified or striated cryogenic texture, as well as ice veins with irregular border contracts. Fig. 20 -Temperature of the ground ice in the Kara Sea, according to Ponomarev 1960 (265). The thus ascertained syngenetic freezing of the sediments, occurring in the cross-section and in a definte area, must be correlated with the facies from which cryogenic phenomena are absent or in which they are recorded by forms occurring in the active layer of permafrost. Since the early fifties, some places of the Eurasiatic northern seas and (on particular) its shallow-water coastal area were chosen as the "proving ground" for the comprehensive investigations of the layers of shelf deposits that had been transformed by cryogenic processes. In 1971 S.M. Fotiev* had proposed the terms "subaquatic cryogenic stratum," or SKT for such kind of layers, SFL for seasonally frozen layer, and STL for seasonally thawed layer. Some works were carried out by the expedition of the USSR Academic of Sciences and Moscow State University in the eastern part of the Vanicina gulf (Laptev Sea). In 1972 Ye. Katusonov and G. Pudov published the results of the criolithological investigations of this area. In Fig. 23 we see that permafrost is developed in most of the area under the sea ice. The depth of the permafrost here is more than 50 m. The area under unfrozen sea water is "talik." There are three lithological sorts of deposits under Vanking Gulf: silty sands, silty aleurites and sandy aleurites. The authors divide all these deposits into two series. Upper one is wet and ice saturated (70-45%). The lower one looks "dry" and very dense. Sands and aleurites of the lower series have the fissures filled by ice crystals. The material of the upper series is less dense, viscose after melting, and often flowing. There are many "broken" lenses of ice with thickness about 1.5 cm. They create the cross-bedded cryogenic structures and the small fissures are half filled by crystals of ice. The upper series is high ^{*} The article "Role of the Chemical Composition and Mineralization of Subterranean Waters in the Freezing Process . . ." TR-PNIISA, Vol. 11, 1971. Fig 21-Schematic map of distribution of disperse deposits with different ice saturation in the coastal zone of the Yakutia, after Grigoriev, 1966 (110). 1. Regions with primary development of ancient thick secondary vein ice associated with remenants of ancient alluvial plains (dimensions of ice veins up to 6-8 m in width and up to 40-50 m in height. 2. Regions with primary distribution of intermediate density of network of ice veins associated with floodplains and alassy (dimensions of ice veins up to 2-3 m in width and up to 10-12 m in height. 3. Regions with primary distribution of thin networks of thin secondary vein ice associated with remenants of sandy coastal marine plain (dimensions of ice veins up to 1-2 m in width and up to 3-5m in height. 4. Regions with primary distribution of bedrock outcrops. in salts (chlorides and sulphates of magnesium, calcium and sodim). The lower one has the fissures completely filled by ice crystals. This series is unsalted. Table 10 show the moisture and salinity of the deposits for the different depths in this area. Because of the definte regularity of the ice content, the cryogenic structures distribution and the properties of the deposits, the geologists made a conclusion that differences of the two series could be explained with a cryolithological approach. They supposed that the more time the deposits had been in an unfrozen state and subjected to the diagenesis and consolidation, the weaker and more monotonous the ice formation process must have been. On the contrary, the transition of the deposits from an unfrozen to a frozen state was fast, then these deposits were not subjected to serious changes and the cryogenic structures were developing much more intensively. The authors distinguished three types of permafrost in the sedimentary deposits: (a) Singenetic type, if the deposits were not changed by the final moment of the complete freezing. Their formation took place near the surface due to the influence of the permafrost basement. Typical cryogenic structures are usually layered for subaerial and cross-bedded for subaqueous deposits. (b) Parasingenetic type, if the deposits were formed in the permafrost conditions but were in an unfrozen state for a long time. They had been consolidated and fissured; which is why the fissure cryogenic structures are typical for them. (c) Epigenetic type, if the deposits had been formed before the permafrost conditions. These cryogenic structures are connected with tectonic dislocations and lithogenic cracks forming the large blocks. Katsonov and Pudov suppose that the cryogenetic structures of the upper series of deposits (Fig. 23) were formed singenetically in the relatively salted Holocene basin. The lower one was formed in the middle Pleistocene, it has the parasingenetic cryogenic structures formed in the fresh water basin. We can see that in spite of the fact that both series are very similar lithologically, they are different in the cryolithological sense. - M. Ivanov's investigations (1969), (124) of the cryogenic structure of coastal-delta perenially frozen deposits show the following: - 1. In the structure of most of the sectors of the beach areas of river mouths situated on the coast of the Laptev Sea and the East Siberian Sea the principal components of this stucture are coastal-delta deposits represented primarily by sands, sandy and clayey aleurites, and also silts and clays. The structure of the upper layer of perennially frozen sandy and clayey aleurites is characterized by slitlike voids with a width up to 1 cm. and a length of 3-4 cm, whose formation is evidently associated with temperature stresses in the bottom sediments during their freezing. In these same deposits one also finds obliquely and vertically arranged tubular voids with a width to 3mm and a length up to 40 cm, associated with the vital functioning of mud-eaters (worms), moving about in the layer of thawed ground. - 2. The moisture-ice content of coastal-delta and marine deposits varies in a rather wide range (Table 11). In determining the moisture content of ground taken from
boreholes drilled in the bottom of the beach areas at the mouths of the Indigirka and Yana Rivers, the geologists usually noted a tendency to decrease in the moisture-ice content of bottom deposits with depth, and only at individual horizons, to which the accumulation of segregation ice or ice cement is associated, is this tendency impaired. - 3. Foredelta deposits are also characterized by the broad development of massive cryogenic textures, the formation of fissured and radial textures, and also intercalations and lenses of ice with broken outlines. A pecularity of this complex of foredelta deposits is that they contain secondary vein ice forming during the freezing of the bottom deposits under the layer of ice covering them (Fig. 7, 9). The silty deposits usually underlying the layers of sandy aleurites are characterized not only by ice cement, but also by individual schlieren and intercalations of ice with a granular structure. In many cases the horizontal ice intercalations have vertical offshoots which create an irregular rectangular grid. The texture-forming ice consists of rounded trains similar to fish eggs measuring up to 1-2 mm, not firmly bound one to the other. The ice grains are usally covered by a dull whitish encrustation. In individual schlieren with voids at the center the granular ice in many cases makes up only the walls of the schlieren. The granular structure of the texture-forming ice which we encountered in the frozen silty deposits on the bottom of the beach area at the mouth of teh Indigirka is evidently associated with the salinity of the bottom sediments. The tiniest particles of salt could serve as singular centers for the formation of individual grains of ice during the freezing of bottom sediments. The broad propagation for texture-forming ice having a granular structure is also indicated by the fact that such ice is present in the frozen silty deposits laying on the floor of Siellyakh Bay in the Laptev Sea and on the bottom of the lagoon on Vil'kitskiy Island, situated in Kara Sea (Fig. 25,26). The cryogenic structure of the seasonally freezing layer in general is similar to the cryogenic structure of the upper layer of permanently frozen ground. In the case of syngenetic freezing, when with the accumulation of precipitation the upper surface of the permanently frozen stratum rises, the lower horizons of the seasonally freezing layer pass into a permanently frozen state. At the same time, the cryogenic textures forming in the seasonally melted layer are simultaneously preserved. The formation of different types of cryogenic textures is dependent on the facies of the ground, the moisture content and the nature of freezing. The following is the P. A. Shumskiy approach, N. F. Grigoriev, 1966 (110): Fig. 24 -Fissure ice, according to Ivanov, 1969 (124). - 1. Vertical fissure ice in consolidated aleurite, longitudinal section - 2. Vertical fissure ice in consolidated aleurite, transverse section. - 3. Cryogenic structure of radiating fissure ice in the silty sand and aleurite of the seasonally frozen bottom layer deposits. - 4. Horizontal fissure in modern frozen deposits. following is the P. A. Shumskiy approach, N. F. Grigoriev, 1966 (110): 1) Fused, characterized by the development in the ground pores of only very small formations of ice cement; 2) cellular or reticular, for which the formation of intersecting ice intercalations in the ground is typical; 3) layered, clearly expressed intercalations of ice and ground. Earlier, Ye. M. Katasonov 1960 (144), 1962 (145) had formulated a detailed classification of cryogenic textures for the principal genetic varieties of both seasonally and permanently frozen Quaternary deposits which can be used as well for the ground in the Eurasiatic coastal and shelf areas of the Arctic Ocean (Fig. 27). Later, the same author published the more detailed "Classification of Frost-Caused Phenomena" (1973,148) dividing them into two categories: (1) Surface phenomena including relief forms due to freeze and thaw, such as small and large polygons, frost fissures, frost-heaving mounds, ostioles, mud strips and (2) Subsurface one, among which ground and ice veins, streaks deformations of sediments occur. Cryogenic phenomena include moreover slope troughs (dells) produced by thermo-erosion, icings, thermokarst depressions, as well as depressions formed as a result of the melting of glacier ice. His classification presented below (Fig. 28) refers to phenomena but not to the deposits in which they occur. The author divides cryogenic phenomena into subterraneous and correlated surface structures—according to their genesis i.e. to the conditions under which the deposits were accumulated and frozen. The choice of such a classificatory distinction is inspired by the necessity of correlating the phenomena under consideration with the properties of components (including also paleontologic remains) and the structure of Quaternary sediments. Such a classification is designed to serve geocryology (permafrost studies) and paleogeographic purposes. Depending on the accumulational environment, present-day cryogenic phenomena are being divided into two groups namely into subaqueous or subaerial ones. Subaqueous cryogenic phenomena are due to freezing of the aqueous sediments, deposited in abandoned river chanels (oxbow), lakes and marine coastal zones. Characteristic of these formations are incrustations and agglomerations of ice. At the surface, the presence of ice is revealed by bulgunnyakhs rather than frost-heaving surfaces. The latter are not always well-developed and are not therefore presented in the table. Subaerial cryogenic phenomena are being initiated during freezing of the sediments accumulated on flood plains, in deltas and on slopes. They fall into two sub-groups: Terrace-delta cryogenic structures which are characteristic of alluvial, deltaic as well as fluvioglacial formations. The sub-group of cryogenic slope phenomena comprises all thos that occur in colluvial-solifluciton, eluvial and colluvial formations. It further includes the phenomena occurring in the eolian sediments and peaty swamps deposited on the surface of supra-inundational terraces and watershed plateaus. Subaerial cryogenic phenomena are associated with particular forms of accumulational surfaces, with slopes, whether steep or gentle, with various landscape types. Moisture of the active layer provides the most reliable index of such topographic, or rather frozen-ground facial conditions which are likely to either promote or inhibit the development of those or other cryogenic phenomena. Abundant moisture leads to formation of ice veings and small ice layers. In dry places with a deficiency of water in the active layer, ground veins are usually the result. These conditions have been marked in the classification table in which the cryogenic phenomena occurring in "swampy" and "dry" slope facies are distinguished from the deltaic and terrace ones. Fig. 26-Ice inclusion forms in the shallow water deposits of the sea embayment, (enlarged four times) according to Usov 1967 (363). 1&2. Ice inclusions in the upper lens of the lagoon deposits. - 3. Injected layered corse-crystaline ice. - 4. Closed cavity ice on walls. - 5. Injected ice inclusions in the lower lens of the lagoon deposits. - 6. Layered cryogenic texture of the submarine slope. The frozen-ground facial conditions which determine the composition and moisture content (the amount of ice) of present-day sediments are responsible for the depth of thawing, the thermal conditions of rocks and consequently for the intensity of cryogenic processes in any given area. Ye. M. Katasonov thinks therefore, the cryogenic processes should be regarded as a complemenatry indication of frozen-ground facial conditions. In the classification table a distinction is made amoung: (1) Physical processes such a migration of film water, injection and crystallization of water, etc.; (2) Mechanical processes which produce disintegration, displacement and crushing of the material, its sorting, deformation of layers during frost heaving, frost cracking, and (3) Specifically geologic processes which cause preservation of ice and solifluction. This division is somewhat simplified in that various processes may operate simultaneously, encroach upon one another or one may give rise to another. this classification, the morphogenetic criteriam permits to derive logical conclusions certifying to the existence of a relationship between cryogenic phenomena and specific sediments, frozen-ground facial conditions of both their accumulation and their freezing. Frozen-ground facial conditions can be most readily reconstructed on the basis of occurrence of ice which originates syngenetically ynder the influence of pre-existant permafrost. In subaqueous deposits, ice takes the form of either oblique or vertical lenses and schlieren, which repeat the sape of taliks. In subaerial formations, ice accumulations appear in the form of intervening layers at the border between the active zone and permafrost. Tiny ground and umus veins, corresponding with micropolygons are in fact widespread cryogenic phenomena occurring principally on slopes and developing within the active layer under conditions of denudation and instability of accumulation. Such small veins together with the large ground veins that reflect the polygons of the active layer which have 10-30 m in size and with ice wedges due to cracking Fig. 27-The most widely occurring cryogenic textures of permanently frozen Quaternary deposits, according to Katasonov, 1962 (145). - 1. Thin lenticular, characteristic of deposits (facies) of dry slopes. - 2. Gently undulating lenticular or recticular, characteristic of deluvium (facies of gentle wet slopes) - 3. Horizontal parallel bedding, characteristic of floodplain deposits. - 4. Concave parallel bedding, characteristic of deposits of polygonal flood plain (with ice veins). - 5.
Concave, parallel bedding, recticular, characteristic of deposits in troughs and wet medows. - 6. Obliquely bedded , cryogenic, forming during freezing of bottom slopes. of the passive zone of permafrost, constitute a series of frost-fissure polygons. Deposits with higher moisture content (accumulation of ice) that fill the marshy and peaty dells thaw to a depth of hardly 0.4-0.8 m and yet the mean annual temperature is low (down to -6°C); frost cracking occurs within the permafrost, thus inducing formation of ice veins but no ground veins. The sediments of the ridges on the flood coastal plains consist of fine sands with a negligible content of ice, of silts and sands, that thaw to a depth of 3 m and their mean annual temperature oscillates from -1.5° to -2.5°C. Frost fissures develope within the active zone often extending down to the permafrost. The ground and ground-ice veins developed here are large whereas the colluvial and alluvial silts covering the major part of the slopes surfaces exhibit predominantly ground and humus veins forming micropolygons. Since there are no deep cracks here, the active layer is intersected by a dense network of small fissures and constitutes a sort of "elastic coer" in which the tensile stresses, called forth by winter thermal gradients, are being released. Some experts attribute the development of fissuring to differential cooling down of deposits. N. N. Romanovskiy (1961) 286, basing his inferences on the results obtained by measurements, believes that in deposits whose mean temperatures are of -5 to -6° C and below, only ice veins are apt to form, whereas at tempertures of -2 to -3° C and above, give rise to ground veins. This data testifies to certain regularities due to thermal regime. However, two facts should be taken into account: First, ground veins are found in deposits whose mean annual temperature is -7 to -8°C (as described from the Anabara lowland, Lena delta); second, even under the most favorable geothermal conditions—ice veins fail to develop, in slope sediments whose upper protions are usually dissected by tiny fissures. | ORIGIN OF ROCKS | | | FROCKS | CRYOGENIC | PHENOMENA | | PR | OCESSES |--------------------------|-------|--------------|--|--|---|--------------------------|----------------------------------|---|-------------------|-----------|-----------|-----------|----------|-----------|-----------|------|------|------|--------------------|----------------------------------|---------------|----------------------------|------------------------|---|--|--| | LAND-
FORM
ELEMENT | | ĭM | ORIGIN
AND FACIES OF
DEPOSITS | SURFICIAL HUGE MASSES OF ICE, FISSURES, DISTURBANCES LAYERS. | | ICE
INTRUSIONS | PHYSICAL | MECHANICAL | REMARKS | | | | | | | | | | | | | | | | | | | l i l | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | - | | ELUVIUM OF
BEDROCK | FISSURES POLYGONS (10-20m) | ICE WEDGES | | | FROST
CRACKING
IN PERMA-
FROST | ² ELUVIUM OF
PLEISTOCENE
DEPOSITS | DEBRIS ISLANDS | 2 CRYOTURBATIONS | | SORTING | DISRUPTION
AND SQUE-
EZING OF
LAYERS | SOLI-
FLUXION | 3
COLLUVIUM | FISSURES POLYGONS (10-20m) | 3a ICE WEDGES | | | FROST
CRACKING
IN PERMA-
FROST | Ω
Ο
Ν | | | | | 3b PACKED
LAYERS
OF "GOLETZ"
ICE | | CRYSTAL-
LIZATON OF
WATER | S | OIST GROUNDS | 4 | 40 SOLFLUXION FORMS | 40 CRYOTURBATIONS | | | | SÖLI-
FLUXION | FLUVE | | SOLFLUXION | 4b DEBRIS ISLANDS
ELONGATED
DOWN THE
SLOPE | 4b CRYOTURBATIONS | | SORTING | DISRUPTION
AND SQUE-
EZING OF
LAYERS | SOLI —
FLUXION | | | | | | | | | | | | | | | | | | | ENV | INTER | | DEPOSITS | 4c FISSURES | 4c BENT ICE WEDGES | | | FROST
CRACKING
IN PERMA-
FROST | SOLI-
FLUXION | | | | | | | | | | | | | | | | | | | RIAL | : | | OIST GROU IST GROU | OIST GROU | OIST GROU | | | - | 4d ICE INTERLAYERS | CRYSTAL-
LIZATION
OF WATER | | SOLI-
FLUXION | | | | | | | LOPES | | | | | | | | | | | | | | | OIST | OIST | OIST | | 5
DELUVIAL
DEPOSITS | | 5 PARTY PACKETS OF LAYERED | 5 ICE INTERLAYERS WAVY | CRYSTAL-
LIATZION
OF WATER | | | | | S | | | | | | | | | | | | | | | | | | 6
PEAT — BOG | POLYGONS (10-20m) | 6a ICE WEDGES | | | FROST
CRACKING
IN PERMA-
FROST | | | | | | | DEPOSITS | 6b PEAT
THUFURS | 6b LENSES
OF ICE | | INJECTION
SORTING | 6c BENT ICE
INTLAYERS | CRYSTAL-
LIZATION
OF WATER | Fig.28a-Classification of frost caused subaqueous and subaerial phenomena, after Ey.M.Katasnov --Continued on next page-- | | ORIGIN OF ROCKS | | | CRYOGENIC | PHENOMENA | | | PROCESS | | | | | | | | | | | | | | | | |----------|--|---------------------|---|--------------------------------------|--|-------------------------------------|---------------------------------|---|--|----|----|----|----|----|----|----|----|----|---------------|-----------------------|--------|--|--| | Ε | LAND ORIGIN
FORM AND FACIES OF
ELEMENTS DEPOSITS | | | SURFICAL | SURFICAL UNDERGROUND HUGE MASSES OF ICE I ICE FISSURES, DISTURBANCES IN TRUSIONS LAYERS. | | PHYSICAL | MECHANICAL | REMARKS | | | | | | | | | | | | | | | | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | | | | | | | | | | | | | | | | | a | 7 ELUVIUM OF
Bedrock | 7 STONE
POLYGONS
(0.5-4.0m) | PATTERNED GROUNDS | | | SORTING | | | | | | | | | | | | | | | | | | LUVES | IST AND | 8 ELUVIUM OF
PLEISTOCENE
DEPOSITS | MICRO-
POLYGONS
(0.5-3.0m) | FROST CRACKS WITH MINERAL AND/OR ORGANIC MATERIAL | | | FROST
CRACKING
IN ACTIVE
LAYER | | | | | | | | | | | | | | | | | | INTERFLUVE | Y MOIST
ROUNDS | COLLUVIUM | | ? | | | ? | | | | | | | | | | | | | | | | | | OPES 1 | SLIGHTLY
DRY GRO | DELUVIAL DEPOSITS | O,5-3,0m) | AND/OR ORGANIC
MATERIAL | | | FROST
CRACKING
IN ACTIVE
LAYER | | | | | | | | | | | | | | | | | 1.T | SLOI | | SANDS | HIGH-CENTER
POLYGONS
(2-8 m) | FISSURES
(SAG VEINS) | | | FROST
CRACKING
IN ACTIVE
LAYER | | | | | | | | | | | | | | | | | MEN | | | PEAT-BOG | LOW-CENTER
POLYGONS
(IO-20m) | 20 NEDGES | | | FROST
CRACKING
IN PERMA-
FROST | | | | | | | | | | | | | | | | | VIRON | | | DEPOSITS | | | BENT AND HORIZONTAL ICE INTERLAYERS | CRYSTAL-
IZATION OF
WATER | | | | | | | | | | | | | | | | | | EN | S | ST GROUNDS | AND DELTA
DEPOSITS (SILT/SANC) | FISSURES.
POLYGONS | WEDGES | | | FROST
CRACKING
IN PERMA-
FROST | | | | | | | | | | | | | | | | |) L | ELTA | | ST GRO | 14 SEDMENTS
OF NEAR-BED
SHOALS | VISABLE | WEDGES | | | FROST CRACK-
ING IN PERMA-
FROST AND
ACTIVE LAYER | | | | | | | | | | | | | | | | SUBAERIA | ۵ | | | ST GLACIOFLUVIAL | POLYGONS (10-40m) AND | WEDGES | | | | | | MOI | PEBBLE S | ~ | FROST FISSURES WITH SECONDARY INFILLING | | | FROST
CRACKING
IN ACTIVE
LAYER | | | | | | | | | | | | | | | | | | | Z | I6
FLOOD-PLAIN
DEPOSITS | FISSURES POLYGONS | FROST
FISSURES WITH
SECONDARY
INFILLING | | | FROST
CRACKING
IN ACTIVE
LAYER | | | | | | | | | | | | | | | | | | | GRO | OF NEAR-BED
SHOALS | FISSURES INDISTINCTLY VISABLE | GROUND
FISSURES
(SAG VEINS) | | | FROST
CRACKING
IN ACTIVE
LAYER | | | | | | | | | | | | | | | | Fig 28b-Classification of frost caused subaqueous and subaerial phenomena, after Ey.M.Katasnov --Continued on next page-- | ORIGIN OF ROCKS | | | CRYO | GENIC PHENOMEN | A | | PROCESSES | | |-----------------|----------------------------|-------------------------------------|----------|---|--|-------------------------|----------------------|---------------------------------| | | LAND- (
FORM
ELEMENT | ORIGIN
AND FACIES OF
DEPOSITS | SURFICAL | UNDE HUGE MASSES OF ICE, FISSURES, DISTURBANCES LAYERS. | RGROUND
ICE
INTRUSIONS | PHYSICAL | MECHANICAL | REMARKS | | ı | (2) (3) | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | | | | PINGOS | LENSES OF ICE | | INJECTION | BENDING
OF LAYERS | | | ENVIRONMENT | חב | STRINE
POSITS | | | VERTICAL AND DIAGONALLY ORIENTED SEGREGATION ICE | SORTING | | | | | 19
M | ARINE | | 19a FLOES | | INJECTION
(SORTING?) | | PERSISTING
OF ICE
PACK(?) | | | LITTORAL | | | 19b BLOCKS OF | | | | PERSISTING
OF ICE
PACK | | SUB AQUEOUS | | 2. 33.13 | | | 19c HORIZONTALLY AND DIAGONALLY ORIENTED SEGREGATION ICE | SORTING | | | Fig. 28c-Classification of frost caused subaqueous and subaerial phenomena, after Ey.M. Katasnov 1960, 1973. The termal and physical regularities controlling the development of ice and ground veins are of importance for the solution of many problems relating to geocryology. In the case in question thos regularities are obviously associated with the genetic types and facies of the sediments in which cryogenic phenomena re occurring, since the mineral composition, the moisture content and the thermal regime of these deposits are determined by one and the same cause, which is their genesis, the conditions of their formation. Analysis of the facies distinguished, comparison of their specific
features and of the present-day homogeneous formations of cryogenic phenomena can help to elucidate the paleogeographic conditions and to reconstruct the history of development of the submarine permafrost. The advantage of the frozen ground-facial method consists in that id does not permit to study cryogenic phenomena in abstraction of the sediments within which they occur and sets the investigation of these phenomena upon firm geologic foundations. In describing the present-day layers of perennially frozen deposits encountered on the bottoms of shallow-water rivers, lakes, and sea water bodies, scientists usually note some peculiarities of the cryogenic structure of the frozen strata forming under different physiographic conditions. The complex of cryogenic textures characteristic, for example, for the upper syngenetic layer, a combination of radial-fissured textures with oblique-broken intercalations and lenses of ice (according to observations made by M. S. Ivanov (124) in the beach area ner the mouth of the Yana (Fig. 7). The lower, epigenetic part of the frozen layer is characterized by a combination of massive cryogenic textures with horizontal ice intercalations. But in this layer it is most typical to observe texture-forming ice with a granular stucture and also thin bandlike fissures and siltlike voids only partially filled with ice. It was also noted that there is a close correlation between the compostion of the deposits and the type of cryogenic textures. For example, in the sandy and sandy-aleuritic deposits there is a predominance of a massive cryogenic texture, but in the clayey aleurites, containing lenticular inclusions of plant remains, there is widespread development of horizontally oriented lenticular cryogenic textures. It should be note also that, depending on the conditions for the freezing of alluvium in the formation of underwater frozen strata in Northern Yakutia, as the factor some geologist underline of the greatest importance is the complex polygenetic freezing in which, as a rule, relatively thin syngenetic layer of perennially frozen deposits usually covers a thick epigenetic or paracingenetic layer of frozen rocks. Some examples of this cryolithological approach can be found in the works of V. Usov published in 1965-1969. This author studies the formation of the permanently frozen deposits and cryogenic structures in the lagoon conditions. V. Usov supposed the possibility of the relatively deep-water deposits freezing by the level of the middle sublitoral. The main condition for this is the presence of the same kind of the freezing agent. Most often it is the ice body. In his opinion the freezing of the subaquatic deposits in Arctic lagoons conditions is the most probable source of permafrost development. He divides the marine accumulation area into three zones: - (1) Subaquatic and subairial deposits of the shallow coasts, freezing singeneticaly. - (2) Relatively shallow water deposits, including bay deposits, freezing under water during the small changing of the reservior parameters (singenetic and diagenetic types of the cryogenic structures formations). - (3) Areas closed to middle littoral, formed by thawed, cold and partly perennially frozen deposits. - V. Usov emphasizes the existence of relict permafrost in all three zones and its influence as an agent in stimulating the freezing of the younger layers. Fig. 29 shows the scheme of the relationship between recent and relict permafrost. The recent one is forming now in the lagoon conditions when the sea ice interacts with the lagoon and bar bottom. The presence of the relict Holocene permafrost aids to the development of recent permafrost from below, that goes on repeating the same thing, that happened before in the Holocene with the older Pleistocene relict permafrost acting as a freezing agent. V. Usov considered the possibility of the determination of the different types of the freezing processes and cryogenic structures in the first and second zones. On the basis of the differences in the cryogenic structues he delineates the formations of the lagoon, embayed, deltaic and tidal-march types of the Arctic coast. He specifies the peculiarities of the way epigenetic freezing of the bottom marine deposits (clay, in particular) is connected with the duration of the subairial exposure. The freezing of such kinds of the deposits usually is followed by intensive formation of ice layers and the cryogenic structures look like singenetic ones but really have the epigenetic origin. The schemes for these dynamic processes will be done in a special chapter later. To be Continued ## Submarine Permafrost on Arctic Shelf of Eurasia ## List of Figures | Fig. | 16- | Schematic cross section of the bonded permafrost position and | 4- | |------|-----|---|------------| | Fig. | 15- | Schematic cross section of the permafrost in the Ob Bay (Kara Sea) coastal zone | <i>L</i> = | | Fig. | 14- | Submarine permafrost extension in the Kara and Laptev Seas | * | | Fig. | 13- | Boundary of submarine permafrost in the Kara Sea | * | | Fig. | 12- | Permafrost in the Soviet Union | * | | Fig. | 11- | Schematic permafrost-geological map of the river mouth beaches of the shore of the East Siberian Sea | * | | Fig. | 10- | Schematic temperature cross section of underwater layer of perenially frozen deposits on the bottom of the beach area near the mouth of the Indigirka River | * | | Fig. | 9- | Schematic permafrost-geological cross section of the region of beach area at the mouth of the Indigirka River | * | | Fig. | 8- | Areas of the Laptev Sea shelf with unsalted deposits | * | | Fig. | 7- | Permafrost-geological cross section in the region of the beach area at the mouth of the Yana River | * | | Fig. | 6- | Schematic permafrost map of beach near mouth of Yana River | * | | Fig. | 5- | Points of Geothermal observation | * | | Fig. | 4- | Schematic map of permafrost studies of the Arctic part of Yakutia | * | | Fig. | 3- | Areas of investigation connected with submarine permafrost geological and geomorphological environments thermal erosion, coastal dynamics, Arctic shoreline processes, shelf bottom relief and deposits, ice processes, hydrological peculiarities. | * | | Fig. | 2- | Areas of investigation connected with submarine permafrost, genisis histroy, paleogeographical conditions (changing of the sea level, regressions and trangressions, Pleistocene and recent tectonics, paloclimatic data | * | | Fig. | 1- | Areas of investigation connected with submarine permafrost regional distribution, characteristics, composition and structure | * | | rag. | 1,- | position and thickness in the Kojevnikov Bay | |------|-----|---| | Fig. | 18- | Bonded permafrost in the eastern part of the Laptev Sea 51 | | Fig. | 19- | Geological cross section of the "ancient valley" innundated by sea water in Amderma (Kara Sea) | | Fig. | 20- | Temperature of the ground ice in the Kara Sea 55 | | Fig. | 21- | Schematic map of distribution of disperse deposits with different ice saturation in the coastal zone of the Yakutia 57 | | Fig. | 22- | Schematic cross section of the submarine relict Pleistocene and Holocene permafrost distribution on the Durasiatic part of the Arctic Ocean shelf | | Fig. | 23- | Permafrost geological cross section of the Vankina Gulf (eastern part of the Laptev Sea) 61 | | Fig. | 24- | Fissure ice | | Fig. | 25- | Geological cross section of the north coast on Vilkitski Island (Kara Sea) | | Fig. | 26- | Ice inclusion forms in the shallow water deposits of the sea embayment (enlarged four times) | | Fig. | 27- | The most widely occuring cryogenic textures of permanently frozen Quaternary deposits | | Fig. | 28- | Classification of frost caused subaqueous and subaerial phenomena | | Fig. | 29- | Scheme of the relationship between recent and relict perma- frost | ## Submarine Permafrost on Arctic Shelf of Eurasia ## List of Tables | Table | 1- | Temperature of permanently frozen ground in Chay-Tumus region . | • | * | |-------|----|--|---|----| | Table | 2- | Temperature of permanently frozen ground in neighborhood of Tiksi Bay | | * | | Table | 3- | Temperature of permanently frozen ground in neighborhood of Cape Val'kumey | • | * | | Table | 4- | Ground temperature C in region of bar of channel in middle delta of the Indigirka River | | * | | Table | 5- | Geothermal step and geothermal gradient based on temperature observations made in 1964 in Chay-Tumus region | • | * | | Table | 6- | Rock temperature at the bottom of the ground heat storage layer and geothermal gradients | • | * | | Table | 7- | Underground water mineralization and geothermal gradients | • | * | | Table | 8- | Temperature of bottom deposits for beach near mouth of Yana River along profile of boreholes 10-25-17-20-2 | | * | | Table | 9- | Freezing temperature of sea water of different salinity | • | 39 | | Table | 10 | - Moisture and salts content in shelf deposits, April-May 1969 . | | 41 | | Table | 11 | - Weight moisture content of coastal delta deposits (for typical boreholes) on the beach near the mouth of the Yana River (in % of dry weight) | • | 43 | ^{*} Tables included in Annual Report (1 April 1977) # Financial Status | Amount | dispersed | since | beginning | g of work | \$26,500 | |--------|-----------|--------|-----------|-------------|----------| | Amount | | Second | Quarter | (April-June | 22,480 | | I | | | | |---|--|--|--| | | | | | | | | | | | |
 | # DATA MANAGEMENT # DATA MANAGEMENT | Research
Unit | Proposer | <u>Title</u> | Page | |------------------|--|---|------| | 350 | D. H. Rosenberg
U. of Alaska | Alaskan OCS Program Coordination | 756 | | 362 | J. J. Audet
EDS/NOAA | Establish and Service a Project Marine Baseline
Data Base for the Alaska MEA Program | 779 | | 370 | D. M. Hickok
U. of Alaska | Administrative Support NODC/OCSEAP
Representative | 792 | | 496 | W. A. Brower, Jr.
National
Climatic Center | Maintenance of Alaskan OCSEAP Surface Marine and
Coastal station Data File | 795 | | 497 | E. F. Law | Alaskan Data Processing Facility | 935 | # Quarterly Report Contract #03-5-022-56 Research Unit #350 Task Order #2 Reporting Period 4/1 - 6/30/77 Number of Pages ALASKAN OCS PROGRAM COORDINATION Mr. Donald H. Rosenberg Alaska Sea Grant Program University of Alaska Fairbanks, Alaska 99701 #### I. Task Objectives This project provides for coordination of all NOAA/OCS Task Orders within the University of Alaska. It provides for a coordinator and related support services necessary for the accomplishment of the scientific programs. These services include Data Management, Fiscal Management, and Logistics Coordination. #### II. Field and Laboratory Activities Not applicable #### III. Results #### A. Data Management #### 1. Data Management Plans Data management plans for recently approved task orders #33 and 34 need to be formulated. We request a meeting with the appropriate data manager to negotiate the content of these plans as soon as is convenient. #### 2. Data Submitted this Quarter Task order #21, Rex Sole data resubmission, Pollock data and Arrowtooth Flounder data on 4/22/77. Data submitted on behalf of Dr. Peter Connors of Bodega Bay Laboratory. A resubmission of 1975 data and new submission of 1976 data. 4/4/77. Task order #21, Flathead Sole data on 5/23/77. Task order #20, Silas Bent cruise 8/31 - 9/14/75; and Discoverer cruise 11/23 - 12/2/75. Benthic grab data on 5/23/77. Task order #19, Surveyer 9/76; Miller Freeman 11/76, three batches, Moana Wave 10/76 CTD data submitted on 5/23/77. Task order #13, zooplankton data for <u>Discoverer</u> cruise 8/3/ - 8/17/75 on 5/23/77. #### B. Logistics Coordination Acona UHIH The following cruises and field activities were undertaken within the OCS program and were coordinated through this office: Field season Field season Miller Freeman Discoverer Surveyor Surveyor Acona Bird Survey, Task order #27 Bird Survey, Task order #28 CTD survey Ice edge survey Ice edge survey Zooplankton survey Trace metals Hydrocarbons Ice edge survey. # C. Contract Monitoring This office is currently involved in the preparation and submission of FY $\mbox{'78 proposals.}$ #### IV. Problems Encountered None this quarter. #### University of Alaska #### ENVIRONMENTAL DATA SUBMISSION SCHEDULE DATE: June 30, 1977 CONTRACT NUMBER: 03-5-022-56 T/O NUMBER: 24 R.U. NUMBER: PRINCIPAL INVESTIGATOR: Mr. David M. Hickok No environmental data are to be taken by this task order as indicated in the Data Management Plan. A schedule of submission is therefore not applicable. NOTE: Data Management Plan has been approved and made contractual. # University of Alaska # ENVIRONMENTAL DATA SUBMISSION SCHEDULE DATE: June 30, 1977 CONTRACT NUMBER: 03-5-022-56 T/O NUMBER: 29 PRINCIPAL INVESTIGATOR: Dr. H. M. Feder Submission dates are estimated only and will be updated, if necessary, each quarter. Data batches refer to data as identified in the data management plan. | Cruise/Field Operation | Collect | tion Dates | Estimated Sub | omission Dates 1 | |------------------------|---------|------------|---------------|------------------| | | From | To | Batch 1 2 | 3 4 | | Big Valley 001 | 6/17/76 | 6/23/76 | 8/30/77 | | | Big Valley 002 | 7/18/76 | 7/28/76 | 8/30/77 | | | Big Valley 003 | 8/19/76 | 8/29/76 | 8/30/77 | | | Big Valley 004 | 3/3/77 | 3/18/77 | 9/30/77 | | NOTE: Data Management Plan submitted August 16, 1976, we await formal approval by Contracting Officer. #### University of Alaska ## ENVIRONMENTAL DATA SUBMISSION SCHEDULE DATE: June 30, 1977 CONTRACT NUMBER: 03-5-022-56 T/O NUMBER: 6 R.U. NUMBER: 99 PRINCIPAL INVESTIGATOR: Dr. P. Jan Cannon No environmental data are to be taken by this task order as indicated in the Data Management Plan. A schedule of submission is therefore not applicable. NOTE: Data Management Plan has been approved by M. Pelto; we await approval by the Contract Officer. # University of Alaska # ENVIRONMENTAL DATA SUBMISSION SCHEDULE DATE: June 30, 1977 CONTRACT NUMBER: 03-5-022-56 T/O NUMBER: 13 R.U. NUMBER: 156/164 PRINCIPAL INVESTIGATOR: Dr. R. T. Cooney Submission dates are estimated only and will be updated, if necessary, each quarter. Data batches refer to data as identified in the data management plan. | Cruise/Field Operation | Collection Dates From To | | Estimated Submission Dates 1 Batch 1 | |------------------------|--------------------------|----------|--------------------------------------| | Discoverer Leg I #808 | 5/15/75 | 5/30/75 | submitted | | Discoverer Leg II #808 | 6/2/75 | 6/19/75 | submitted | | Discoverer Leg I #810 | 8/9/75 | 8/28/75 | submitted | | Miller Freeman #815 | 11/10/75 | 11/26/75 | submitted | | Contract #03-5-022-34 | Last | Year | submitted | | Surveyor 001/2 | 3/76 | 4/76 | submitted | | Discoverer 002 | 8/3/76 | 8/17/76 | submitted | | Discoverer | 6/28/77 | Current | | Notes: 1 Data Management Plan has been approved and made contractual. Format has been received and approved by all parties. ## University of Alaska #### ENVIRONMENTAL DATA SUBMISSION SCHEDULE DATE: June 30, 1977 CONTRACT NUMBER: 03-5-022-56 T/O NUMBER: 1 R.U. NUMBER: 159/164/427 PRINCIPAL INVESTIGATOR: Dr. Vera Alexander and Dr. Ted Cooney Submission dates are estimated only and will be updated, if necessary, each quarter. Data batches refer to data as identified in the data management plan. | Cruise/Field Operation | Collect
From | ion Dates
To | Estir
Batch l | nated Submi | ssion D | ates 4 | |------------------------|-----------------|-----------------|------------------|-------------|---------|--------| | Discoverer Leg I #808 | 5/15/75 | 5/30/75 | submitted | submitted | None | None | | Discoverer Leg II #808 | 6/2/75 | 6/19/75 | submitted | submitted | None | None | | Discoverer Leg I #810 | 8/9/75 | 8/28/75 | submitted | submitted | None | None | | Miller Freeman #815 | 11/10/75 | 11/26/75 | submitted | submitted | None | None | | Surveyor Su/001/2 | 3/76 | 4/76 | a | a | None | None | | Surveyor 1 | 3/15/77 | 4/6/77 | Ъ | | | | | Surveyor 2 | 4/14/77 | 5/3/77 | ъ | | | | | Discoverer | 5/20/77 | 6/11/77 | Ъ | | | | | UHIH | 4/1/77 | 4/7/77 | Ъ | | | | # Note: Data Management Plan and data Formats have been approved and are considered contractual. An update of data management plan, reflecting FY '77 Work Statement must be negotiated. Data are currently being keypunched and transferred to magnetic tape. b. A modified data management plan (see 1 above) is needed in order to schedule the data submission for these cruises. #### University of Alaska #### ENVIRONMENTAL DATA SUBMISSION SCHEDULE DATE: June 30, 1977 CONTRACT NUMBER: 03-5-022-56 T/O NUMBER: 7 R.U. NUMBER: 178 PRINCIPAL INVESTIGATOR: Dr. Robert J. Barsdate No environmental data are to be taken by this task order as indicated in the Data Management Plan. A schedule of submission is therefore not applicable . NOTE: 1 Data Management Plan has been approved and made contractural. # University of Alaska #### ENVIRONMENTAL DATA SUBMISSION SCHEDULE DATE: June 30, 1977 CONTRACT NUMBER: 03-5-022-56 T/O NUMBER: 8 R.U. NUMBER: 194 PRINCIPAL INVESTIGATOR: Dr. F. H. Fay Submission dates are estimated only and will be updated, if necessary, each quarter. Data batches refer to data as identified in the data management plan. | Cruise/Field Operation | Collection Dates From To | | Estimated Submission Dates 1 Batch 1 | |------------------------|--------------------------|------------|--------------------------------------| | Alaska Peninsula | 7/23/75 | 7/24/75 | submitted | | Kotzebue Sound | 7/17/75 | 7/20/75 | submitted | | Kotzebue Sound | 7/22/75 | 7/24/75 | submitted | | St. Lawrence Is. | 8/8/75 | 8/22/75 | submitted | | Alaska Peninsula | Summer 1976 | | submitted | | Kotzebue Sound | Summer 1976 | | submitted | | | A11 FY '7 | 6 data hav | e been submitted | Note: 1 Data Management Plan has been approved by M. Pelto; we await approval by the Contract Officer. #### University of Alaska # ENVIRONMENTAL DATA SUBMISSION SCHEDULE DATE: June 30, 1977 CONTRACT NUMBER: 03-5-022-56 T/O NUMBER: 12 R.U. NUMBER: 162/163/288/293/312 PRINCIPAL INVESTIGATOR: Dr. D. C. Burrell Submission dates are estimated only and will be updated, if necessary, each quarter. Data batches refer to data as identified in the data management plan. | Cruise/Field Operation | | ion Dates | Esti | mated Subπ | nission D | ates ¹ | |-------------------------|----------|-----------|---------|------------|-----------|-------------------| | | From | To | Batch
1 | | 3 | 4 | | Discoverer Leg II #808 | 6/2/75 | 6/19/75 | * | * | None | * | | Silas Bent Leg I #811 | 8/31/75 | 9/14/75 | None | None | None | None | | Discoverer Leg IV #812 | 10/8/75 | 10/16/75 | * | * | None | * | | Miller Freeman | 8/16/75 | 10/20/75 | None | None | Unknown | None | | Discoverer Leg III #810 | 9/12/75 | 10/3/75 | None | None | None | * | | North Pacific | 4/25/75 | 8/7/75 | None | None | Unknown | None | | Intertidal Biota | | 1975 | None | None | Unknown | None | | Discoverer #816 | 11/12/75 | 12/2/75 | * | * | None | * | | Contract 03-5-022-34 | Last | Year | * | None | None | None | | USCGC Glacier | 8/18/76 | 9/3/76 | * | None | None | None | | Discoverer | 9/10/76 | 9/24/76 | * | None | None | None | Note: Data Management Plan has been approved by M. Pelto, we await approval by the Contract Officer. | Cruise/Field Operation | Collection Dates | | Estimated Submission | | | tes ¹ | |------------------------|------------------|------------|----------------------|-------------|------------|------------------| | | From | To | Batch 5 | 6 | 7 | 8 | | Discoverer Leg II 808 | 6/2/75 | 6/19/75 | * | None | None | None | | Silas Bent Leg I 811 | 8/31/75 | 9/14/75 | None | None | None | None | | Discoverer Leg IV 812 | 10/8/75 | 10/16/75 | * | * | None | None | | Miller Freeman | 8/16/75 | 10/20/75 | None | Lost | * | * | | Discoverer Leg III 810 | 9/12/75 | 10/3/75 | None | * | None | None | | North Pacific | 4/25/75 | 8/7/75 | None | Lost | Lost | Lost | | Intertidal Biota | | 1975 | None | None | * | * | | Discoverer 816 | 11/23/75 | 12/2/75 | * | None | None | None | | Contract 03-5-022-34 | Last | year | * | None | * | * | | Glacier | 8/18/76 | 9/3/76 | * | * | None | None | | Cruise/Field Operation | Collect | ion Dates | Esti | lmated Subr | nission Da | tes 1 | | | From | То | Batch 9 | 10 | urssion ba | | | Discoverer Leg II 808 | 6/2/75 | 6/19/75 | * | * | | | | Silas Bent Leg I 811 | 8/31/75 | 9/14/75 | * | * | | | | Discoverer Leg IV 812 | 10/8/75 | 10/16/75 | * | * | | | | Miller Freeman | 8/16/75 | 10/20/75 | none | none | | | | Discoverer Leg III 810 | 9/12/75 | 10/3/75 | none | none | | | | North Pacific | 4/25/75 | 8/7/75 | none | none | | | | Intertidal Biota | | 1975 | none | none | | | | Discoverer 816 | 11/23/75 | 12/2/75 | * | * | | | | Contract 03-5-022-34 | Last | year | * | none | | | | Moana Wave | 3/76 | 4/15/76 | * | none | | | | | 3/70 | ., _5, , 5 | | | | | | Beaufort Sea Sediments | - | - | * | * | | | ^{*} Suitable format for magnetic tape submission was received 3/21/77. Formating of data will proceed, delivery date is unknown at this time. These data have been submitted in tabular form in the Annual and Quarterly Reports for T/O 12 including the Final report of contract 03-5-022-34. #### University of Alaska #### ENVIRONMENTAL DATA SUBMISSION SCHEDULE DATE: June 30, 1977 CONTRACT NUMBER: 03-5-022-56 T/O NUMBER: 5 R.U. NUMBER: 275/276/294 PRINCIPAL INVESTIGATOR: Dr. D. G. Shaw Submission dates are estimated only and will be updated, if necessary, each quarter. Data batches refer to data as identified in the data management plan. | Cruise/Field Operation | Collect | ion Dates | | | ssion Dates | |-------------------------|----------|-----------|-----------|-------------|-------------| | | From | To | Batch 1 | 2 | 3 | | Silas Bent Leg I #811 | 8/31/75 | 9/14/75 | None | submitted | submitted | | Discoverer Leg III #810 | 9/12/75 | 10/3/75 | None | None | submitted | | Discoverer Leg IV #812 | 10/3/75 | 10/16/75 | Submitted | None | submitted | | Surveyor #814 | 10/28/75 | 11/17/75 | None | submitted | None | | North Pacific | 4/25/75 | 8/7/75 | submitted | None | None | | Contract 03-5-022-34 | Last | Year | submitted | submitted | submitted | | Moana Wave MW 001 | 2/21/76 | 3/5/76 | None | submitted | submitted | | Miller Freeman | 5/17/76 | 6/4/76 | submitted | None | None | | Glacier | 8/18/76 | 9/3/76 | None | submitted | None | | Discoverer | 9/10/76 | 9/24/76 | None | submitted | submitted | | Moana Wave | 10/7/76 | 10/16/76 | None | submitted | submitted | | Acona | 6/25/76 | 7/2/76 | submitted | submitted | submitted | | Discoverer | 5/20/77 | 6/11/77 | 3/31/78 | None | None | | Acona | 6/22/77 | 6/27/66 | Unknown a | t this time | ·• | Data Management plan has been approved and made contractual. Note: #### University of Alaska #### ENVIRONMENTAL DATA SUBMISSION SCHEDULE DATE: June 30, 1977 CONTRACT NUMBER: 03-5-022-56 T/O NUMBER: 21 R.U. NUMBER: 284 PRINCIPAL INVESTIGATOR: Dr. R. L. Smith Submission dates are estimated only and will be updated, if necessary, each quarter. Data batches refer to data as identified in the data management plan. | Cruise/Field Operation | Collection Dates | | Estimated Submission Dates 1 | | | |------------------------|------------------|----------|------------------------------|--|--| | | From | To | Batch 1 | | | | North Pacific | 4/25/75 | 8/7/75 | (a) | | | | Miller Freeman | 8/16/75 | 10/20/75 | (a) | | | | Miller Freeman | 3/76 | 6/76 | (a) | | | Note: Data Management Plan has been approved and made contractual. ⁽a) Data for the predators, Rex Sole, Flathead Sole, Pollock, Arrowtooth Flounder have been submitted. #### University of Alaska #### ENVIRONMENTAL DATA SUBMISSION SCHEDULE DATE: June 30, 31 1977 CONTRACT NUMBER: 03-5-022-56 T/O NUMBER: 20 R.U. NUMBER: 281 PRINCIPAL INVESTIGATOR: Dr. H. M. Feder Submission dates are estimated only and will be updated, if necessary, each quarter. Data batches refer to data as identified in the data management plan. | Cruise/Field Operation | Collect
From | ion Dates
To | Estimated Submission Dates Batch 1 2 | |---------------------------|-----------------|-----------------|---------------------------------------| | Silas Bent Leg I
#811 | 8/31/75 | 9/14/75 | submitted None | | Discoverer Leg IV
#812 | 10/8/75 | 10/16/75 | submitted ^a None | | North Pacific | 4/25/75 | 8/7/75 | None submitted | | Discoverer #816 | 11/23/75 | 12/2/75 | submitted None | | Contract #03-5-022-34 | Last | Year | submitted | | Moana Wave | 3/30/76 | 4/15/76 | submitted | | Discoverer 001 | 3/17/76 | 3/27/76 | (b) | | Miller Freeman | | | (b) | - Note: Data Management Plan and Data Formats have been approved and are considered contractual. - (a) Only samples for Kodiak area were processed and submitted as requested. - (b) Selected samples will be processed to provide seasonal coverage as deemed necessary. # University of Alaska #### ENVIRONMENTAL DATA SUBMISSION SCHEDULE DATE: June 30, 1977 CONTRACT NUMBER: 03-5-022-56 T/O NUMBER: 19 R.U. NUMBER: 289 PRINCIPAL INVESTIGATOR: Dr. T. C. Royer Submission dates are estimated only and will be updated, if necessary, each quarter. Data batches refer to data as identified in the data management plan. | Cruise/Field Operation | Collection Dates | | Estimated Submission Dates | | | |------------------------|------------------|----------|----------------------------|------|------| | | From | То | Batch 1 | 2 | 3 | | Acona #193 | 7/1/74 | 7/9/74 | submitted | None | None | | Acona #200 | 10/8/74 | 10/14/74 | submitted | None | None | | Acona #202 | 11/18/74 | 11/20/74 | submitted | None | None | | Acona #205 | 2/12/75 | 2/14/75 | submitted | None | None | | Acona #207 | 3/21/75 | 3/27/75 | submitted | None | None | | Acona #212 | 6/3/75 | 6/13/75 | submitted | | | | Oceangrapher #805 | 2/1/75 | 2/13/75 | submitted | None | None | | Silas Bent #811 | 8/31/75 | 9/28/75 | Submitted | | | | Discoverer #812 | 10/3/75 | 10/16/75 | (a) | | | | Surveyor #814 | 10/28/75 | 11/17/75 | submitted | | | | Discoverer #816 | 11/23/75 | 12/2/75 | (b) | None | None | | Station 60 | 6/2/74 | 9/10/74 | None | (c) | None | | Station 64 | 4/28/75 | 5/20/75 | None | (c) | None | | Station 9 | - | _ | - | (c) | | | Station 9 | *** | - | _ | (c) | | | Moana Wave MW 001 | 2/21/76 | 3/5/76 | submitted | | | | Moana Wave MW 003/004 | 4/20/76 | 5/21/76 | submitted | | | | Moana Wave MW005 | 9/22/76 | 10/1/76 | 7/15/77 | | | | Surveyor SU 003 | 9/7/76 | 9/17/76 | submitted | | | | Cruise/Field Operation | Collection Dates | | Estimated Submission Dates 1 | | | tes | |------------------------|------------------|-----------|-----------------------------------|---|-----|-----| | | From | <u>To</u> | Batch 1 | 2 | 3 . | | | Surveyor | 9/20/76 | 10/2/76 | 7/15/ 7 7 | | | | | Miller Freeman | 11/1/76 | 11/19/76 | submitted | | | | | Moana Wave | 10/7/76 | 11/16/76 | submitted | | | | | Miller Freeman | 4/2/77 | 4/9/77 | 9/30/77 | | | | Note: Data Management Plan and Data Formats have been approved and are considered contractual. ⁽a) Parent tapes were coded in PODAS format, tapes were submitted to F. Cava as requested. ⁽b) Data useless due to malfunction of shipboard data logger. ⁽c) See following memo; copy enclosed, and problems section of Report. # University of Alaska #### ENVIRONMENTAL DATA SUBMISSION SCHEDULE DATE: June 30, 1977 CONTRACT NUMBER: 03-5-022-56 T/O NUMBER: 3 R.U. NUMBER: 291 PRINCIPAL INVESTIGATOR: Dr. C. M. Hoskin Submission dates are estimated only and will be updated, if necessary, each quarter. Data batches refer to data as identified in the data management plan. | Cruise/Field Operation | Collect | ion Dates | Estimated Submission Dates | |------------------------|----------|------------|----------------------------| | | From | To | Batch 1 | | Discoverer Leg I #808 | 5/15/75 | 5/30/75 | Submitted | | Discoverer Leg II #808 | 6/2/75 | 6/19/75 | Submitted | | Miller Freeman | 8/16/75 | 10/20/75 | Submitted | | | All data | for FY '76 | have been submitted. | Data Management Plan has been approved by M. Pelto; we await Note: approval by the Contract Officer. #### University of Alaska #### ENVIRONMENTAL DATA SUBMISSION SCHEDULE DATE: June 30, 1977 CONTRACT NUMBER: 03-5-022-56 T/O NUMBER: 15 R.U. NUMBER: 5/303 PRINCIPAL INVESTIGATOR: Dr. H. M. Feder Submission dates are estimated only and will be updated, if necessary, each quarter. Data batches refer to data
as identified in the data management plan. | Cruise/Field Operation | | ion Dates
To H | <u>Esti</u>
Batch 1 | mated Submission Dates | |------------------------|---------|-------------------|------------------------|------------------------| | | From | 10 1 | balch 1 | | | Discoverer Leg I #808 | 5/15/75 | 5/30/75 s | submitted | None | | Discoverer Leg II #808 | 6/2/75 | 6/19/75 s | submitted | None | | Miller Freeman | 8/16/75 | 10/20/75 | submitted
(a) | submitted | | Miller Freeman | 3/76 | 6/76 | (a) | 8/30/77 | - (a) Only selected samples were processed - * That portion of cruise 808 grabs sorted, were submitted. The remainder are currently being sorted. Note: Data Management Plan and Data Format have been approved and are considered contractual. #### University of Alaska #### ENVIRONMENTAL DATA SUBMISSION SCHEDULE DATE: June 30, 1977 CONTRACT NUMBER: 03-5-022-56 T/O NUMBER: T/O NUMBER: 25 R.U. NUMBER: 347 PRINCIPAL INVESTIGATOR: Mr. James Wise No environmental data are to be taken by this task order as indicated in the Data Management Plan. A schedule of submission is therefore not applicable. NOTE: 1 Data Management Plan has been approved and made contractual. #### University of Alaska # ENVIRONMENTAL DATA SUBMISSION SCHEDULE DATE: June 30, 1977 CONTRACT NUMBER: 03-5-022-56 T/O NUMBER: 23 R.U. NUMBER: 351 PRINCIPAL INVESTIGATOR: Ms. E. R. Dieter No environmental data are to be taken by this task order as indicated in the Data Management Plan. A schedule of submission is therefore not applicable. NOTE: Data Management Plan has been approved and made contractual. #### University of Alaska #### ENVIRONMENTAL DATA SUBMISSION SCHEDULE DATE: June 30, 1977 CONTRACT NUMBER: 03-5-022-56 T/O NUMBER: 2 PRINCIPAL INVESTIGATOR: Mr. Donald H. Rosenberg No environmental data are to be taken by this task order as indicated in the Data Management Plan. A schedule of submission is therefore not applicable ${}^{\rm I}$ NOTE: $^{ m l}$ Data Management Plan has been approved and made contractual. ## University of Alaska #### ENVIRONMENTAL DATA SUBMISSION SCHEDULE DATE: March 31, 1977 CONTRACT NUMBER: 03-5-022-56 T/O NUMBER: 30 R.U. NUMBER: 502 PRINCIPAL INVESTIGATOR: H. M. Feder University of Alaska Submission dates are estimated only and will be updated, if necessary, each quarter. Data batches refer to data as identified in the data management plan | Cruise/Field Operation | <u>Coll</u> | ection Date: | s Estimated | Submission Dates | |------------------------|-------------|--------------|----------------------|------------------| | | <u>From</u> | <u>To</u> | Batch 1 | | | Miller Freeman | 9/1/76 | 10/15/76 | 9/30/77 ^a | | Note: Data management plan was submitted on 8/30/76, approved by M. Pelto on 9/13/76; we await approval by the contracting officer. Raw field data was submitted at the end of the cruise. Verified and formated data will be submitted on above date. # QUARTERLY REPORT Research Unit 362 Quarter Ending - 15 June 1977 Establish and Service a Project Marine Baseline Data Base for the Alaska MEA Program Submitted by: John J. Audet Principal Investigator National Oceanographic Data Center Environmental Data Service National Oceanic and Atmospheric Agency July 1, 1977 Table I File Types Received and Final Processed (March 15 - June 15,1977). | File Type | Format Name | Number | Rec'd Number | Finaled | |-----------|----------------------------------|-----------------------|--------------|-------------------| | 015 | Current Meter | 10 | 13 | ; | | 017 | Pressure Gauge | 2 | 9 | • | | 021 | Trace Metals | 2 | 2 | : | | 022 | STD Data | 3 | 10 |) | | 023 | Fish Resource | 8 | 121 | | | 024 | Zooplankton | 2 | 8 | 1 | | 028 | Phytoplankton | 1 | 4 | | | 029 | Primary Productivity | 1 | 4 | Į. | | 032 | Benthic Organisms | 6 | - | - | | 034 | Marine Bird Sighting-Land Census | 1 | - | | | 043 | Hydrocarbons I | - | 3 | 3 | | 056 | Lagrangian Currents | | 32 | 2 | | 073 | Grain Size Analysis | 2 | 2 | 2 | | 101 | Wind Data | - | 3 | 3 | | | | Total $\overline{38}$ | 211 | -
· | # Data Reports A total of 58 data reports were received from the Project Office this quarter and entered in the data tracking system. The number of reports by discipline is as follows: | Marine Mammals | 8 | |-----------------------------------|---------------| | Marine Birds | 10 | | Fish/Plankton | 13 | | Effects | 2 | | Chemistry/Microbiology | 6 | | Physical Oceanography/Meteorology | 3 | | Geology/Geophysics/Permafrost | 10 | | Sea Ice | 4 | | Maps/Charts | 2 | | - | 58 | # ROSCOP A total of 49 ROCSOPs were received this quarter. ROSCOPs were received from ADF&G, USFWS, USGS,PMEL, Univ. of Washington, Univ. of Alaska, NMFS, Dames and Moore and College of the Atlantic. # Data Requests | Date Received | Date Completed | Requestor/Description | |---------------|----------------|---| | 3/15/77 | 3/29/77 | Mike Crane - request for original ADF&G tapes-data to be resubmitted. | | 3/18/77 | 5/19/77 | Kathy Frost - ADF&G
Fish resource data from MILLER FREEMAN -
collected by Pereyra (NWFC). | | 3/21/77 | 4/12/77 | William Dupre - Univ. of Houston - meteorological data sent by NCC. | | 4/15/77 | 5/5/77 | Dick Tripp - Univ. of Washington meteorological data sent by NCC (requested through Dean Dale). | | 4/15/77 | 5/31/77 | Dean Dale - current meter data
for Dutch Harbor - no OCSEAP
data available. | | Date Received | Date Completed | Requestor/Description | |---------------|----------------|---| | 4/22/77 | 4/25/77 | Mauri Pelto - List of data sets/ROSCOPs overdue (now incorporated into each quarterly report submitted to Project Office). | | 4/25/77 | 5/9/77 | Lance Trasky - ADF&G Request for OCSEAP reports - Program Office responded to request fol- lowing contact with Wayne Fischer. | | 4/25/77 | 5/13/77 | Patty Miller - Univ. of Alaska
XBT/MBT data for Norton/Chukchi
areas. | | 5/12/77 | 5/24/77 | Mike Crane - NODC CALCOMP plot
tape for testing on Anchorage
plot facility. | | 5/12/77 | 6/2/77 | Wayne Fischer - request for all OCSEAP formats - sent to Thomas Wetmore, LGL Ltd, Edmonton, Canada. | | 5/13/77 | 6/2/77 | Francesca Cava - request for bird
and mammal formats - sent to Gerry
McGonegal, RRCS Ltd, Edmonton, Canada. | | - | 6/10/77 | Tom Royer - Univ. of Alaska USCG ocean station data - con- tinuing request for new data as received at NODC. | #### Format Development A number of modifications to existing formats and several new formats were completed this quarter. A system for format approval has been established where by a draft is forwarded to the Juneau Office for approval; distribution to other OCSEAP data management personnel and OCSEAP investigators is completed following the Project Office approval. The success of this system is reflected in Table I. In an effort to keep all OCSEAP data management personnel aware of ongoing format and code modifications, a 'fact sheet' is being distributed on a monthly basis which describes all modifications in work and copies of any completed work during the month. The first 'fact sheet' was forwarded on May 11, 1977; a second 'fact sheet' was hand-delivered to Project Office personnel June 14 during the Lake Quinault meeting. A third sheet is planned for distribution by the end of June. Incorporation of these modifications in each format will be completed by NODC and NGSDC as soon as possible and distributed to investigators through the established format approval system described above. A revised edition of all OCSEAP format cover sheets was completed and distributed to all OCSEAP data management personnel during the quarter. Efforts are underway at NODC to generate in digital form all OCSEAP format codes for futher output listings and other requests. # Digital Data This quarter a total of 38 data sets were received by NODC and NGSDC and a total of 211 data sets 'final processed' (118 of these were included in one data submission as multi-file data for file type 023). Two of the data sets were processed by NGSDC. There are 98 data sets in a 'hold' status either awaiting additional information or possible resubmission of the data sets (e.g. - the 63 mammal data sets for file types 025 and 026). The totals to date are 667 data sets received and 302 data sets final processed. Of this total, 556 data sets have been tentatively accepted by the Data Centers for final processing. In reference to discussions and meetings with Project Office personnel, it is evident that many of these 'accepted' data sets may be subject to additional review by the Project Offices before final processing is completed. The totals received and finaled for each file type for this quarter are shown below. The distribution of these data sets by lease area is included as Appendix A. Table 2. Format Development Status (3/15/77 - 6/15/77). | File Type Format Name | Forwarded to JPO | Approved by JPO | Distributed to OCSEAP | |-----------------------------------|------------------|-----------------|-----------------------| | 029 - Primary Productivity (mod.) | 2/28/77 | 3/25/77 | 4/15/77 | | 032 - Benthic Organisms (mod.) | 2/28/77 | 3/28/77 | 4/15/77 | | 033 - Marine Bird Sighting (mod.) | 2/28/77 | 5/23/77 | 6/28/77 | | 035 - Marine Bird Colony (mod.) | 2/28/77 | 5/23/77 | - | | 072 - Beach Profiles (new) | 3/14/77 | 3/29/77 | 4/15/77 | | 061 - Trace Elements (new) | 3/14/77 | 5/24/77 | 6/23/77 | | 024 - Zooplankton (mod.) | 4/21/77 | 5/17/77 | 6/23/77 | | 030 - Intertidal Data (mod.) | 4/25/77 | 5/17/77 | 6/1/77 | | 025 - Mammal Specimen (mod.) | 5/4/77 | 6/20/77 | - | | 027 - Mammal Sighting I (mod.) | 5/4/77 | 6/20/77 | - | # Data Processing Results of error-check programs are being routinely forwarded to the Juneau Project Office to clarify key
punch errors and missing data fields. Program documentation has been forwarded to Juneau and Boulder and to Mike Crane to help define what parameters are currently being checked as part of the data processing. Pete Topoly's visit to Juneau and the Lake Quinault meeting have resulted in several action items concerning data processing. Copies of all error check results (regardless of the errors), new ranges for independent parameters and inventories of all parameters will be forwarded to the Project Office during the first phases of data processing. Steps to implement these actions are now underway at NODC. # Data Product Development A status report of all NODC data product development pertaining to OCSEAP formats was forwarded to Wayne Fischer on 5/4/77. This memo was in response to his memo of 3/11/77 and included specific comments concerning BLM requirements and products. Samples of some of these developmental products were shown by Wayne Fischer to NOAA headquarters personnel in Rockville on June 8, 1977. NODC personnel also discussed these products and other planned products during the meetings at Lake Quinault the week of June 12-17. It was determined at Lake Quinault that a review of the Boulder Office 'Data Product Compendium' would be completed by the EDS Data Centers to identify those products readily available using OCSEAP digital data, those products available with some developemental effort and those products not available through the EDS Data Centers either because of lack of digital data submissions or because the product is outside the data centers' re- sponsibilities or capabilities. Another product completed this quarter was an updated version of the Alaskan Environmental Data Index (ENDEX). A copy of all files, consisting of five large volumes, was forwarded to BLM-Anchorage for their information. Data Inventories All digital data received by the Data Centers are inventoried for position and data information as they are received. Exceptions include data with tape reading problems or data sets with format problems which are placed on 'hold'. Data files from initial inventories created during pre-processing (Program 'QUADI') are replaced by finalized data files (Program 'DIP') after data have completed all the processing steps. The first edition of the OCSEAP data catalog, completed this month, includes the station locations for both initial and final inventories. This first edition contains 59 plots sorted by file type and four different Alaskan regions. The catalog includes all data received to May 1, 1977. Copies of the catalog were distributed to most OCSEAP data management personnel at the Lake Quinault meeting; the Program Office is compiling a list of individuals for futher distribution. BLM offices have received copies with the quarterly distribution of the data tracking system. Included in this inventory are plots of all OCSEAP microbiological data held at the National Institutes of Health. Working with Dr. Krichevsky of NIH, a file has been created which essentially is the same as the NODC inventory file. A similar approach is planned for the OCSEAP hydrocargon data held at the National Bureau of Standards and the non-OCSEAP format epicenter data held at NGSDC. ## Data Tracking System A file type summary indicating the status of data processing for each data set has been developed from the data tracking system. This summary includes the total number of data sets received, accepted and final processed for both digital and non-digital data received by the EDS Data Centers. At the request of the Program Office, a significant number of entries under 'PLANNED DATA' have been included in the recent version of the tracking system. Copies of these additions have been forwarded to the Juneau and Fairbanks offices for further comments and modifications. ## Taxonomic Code The revised NODC taxonomic code was distributed to BLM and OCSEAP personnel and to a number of OCSEAP investigators on March 29, 1977. Computer programs are now available to check a data set and match the equivalent new code to the earlier Alaskan codes. A list of codes with no match and a list of the names for all codes used in the data set is also included with each computer run. Requests for codes and other information concerning the codes were completed by Dr. Collins for Pat Gould (USFWS), Jim Blackburn (ADF&G) and Bob Schultz (Juneau) during this quarter. ## Meetings NODC personnel met at NODC with Wayne Fischer and Doug Wolfe on April 1, 1977 to discuss OCSEAP data requests and data product development for NODC. Pete Topoly of the Data Preparation Division visited the Juneau Project Office the week of June 5-10 to discuss improvements in data checking and to establish specific ranges for selected parameters. Six members of EDS attended the OCSEAP Data Management Meeting at Lake Quinault, Washington the week of June 12-17. In attendence from the NODC, Washington office were Jim Audet, Phil Hadsell and Gary Falk. The other EDS personnel included Mike Crane, the Anchorage representative, Dean Dale, the NODC Seattle liaison and Rod Combellick from NGSDC, Boulder. ## Problems Data resubmissions are a constant problem, as some data sets are resubmitted after 'final processing' which causes additional corrections and work for the inventory systems as well as processing. The action items discussed in data processing should reduce these resubmissions as data sets will not be final processed until the Project has agreed that the data submission is correct and adequate. The implementation of an improved telecommunication network between the OCSEAP data base and related inventories and the Project and Program Offices, Mike Crane in Anchorage and Dean Dale in Seattle remains to be resolved. George Saxton, of NODC, is now working closely with Mike Crane and other EDS personnel and progress is expected in the near future. Appendix A - Distribution of Data Sets by Lease Area (3/15/77 - 6/15/77) | File Type | <u>Total</u> | | | | Le | ase A | rea C | ode | | | |-----------|----------------|---|-------|-------|-------|-------|-------|-----|---|---| | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 015 | 10 | - | - | - | 9 | 1 | 9 | _ | - | _ | | 017 | 2 | | - | _ | 2 | - | _ | - | - | - | | 021 | 2 | 2 | - | - | _ | - | - | - | _ | - | | 022 | 2 | - | 2 | 2 | 2 | - | 2 | - | 2 | _ | | 023 | 8 | 4 | - | 4 | _ | - | - | _ | - | - | | 024 | 3 | _ | _ | - | 2 | 1 | 2 | _ | 2 | - | | 028 | 1 | - | - | - | - | 1 | - | - | _ | - | | 029 | 1 | - | - | _ | - | 1 | - | - | _ | - | | 032 | 6 | 2 | 2 | 2 | - | 4 | - | _ | _ | _ | | 034 | 1 | _ | - | - | | 1 | - | - | - | - | | 073 | <u>2</u>
38 | T | (NGSD | C pro | cessi | ng da | ta) | | | | | | 38 | | | | | | | | | | 1=NEGOA 2=Lower Cook Inlet 3=Kodiak Shelf 4=St. George Basin 5=Beaufort Sea 6=Bristol Bay 7=Norton Sound 8=Aleutian Shelf 9=Chukchi Sea Appendix B - Distribution of Data Reports by Lease Area (3/15/77 - 6/15/77) | Discipline | Tota1 | | | Lea | ase / | Area | Code | , | | | |-------------------------------|-------|---|---|-----|-------|------|------|---|---|---| | · | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | Marine Mammals | 8 | 3 | - | - | 1 | 5 | 3 | 3 | - | 4 | | Marine Birds | 10 | 3 | 2 | 2 | 1 | 2 | 1 | 4 | 1 | 4 | | Fish/Plankton | 13 | 4 | 2 | 1 | 5 | 4 | 5 | 1 | - | - | | Effects | 2 | 1 | _ | - | 1 | - | 1 | - | - | - | | Chemistry/Microbiology | 6 | 2 | 2 | - | - | 5 | - | - | - | - | | Phy. Ocean./Meteor. | 3 | _ | - | - | _ | 2 | _ | - | - | 1 | | Geology/Geophysics/Permafrost | 10 | 2 | - | - | - | 6 | 1 | 3 | - | 1 | | Sea Ice | 4 | - | - | - | - | 4 | - | 1 | - | 2 | | Maps/Charts | 2 | | | _ | | 2 | | | | | | | 58 | | | | | | | | | | NGSDC also received 7 data reports during the quarter. See Appendix A for Lease Codes. ## QUARTERLY REPORT Contract No. 03-5-022-56 Task Order Number 24 Quarter Ending June 30, 1977 ADMINISTRATIVE SUPPORT NODC/OCSEAP REPRESENTATIVE RU #370 David M. Hickok Arctic Environmental Information and Data Center University of Alaska June 23, 1977 ## QUARTERLY REPORT ## For the Period Ending June 30, 1977 I. Task Objectives: To provide office space, secretarial, data processing and relevant logistics support for the OCS/EDS employee(s). - II. Not applicable. - III. Results: Task order has been modified to include additional secretarial support, plus data processing personnel and facilities. - IV. Not applicable. - V. Not applicable. ## OCS COORDINATION OFFICE ## University of Alaska ## ESTIMATE OF FUNDS EXPENDED DATE: June 30, 1977 CONTRACT NUMBER: 03-5-022-56 TASK ORDER NUMBER: 24 PRINCIPAL INVESTIGATOR: Mr. David M. Hickok Period September 1, 1975 - June 30, 1977 (22 mos.) | | Total Budget | Expended | Remaining | |------------------|--------------|----------|---------------| | Salaries & Wages | 57,389 | 25,114 | 32,275 | | Staff Benefits | 10,789 | 4,474 | 6,315 | | Equipment | -0- | -0- | -0- | | Travel | -0- | -0- | -0- | | Other | 25,301 | 20,662 | 4,639 | | Total Direct | 93,479 | 50,250 | 43,229 | | Indirect | 28,994 | 12,747 | 16,247 | | Task Order Total | 122,473 | 62,997* | <u>59,476</u> | ^{*}Preliminary cost data, not yet fully processed. ## Quarterly Report Contract No: N/A Research Unit No: 496 Reporting Period: April 1977 through June 30, 1977 Number of Pages: 2 "Maintenance of Alaskan OCSEAP Surface Marine and Coastal Station Data File" ## Principal Investigator: William A. Brower, Jr. (D5312) Applied Climatology Branch National Climatic Center Federal Building, Room 401 Asheville, NC 28801 Comm: (704) 258-2850, x266 FTS: 672-0266 June 24, 1977 ## I. Task Objectives This task serves to maintain the data file compiled for use in the production of the "Climatic Atlas of the OCS Waters and Coastal Regions of Alaska" (RU #347) and to provide meteorological data products and services for the Alaskan area to OCSEAP's Principal Investigators. ## II. Field and Laboratory Activities NA ### III. Results - An inventory of Alaskan data held at
NCC in manuscript form has been completed (see attachment). The publication, "Index of Original Surface Weather Records for Stations in Alaska," is available at no cost to OCSEAP PI's. - . An inventory of Alaskan data held at NCC in digital form is scheduled for completion sometime during last quarter of FY-77. - . There have been several requests by OCSEAP PI's for data products and services. ## IV. Preliminary Interpretation of Results Item 1 under Results is a quantum jump toward completing the task of identifying and maintaining an inventory of Alaskan data held at NCC in manuscript, digital, and statistical summary forms. ## V. Problems Encountered None ## VI. Estimate of Funds Expended As of 6/15/77, \$14.3K of the \$25K funds for FY-77 have been expended. Expending the remaining funds (\$10.7K) during the last quarter of FY-77 is dependent in part on the number of requests and costs to provide data services and products to OCSEAP PI's. # INDEX OF ORIGINAL # SURFACE WEATHER RECORDS (HOURLY, SYNOPTIC AND AUTOGRAPHIC) FOR STATIONS IN ALASKA ON FILE AT NATIONAL CLIMATIC CENTER FEDERAL BUILDING ASHEVILLE. NORTH CAROLINA 28801 This Index of Original Surface Weather Records for Stations in Alaska was produced as a part of the <u>Environmental Data Index</u> (ENDEX) Program. It is the first for the U.S. states to be revised and printed; and, although, work has been initiated on an index for each of the remaining 49 states, completion is dependent upon future funding. Completion of the Alaskan Index was made possible under the direction of the Outer Continental Shelf Environmental Assessment Program of the National Oceanic and Atmospheric Administration of the Department of Commerce through funding by the Department of the Interior's Bureau of Land Management. It was prepared as a part of Research Unit No. 496, Maintenance of Alaskan OCSEAP Surface Marine and Coastal Station Data File, which serves to maintain the data file compiled for use in the production of the "Climatic Atlas of the OCS Waters and Coastal Regions of Alaska" (RU #247) and to provide meteorological data products and services for the Alaskan area to OCSEAP's Principal Investigators. ## Hourly, Synoptic, and Autographic Original Records ### CONTENTS | Introduction Description of Indexes Alphabetic | i | |--|----------| | By Year | | | By Elevation | | | By Latitude | | | Explanation of Entries | 11 | | 4. Map of Stations | i. | | Records Index - Alphabetic | • | | by Station Name | II | | 6. Records Index - By Year | III | | 7. Station Index - By Elevation | ĪV | | 8. Station Index - By Latitude | v. | ### 1. Introduction This index has been prepared as a part of ENDEX, the Environmental Data Index Experiment. Its purpose is to automate the indexes of environmental data to efficiently serve the needs of atmospheric and earth scientists. All the hourly aviation, synoptic, supplementary airways, and similar observations available in manuscript form at the National Climatic Center are listed in this state index. In deciding about the inclusion of unusual records, those which would help in plotting detailed synoptic weather maps were included; those similar to cooperative climatological daily observations were not. Indexes of the latter will be digitized as another project. Autographic charts and traces have been included in this index, since values of temperature, pressure, wind, humidity and so forth, could be extracted for the kinds of studies this index has been designed to aid. One of the most valuable parts of this index is the station history information contained in the latitude-longitude and station elevation columns. Many of the earlier station indexes are incomplete in this regard. Extensive research went into the effort to pinpoint the locations of the stations. Users who find inconsistencies in the station history information are asked to call them to the attention of the Chief, Archival Services Branch, NCC. The records covered by this series of indexes form the major file of meteorological data within the United States. Begun by the Army Signal Corps in the late 19th century, some of the records have been preserved and passed on by the government agencies that have followed. The records that are filed by the National Archives are not indexed here. Nearly all of those are for the years before 1900. Copies of the records can be provided at the requester's expense in a number of forms including paper copy, micro-film, microfiche, punched cards and magnetic tape. For costs or information, write____ Director National Climatic Center Federal Building Asheville, North Carolina 28801 ## 2. Description of Indexes Alphabetic The alphabetic listing utilizes the names of the weather station preparing the observations. This is often the name of the city or community; occasionally, it is the name of a military installation, an airport, or a geographical feature. Cross-referencing has been inserted to help the user. For a given station, the records are listed in time order. When one becomes familiar with the index, this arrangement gives a quick, and almost pictorial, presentation of the weather station activity of each location. Station moves stand out of the weather station activity of each location. Station moves stand out. The records are listed from the oldest to the newest to readily show which are available for studies based on many years of data. This arrangement also expedites the selection of records when studying particular storms of the past. By referring to a specific year, all available records can be seen. An interesting feature of this index is the way in which it shows the expansion of the national meteorological network. From few entries per year in the early times, there is a marked increase with the advent of commercial aviation in the 1930's. The many stations shown during World War II and the post-War era are followed in most states by a shrinkage due to retrenchment in the more recent times. By Elevation This index will aid those looking for observations characteristic of certain altitudes above sea level. By Latitude This index is abbreviated to give names and station history data for locating weather observing points on a geo- ### 3. Explanation of Entries ### Station Name Long names were abbreviated. Commonly used abbreviations are: Lk - Lake LS - Light Ship/Station Mt - Mount, Mountain Nk - Neck AP, APT - Airport Cty Fld - City - Field Fţ - Fort ΗЬ Rck - Rock - Harbor Rvr - River Ιs - Island LB Sta - Light Boat Station Type The type of weather station. This is sometimes best described by naming the service which operated the station. Codes used are: | <u>Code</u> | Type of Station | <u>Code</u> | Type of Station | |--|--|---|--| | Code Weather Bureau A AC SS SA SAC SC WBAS WBFO WBMO WBO WBUA WSFO WSMO WSO Others AMOS CAA | Aviation Reports & Coop-A Stations Cooperative Aviation Reports Synoptic Reports Synoptic and Aviation Reports Cooperative Synoptic and Aviation Reports Cooperative Synoptic Reports Weather Bureau Airport Station Weather Bureau Forecast Office Weather Bureau Meteorological Observatory Weather Bureau Upper Air Unit Weather Service Forecast Office Weather Service Meteorological Observatory Weather Service Meteorological Observatory Weather Service Meteorological Observatory Weather Service Office Automatic Weather Station | Code Military AAB AAF AAFB AB AF AFB AFS ANG ASC MCAF MCAS NAAF NAAS NAF NAS NF | Type of Station Army Air Base Army Air Field Auxiliary Air Force Base Air Base (Air Force) Air Force Base Air Force Station Air National Guard Army Marine Corps Air Facility Marine Corps Air Station Naval Auxiliary Air Facility Naval Auxiliary Air Station Naval Air Facility Naval Air Station Naval Air Station Naval Air Station Naval Facility Naval Station | | CAA
CG
COOP
FAA
FSS
LAWR
MARS
SAWR
SPL | Civil Aeronautics Adm. Facility Coast Guard Cooperative Federal Aviation Agency Flight Service Station (FAA) Limited Airport Weather Reporting Station (Tower Marine Reporting Station Supplementary Airways Weather Reporting Station Special Purpose Office (Fire weather, temporary | | ;) | $\frac{\text{Latitude, Longitude}}{\text{The coordinates given for the station in the most authoritative documents available to the workers.} \\$ and minutes. Elevation In feet. The height above sea level of the barometer was used if known. The reported station elevations and ground heights at the stations were used as first- and second-alternatives when necessary. "Hourly" Records by Month These are the records usually made for aviation purposes and are the most detailed observations made. Because of their importance, they have been indexed in greater detail than the other records. A number entry means that records are on file for that month. The value of the number is a
code which tells the number of observations recorded per day. Code for Observations per Day used in the "Hourly" Records Columns Blank - No Records 1 - 24 per day 2 - (Not used) 3 - 3 or less obs per day 4 - 4 5 - 5 to 11 6 - 12 to 18 7 - 19 to 23 0 - Records on microfilm only. See the film for number of obs per day. A valuable source of information about data appearing on these forms through the years is: History of Weather Bureau Climatological Record Forms for Surface Synoptic and Airway Observations. (Key to Meteorological Records Documentation No. 2.211) Washington, DC 1964. For sale by the Superintendent of Documents, Washington, DC 20402. Price 40 cents. Number of Months in Year with: The records in these categories are so voluminous that it was felt an abbreviated index would suffice for nearly all purposes. In these columns, a 12 means that records are on file for every month. A blank means that no records are on file. 08 followed by a group of 12's will nearly always mean that records began in May of the first year and were continuous thereafter. Numbers higher than 50 mean that the records exist only on microfilm. In such cases, 50 has been added to the number of months available for that year. Synoptic Form Form 1083. This usually gives 4 observations per day in the special code used for reporting weather internationally. Examples of the forms are given in the publication listed previously under the explanation for "Hourly" records. Intermediate 3-hourly observations are sometimes included on the form; from July 1939 to December 1948 the 3-hourly observations may appear on a companion form (Form 1082). Some stations omitted the nighttime observations. Laymen find these forms difficult to use because of its special coding and the fact that times are often in GMT. "Hourly" records, if available, are usually preferable. Meteorological Summary Form 1001, and/or 1002, and/or 1014. These are the comprehensive station records kept by first-order Weather Bureau stations from 1892 to 1948. A few stations have continued a modified form. Examples of the forms are given in the publication listed previously under the explanation for "Hourly" records. A similar military record, Form 1, is also indexed under this category. Barograms A continuous record of pressure in which the oscillations have been traced by a pen on a moving sheet of paper. the older records, a 1-inch change of pressure was shown as a 1-inch change on the chart. Beginning in 1936, the older instruments were replaced by microbarographs which magnified the change 2 1/2 times. At Weather Bureau stations each chart formerly contained 4 days record. The exact times of pressure changes with squall lines, thunder-storms and other phenomena were hard to read, so the chart commonly in use today is accelerated to rotate once each 12-hours. Two traces appear on each chart since they are changed daily. Thermograms A continous record of temperature. A variety of charts has been used through the years. First-order stations are no longer required to operate thermographs. During the years in which thermograms were considered an official record, they were carefully annotated and the periods are nearly complete. In recent years, some instruments appear to be out of calibration and there are gaps in the series of forms. Most being received now are from cooperative stations that have volunteered their records. Triple Register Most of the records indexed under this column are the daily sheets from the station meteorographs, sometimes known also as a quadruple register since they recorded wind direction, wind speed, sunshine and rainfall. The oldest records are from single registers which recorded speed only; from two-magnet registers which recorded wind speed, rainfall and sunshine; and from double registers (anemographs) which recorded wind direction and speed. The most recent records of this type are in the form of long strips torn from continuous rolls in daily increments. These show a continuous trace of wind speed as opposed to the triple register type of equipment which is based on an electrical contact opening and closing with the passage of each mile of wind. These records have not been quality controlled and there have been problems of calibration, lack of annotation and improper time registration. Many of the records do not contain direction traces. For some stations, direction and speed are on different rolls. <u>Humidity Recorder</u> These are instrument charts which give a measurement of relative humidity or dew point. Those of the hygrothermograph type usually contain an adjoining record of temperature. These records give the radar operator's interpretation of the echoes seen on his scope. Location, size, shape, movement, intensity and change of intensity are given in code. | AI | _ASKA | | | | | | | NUMBER | OF | MONTH | S IN | YEAL | R WI | тн | |------|-----------|---------|-------------|-----------|------------|-----|--|--------|-------------|--------|------|------|------|--| | | | | | HOURLY RE | CORDS BY I | | 27. E | | September 1 | Sample | | | | / 8° | | NAME | TYPE YEAR | LAT. LO | NG. ELEV. | J F M A | 1 J J A S | OND | *\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \ | | 1.3 | | 15.5 | | / & | <u>/ </u> | | | | | | | | но | URL | Υ. | RE | CO | RDS | S 8 | ŧΥ | HO | NTI | + | /. | /
& / | / _/ | /
\$ / | Service Servic | · &/ | TO T | /
***/ | BAN
NUMBER | |-------------|--|--|--|--|--|---|---|---|---|---|--------------------------|--------------------------|---|---|---------|-----------------------|--|----------------------|----------------------------|--
--|---|--|-----------|--| | | | 1 | 1 | 1 | ı . | | | | | OB: | | | | | . 1 | _ | S. S | | | Service of the servic | Supposition of the second seco | \$ 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | WBAN | | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | J | F | M (| # P | 111 | 1 1 | A | 5 | 0 | _ | <u> </u> | / % 4 | / * * | ~ | | | / * * | /** | 7 | 25701 | | ADAK | AAF | 1944 | | 176 39W | 14 | | 1 | 1 | 1 | 1 : | 1 . | , , | 1 | 1 | 1 | 1 | | | | | | | | | 25707 | | ADAK | NS
NS | 1942
1943 | | 176 39W
176 39W | 15
15 | , | 1 | | | | İ | | | 1 | 1 | 1 | | | | | | | | | 25704
25704 | | ADAK | NS
NS | 1943
1944 | | 176 38W
176 38W | 15
15 | 1 | 1 | 1 | 1 | 1 1 | 1 : | 1 1 | 1 | 1 | 1 | 1 | | | | | | | | | 25704
25704 | | ADAK | NS
NS | 1944
1945 | 51 57N
51 57N | 176 36H
176 36H | 104
104 | 1 | 1 | 1 | 1 | 1 | 1 : | | 1 | | 1 | 1 | | | | | | | | | 25704
25704 | | ADAK | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1950
1951
1953
1954
1955
1956
1957
1959
1960
1963
1963
1966
1966
1966
1966
1967
1972
1974
1974 | 51 551 551 551 551 551 551 551 551 551 | 176 394
176 394 | 15
15
14
14
14
14
16
16
16
16
16
16
16
16
16
16
16
16
16 | 1 | 1 | 111111111111111111111111111111111111111 | 111111111111111111111111111111111111111 | 1 | | | 111111111111111111111111111111111111111 | 111111111111111111111111111111111111111 | 1 | | | | | 05
12
12
12
12
12
12
12
12
12
12
12
12
12 | | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | 11 12 12 12 12 12 12 12 12 12 12 12 12 1 | | 25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704
25704 | | ADAK | 06
06
06
06 | 1972
1973
1974
1975
1976 | 51 35N
51 35N | 177 00H
177 00H
177 00H
177 00H | | 5 5 5 | 5 5 5 | 5 5 5 | 5 5 | 5 5
5 5 | 5 5 | 5 5 | 5 | 5 5 5 5 | 5 5 5 | 5
5
5
5
5 | | | | | | | | | | | AKIAK | C00P
C00P
C00P
C00P | 1921
1922 | 60 52N
60 52N | 161 23H
161 23H
161 23H
161 23H
161 23H | 21
21
21
21
21
35 | | | | ; | | | | | | | | | 01
09
12
07 | 02
09
12
07
08 | | | | : | | | | AKULURAK | e
e | 1941
1942
1943 | 62 30N
62 30N
62 30N | | 33
33
33 | | | | | | | | | | | | 09
12
05 | 08
12 | 07
11
05 | | | | | | | | AKULURAK | AAF | 1944 | 62 30N | 164 25W | 31 | | | | 1 | 1 | 1 : | 1 1 | | | | | | | 57 | | | | | | 26610 | | AL ATNA | | 1936
1937
1938
1939
1940
1941
1942
1943
1944 | 66 34N
66 34N
66 34N
66 34N
66 34N
66 34N | 152 44H | 600
600
600
600
600
600
600 | 3 3 3 5 | 3 3 3 5 5 | 3 | 3 3 5 5 | 3 3 3 3 3 5 5 5 | 3 3
3 3
3 5
5 5 | 3 3 3 5 5 5 5 | 3 5 5 | 55555 | 3 3 5 5 | 5 | | | | | | | | | | | ALEXAI PT | AFS
AFS
AFS | 1943
1944
1945 | 52 50N | 173 19E
173 19E
173 19E | 27
27
27 | 1 1 | 1 1 | | | 1 | 1 : | 1 1 | | 1 | | | | | 57
82
59 | 52
62
50 | | 01 | | | 45701
45701
45701 | | ALITAK | A | 1942 | 58 57N | 154 10W | 24 | | | 3 | 3 | 3 | 3 : | 3 3 | 3 | 3 | 3 | | 00 | 96 | 08 | | | | | | 25512 | | AL ITAK | NF
NF
NF | 1942
1943
1944 | 56 55N | 154 15H
154 15H
154 15H | 30
30
30 | | 6 | | | 6 | 6 | 5 6 | 6 | 5 | 6 | 5
6 | 01 | 01
06 | 01 | | | | | | 25512
25512
25512 | | ALITAK | NS | 1945 | 56 55N | 154 ISH | 30 | | 7 | 7 | 7 | 7 | , | 7 | , | | | İ | 03 | | | | | | | 1 | 25502 | | AMAK ISLAND | AF
AF | 1943
1944 | | 163 DBH
163 DBH | 15
15 | | 5 | | 1 | 1 | | | 5 | | | | | | | | | | | | 25609
25609 | | AMCHITKA IS | SAHR
SAHR
SAHR
SAHR
SAHR
SAHR | 1969
1969
1970
1971 | 51 23N
51 23N
51 23N
51 23N
51 23N | 179 15E
179 15E
179 15E
179 15E
179 15E
179 15E
179 15E | 237
237
237
237
237
237
237 | 6
6
3 | 6
6
3 | 6
6
3 | 6
5
8 | 66666 | 6 6
6 6
6 6 | 5 6
5 6
5 6
3 3 | 6 | 6
6 | 6 | 6
6
6 | | | | | | | | | | | A | LASI | KA | | | | | | | | | | | | | | | | | N | JMBER | OF | MONT | HS I | N YE | AR H | ITH | |--------------|--|---
--|--|--|--|---|---------|---|---|---|--|---|--|---|---|---|----------------------------|--|--|--|--|---------------------------|-----------------|---------|---| | | | | | | | | нс | ŲR | LY | RI | ECC | RD | S | BY | MC | 3NT | Н | | / | / | / 🏖 | | | | | | | NAME | TYPE | VEAR | ۱ ، ۵ | • I | 1.0440 | l - | ١. | | | | 08 | | | | | | | | | | S. S | |) | | | HBAN
NUMBER | | AMCHITKA IS | AAF | YEAR
1943 | | 7.
24N | LONG . | 251 | Ľ | F | 1 | + | -+ | + | + | + | ╅ | - | ⊢ | <u> </u> | (2) N | - | 1 | 1 | \$\\\ \mathrea{2}{\cdot } | #/ ? | \$ / \$ | NUMBER | | | AAF
AAF
AAF | 1944
1945
1946
1947 | 51
51
51 | 24N
24N
24N
24N | 179 16E
179 16E
179 16E | 505
505
185 | 1
1
1 | 1 | 1 | 1 1 1 | 1 | 1 | 1 : | 1 1 1 1 1 1 | 1 | 1 | 1 | | | 55
62
62
62
06 | 53
62
62
62
06 | 08 | 01 | | | 46702
45702
45702
45702
45702 | | AMCHITKA IS | AAF
AAF | 1947
1948 | 51 ;
51 ; | | 179 15E
179 15E | 202
202 | 1 | | | i | 1 | | ı | 1 1 | 1 | ł | | | | 56
56 | 58
56 | | 02 | | | 45702
45702 | | AMCHITKA IS | AFB
AFB
AFB | 1948
1949
1950
1965 | 51 2 | 24N
24N | 179 18E
179 18E
179 18E
178 15E | 550
505
505
505 | 1 1 | | 1 | 1 | 1 6 | 1 | 1 1 | 1 1 | 1 1 | 1
1
1
6 | 1 | | | 56
62
59 | 56
62
60 | | 02 | | | 45702
45702
45702
45702 | | AMCHITKA IS | NS
NS | 1944
1972 | | | 179 16E
179 16E | 80
80 | 1 | 1 | 1 | 1 | | | | | | 3 | | | | | | | | | | 45711
45711 | | AMERICAN RVR | | 1944
1945 | 65 2
65 2 | | 165 46H
165 46H | 119
119 | 1 | 1 | | 1 | 1 | 1 1 | 1 1 | 1 | 1 | 1 | 1 | | | 59
58 | 59
58 | | | | | 26611
26611 | | ANAK TUVUK | C00P
C00P
C00P
C00P
A | 1965
1967
1968
1969
1970
1971
1972
1973 | 68 1
68 1
68 1
68 1 | LON : | 151 46µ
151 46µ
151 46µ
151 46µ
151 46µ
151 46µ
151 46µ
151 46µ | 2100
2100
2100
2100
2100
2100
2100 | 5 | 5 | | 5 | 5 5 | 5 5 | 5 | 5 5 5 | | 5 5 | 555 | | | | 04
12
04
04
05
10 | | | | | | | ANCHORAGE | SEE | LMEND | ORF A | FB | | | | | | | | | 1 | | | | İ | | | | | | | | | 26401 | | ANCHORAGE | SEE E | LMEND | BRF A | FB 2 | 2 | | | | 1 | 1 | 1 | | | H | | | | | | | | | | | | 26452 | | ANCHORAGE | C00P
C00P
C00P
C00P
C00P | 1916
1917
1918
1919
1920
1921
1921
1922 | 61 1
61 1
61 1
61 1
61 1
61 1 | 4N 1
4N 1
4N 1
4N 1
4N 1 | 48 524
49 524
48 524
49 524
49 524
49 524
49 514 | 40
40
40
40
40
40
40 | | | | | | | | | | | , | | 05
01 | | | 12
12
12
12
12
12
12 | | | | | | ANCHBRAGE | S : | 1923
1924
1925 | 61 1 | 3N 1 | 49 524
49 524
49 524 | 118
118
118 | | | | | | | | | | | | | 10
12
05 | 10
12
05 | 10
12
05 | 10
12
12 | | | | | | ANCHORAGE | ###################################### | 1939
1940
1941
1942 | 61 1
61 1
61 1
61 1
61 1
61 1
61 1
61 1 | 3N 1
3N 1
3N 1
3N 1
3N 1
3N 1
3N 1
3N 1 | 48 52H | | 5 5 5 5 6 | 5555551 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5 5 5 5 5 5 1 | 5 5 5 5 1 | 5 5 5 5 1 | 5 5 | 5
5
5
5 | 5
5
5
5
5 | 5 5 5 | 55555511 | 07
12
12
12
01 | 06
12
12
12
12
12
12
12
12
12
12
12
12
12 | 12
12
12
12
12
12
12
12 | 02
12
12
12
12
04 | 12
12
12
12
12
12
12
11
12
11
12
11
12
12 | | | | | | ANCHORAGE | WARS 1 WA | 944
1945
1946
1947
1948
1947
1948
1952
1952
1953
1954
1955
1956
1957
1958
1958
1958
1958
1958
1958
1958
1958 | 661 123661 123661 1 | 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 48 500 J J J J J J J J J J J J J J J J J J | 134
134
134
134
134
134
134
134
134
134 | 111111111111111111111111111111111111111 | | 1 | 1 | 1 | 11 11 11 11 11 11 11 11 11 11 11 11 11 | 1 | 1114566 11111111111111111111111111111111 | 111111111111111111111111111111111111111 | 1 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 1 | 11 12 08 | 11 12 12 12 12 | 11 12 12 12 12 12 12 12 12 12 12 12 12 1 | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | 11 12 12 12 12 12 12 12 12 12 12 12 12 1 | | | | 26409 | | Al | AS | KA | | | | | | | | | | | | | | | |
| | | NU | | OF | HONT | | | | | |--------------|---|--|---|---|--|--|---|---|-------------------------------------|--------------------------------|---------------------|--|---------------------------------|---|---|-------------------|---|----------------------------------|----|-----------|------|--|--|---|--|--|---|--| | | | | | | | | | HO | | | | | | | BY
R | | | Ή | | | ر پا | /
\$`\ | Supplied And Andreas | Te la | / 4/ (4/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ | Legista Constitution of the th | /1.60/24/24/24/24/24/24/24/24/24/24/24/24/24/ | /g³/
g²/hban | | NAME | TYPE | YEAR | L | AT. | LON | G . | ELEV. | | | | | | | | | | | ٥ | /. | 200 | | TO SERVICE SER | - / × | | | | | HBAN
NUMBE | | ANCHORAGE | FAA
FAA | 1975
1976 | | 13N
13N | | | 134
134 | 1 | | 1 | | | | | | | 1 1 | | | \exists | | | | | | | | 26409
26409 | | ANCHORAGE | WBAS
WBAS | 1954
1955
1956
1957
1958
1959 | 61
61
61
61
61
61
61 | 1000
1000
1000
1000
1000
1000
1000
100 | 149
149
149
149
149
149
149
149 | 594
594
594
594
594
594
594
594 | 105
105
105
105
105
105
105
105
105
105 | 1 | 1 1 1 1 1 1 1 1 1 | 1 1 1 1 | 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 | 1 1 1 1 1 | | 1 1 | 1 1 1 1 1 1 1 1 1 | | | | 02
12
10
12
12
12
12
12
12
12 | 02
12
10
12
12
12
12
12
12
12 | | 01
11
12
12
12
12
12
12
12
12
12
12 | | | 26451
26451
26451
26451
26451
26451
26451
26451
26451
26451
26451 | | ANCHBRAGE | WBAS
WBAS
WBAS
WBAS | 1965
1966
1967
1968
1969 | 61
61
61
61
61
61
61 | 0 | 150
150
150
150
150
150
150
150 | 10000000000000000000000000000000000000 | 147
158
158
158
158
158
158
158
158
158
158 | 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | 1 | 1 1 1 1 1 | | 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | | | | 09
12
12
12
12
12
12
12
12
12
12 | 02 | 1 | 09
11
12
12
12
12
12
12
12 | | | 26451
26451
26451
26451
26451
26451
26451
26451
26451
26451
26451
26451 | | ANCHORAGE PS | COGP | 1964
1965
1966
1967 | 61
61 | 13N
13N
13N
13N | 149
149 | 52W
52W | 85
85
85
85 | | | | | | | | | | | | | | | | 12
12
09
04 | | | | | | | ANDREAFSKY | SA A A A A A A A A A A A A A A A A A A |
1967
1968
1969
1970
1971
1972
1973
1974
1975 | 62 62 62 62 62 62 62 62 62 62 62 62 62 6 | 0000000000000
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 163
163
163
163
163
163
163 | 184
184
184
184
184
184
184
184
184 | 290
290
290
290
290
290
290
290
290
290 | 50505050 | 33333333 | 3 3 | 3 3 3 3 3 3 3 | 3 3 3 3 3 3 3 3 | 3 3 3 3 3 3 | 3 3 3 3 3 3 | 3 : 3 : 3 : 3 : 3 | 3 3 3 3 3 3 3 3 3 | 3 3 3 3 3 3 3 3 3 3 3 | 3
3
3
3
3
3 | | | | | | | | | | | | ANGOON | | 1941
1943
1943
1944
1945
1946
1947
1950
1950
1953
1954
1955
1957
1958
1960
1961
1964
1965
1963
1964
1965
1963
1964
1965
1963
1964
1965
1964
1965
1967
1968
1969
1969
1970
1971
1972
1973
1974 | 57
57
57
57
57
57
57
57
57
57
57
57
57
5 | | 134
134
134
134
134
134
134
134
134
134 | 3564
3564
3564
3564
3564
3564
3564
3564 | | 55 555 555 | 55 55555555555555555555555555555555 | 5 55555555555555 5555555555555 | | ೧ 5666666666666666666666666666666666666 | 55 5555555555555555555555 55555 | 55 55555555555555555555555555555555 | 55 555555555555555555555555555555555555 | | 5 | 55 555 5555555555555555555555555 | 0 | 12 | | 08
12
12
03
08 | | | | | | 25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310
25310 | | ANIAK | CBBP
CBBP
CBBP
SA
SA
CAA | 1936
1937 | 61
61
61
61
61
61 | 35N
35N
35N
35N
35N
35N | 159
159
159
159 | | 81
100
100
100
100
100
100 | 73 4345 | 3 3 5 4 | | 3 | 3 | 3 | 3 | 3 : | 3 : | 3 3 3 3 5 1 1 | 5 3 | | 22 | 08 | 06
12 | | | | | | 26516
26516
26516
26516
26516
26516
26516
26516 | 32H | AI | LAS | KA | | | | | | | | | | | | | | | NU | MBER | Of 1 | MONTI | 15 II | N YE | ar Hi | TH | |--------------|---|--|--|--|---|------------------|---|---|--------------|--------------|-------------|---|--------------------------|---|-------------|----------------------|--|----------------------------------|---|--|--|----------------------------|-------|--| | | | | | | | HOL | IRL | YR | EC | DRI | 05 | BY | M | DN1 | Н | / | /
& / | /_/ | / æ | I'M I'M ON | 5/ | / st/ | 20/ | \ \g \ \ | | NAME | TYPE | YEAR | LAT. | Lumo | ELEV. | |] =
 • | | | | | | | | اما | | | | September 1 | | (2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/ | Page 1 | | MBAN
NUMBER | | ARCTIC VILAG | COBP | ļ <u> </u> | 68 081 | | | | 4 | + | Π | 4 | 4 | + | + | - | H | / 3 3 | 7 | 7 | 12 | <u> </u> | /** | 7 * * | 7 - | MOIDER | | ASI TANAGA | COOP | | 68 08 | | | 3 | 3 | | | | | | | | | | | | 06 | | | | | 25.200 | | nsi innaga | NS
NS
NS | 1946
1947
1948
1949 | 51 401
51 401 | 178 001
178 001
178 001
178 001 | 148 | 5
1
1 | 6 0 | | 1
6 | | | | 1 : | 1 1 | 1 | | | | | | | | | 25709
25709
25709
25709 | | ATIGUN | SAWR
SAWR | 1975 | 68 111
68 111
68 111 | | 3335 | 1 | 1 | 1 1 6 | 1 | 1 | 1 | 1 6 | 5 6 | 3 B | | | | | | | | | | | | АТКА | 4 4 4 4 4 4 | 1936
1937
1938
1939
1940
1941
1942 | 52 121
52 121
52 121
52 101
52 101 | 174 201
174 201
174 201
174 201
174 121
174 121
174 121 | 11
11
11
136
136 | 3 | 3 | 3 3 | 3 | 3 | - 1 | 3 : | | 3 3 | 3 3 3 3 | 04
12
12
06 | 05
07
12
10
12
12
06 | 04
07
12
10
12
09 | | | | | | 25715
25715
25715
25715
25715
25715
25715 | | ATKA | SAHR
SAHR | | | 174 124
174 124 | | 5 | 5 | 4 4 | 3 | 3 | 4 | | | 3 | 3 | | | | | | | | | 25715
25715 | | ATKA | NS
NS | 1942
1943 | | 174 136
174 136 | | 1 | 1 | 1 1 | ₁ | 1 | 1 | 1 | 1 : | 1 1 | 1 | | | | | | | | | 25710
25710 | | ATKA ISLAND | AAF
AAF
AAF
AAF
AAF | 1944
1945
1947
1948
1949 | 52 13N | 174 12L | 36
36
36 | 6 | 6 4 | 1 1 | 1 | 5 | 6 | 1 :
6 6 | 5 6 | 6 6 | 6 | | | 57
60
58
62
61 | 60
60
58
62
61 | | | | | 25708
25708
25708
25708
25708 | | ATTU | s
s | 1941
1942 | | 173 11E
173 11E | | 3 | 3 : | 3 | | | | : | 3 3 | 3 | 3 | 04
03 | 04
03 | 04
03 | | | | | | 45712
45712 | | ATTU | 000000000000000000000000000000000000000 | 1981
1962
1963
1964
1965
1966
1969
1970
1971
1972
1973
1974
1975 | 52 50N
52 50N | 173 116
173 116 | 70
70
70
70
70
70
70
70
70
70 | 566666666666 | 5 | 5 | 555555555555 | 555555555555 | 55555555555 | 5 | | 5 | 55555555555 | | | | | | | | | 45712
45712
45712
45712
45712
45712
45712
45712
45712
45712
45712
45712
45712
45712
45712 | | ATTU | NS
NS
NS
NS
NS
NS
NS | 1943
1944
1945
1946
1947
1948
1949
1950 | | 173 11E
173 11E
173 11E
173 11E
173 11E | 91
91
91
91
91
91 | 1 1 1 1 1 | 1 :
1 :
1 : | 1 1 1 1 1 1 | 1
1
1 | 1 1 1 1 1 | 1 1 1 1 1 1 | 1 | L 1
L 1
L 1
L 1 | 1 | 1 | | | | | | | | | 45709
45709
45709
45709
45709
45709
45709
45709
45709 | | ATTU | NS
NS
NS
NS
NS | 1954
1955
1956
1957
1958
1973 | | 173 10E | 92
92
92 | 1
1
1
5 | 1 1 1 1 1 1 1 5 5 | 1 1 | 1 | 1 | 1 | 1 1 1 1 1 1 1 1 1 1 1 1 | | 1
1
1
5 | 1 1 | | | 05
12
12
12
06 | | | 05
12
12
12
18
06 | 05
12
12
12
06 | | 45709
45709
45709
45709
45709
45709 | | AUFEIS | SAHR | | 69 091 | | 1 | | | | 1 | 1 | 1 | 1 2 | 1 | | | | | | | | ļ | | | | | AUGUSTINE IS | A
A | 1972 | 59 25N
59 25N | | | | | | | | | 3 | | | | : | | | | | | | | | | BARROW | | 1920
1921
1922
1923
1924
1925
1926
1927
1930
1931
1932
1933
1934
1935
1936 | 71 18N
71 18N
71 18N
71 18N
71 18N
71 18N
71 18N | 156 45L
156 46L
156 46L
156 46L
156 46L
156 46L
156 46L
156 46L
156 46L
156 46L
156 46L | 25
25
25
25
25
25
25
25
25
25
25
25
25
2 | | | | | | | | | | | | 03
12
12
12
12
12
12
12
12
12
12
12
12
12 | | 03
122
124
04
05
122
122
123
124
124
124
124
124
124
124
124
124
124 | 05
12
12
12
12
12
12
12
12
12
12 | | | |
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502 | | A | LASK | (A | | | | | | | | | | | | | | | NU | MBER | OF I | HONTI | HS I | N YEI | ar wi | тн | |---------------|---|--|--|---|--|---|--|---|---|---|---|---|---|---|--|----------------|--|--|--|---|---|-------|-------
--| | | | | | | | | | | | | | B
ER | | | TH | / | /
& / | /
<u>*</u> / | September 1 | Te Ley | # (&) (& | | | *\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | | | | | | | | | | 1 0 | 100 | | Separate Sep | | | | | | WBAN
NUMBER | | BARROW | | 1938
1938
1940
1941
1942
1943
1944
1945
1947
1948
1950
1951
1953
1954
1953
1954
1959
1958
1958
1958
1958
1959
1959
1959 | 71 18N
71 19N
71 19N
71 16N
71 16N
71 16N
71 18N
71 18N
71 18N
71 18N
71 18N | 156 45W
156 46W
156 46W
156 46W
156 47W
156 47 | 25
25
25
25
25
24
29
29
29
29
29
29
29
29
29
29
29
29
29 | 555566111110006111111111111111111111111 | 5555761111000611111111111111111111111111 | 555566111100061111111111111111111111111 | 5 5 5 6 6 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 55556 111111111111111111111111111111111 | 555661111111111111111111111111111111111 | 355 6611111000006111111111111111111111111 | 3 5 5 5 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3555551111110000061111111111111111111111 | 05 12 09 03 03 | 122
122
122
122
122
122
122
122
122
122 | 122 122 122 122 122 122 122 122 122 122 | 122
122
122
122
122
122
122
122
122
122 | 12
12
12
12
12
12
12
12
12
12
12
12
12
1 | OB. | | | 27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502
27502 | | BARTER IS | ###################################### | 1956
1957
1958
1958
1958
1960
1961
1963
1964
1965
1966
1967
1968
1971
1973
1973
1975 | 70 08h
70 08h | 143 38µ
143 38µ | 50
50
50
50
50
50
50
50
50
50
50
50
50
5 | 111111111111111111111111111111111111111 | 111111111111111111111111111111111111111 | 1 | 1 | 111111111111111111111111111111111111111 | 111111111111111111111111111111111111111 | 1 | 1 | 1 | 1 | | | | | - 444 | . 05 | | | 27401
27401
27401
27401
27401
27401
27401
27401
27401
27401
27401
27401
27401
27401
27401
27401
27401
27401
27401
27401
27401
27401
27401
27401
27401
27401
27401
27401
27401 | | BARTER IS | AFB 1 | 947
948
949
950
951
952
953
954
955 | 70 08N
70 06N
70 06N
70 06N
70 06N
70 06N
70 06N | 143 36W
143 36W
143 36W
143 36W
143 36W | 40
40
40
40
40
40
40
21
21 | 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 | 1 1
1 1
1 1
1 1 | 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1
1
1
1
1 | 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 5 | 1 1 1 1 1 1 | | | 53
62
62
62
12
11
12
12 | 58
62
60
09
12
03 | | | | | 27401
27401
27401
27401
27401
27401
27401
27401
27401
27401 | | BEAVER FALLS | A I | 940
941
942 | 55 23N
55 23N
55 23N | 131 28H | 35
35
35 | | 3 3 | 3 3 | | 3, | 3 | 3 | 3 3 | 3 | 3 | | | | | | | | | 25313
25313
25313 | | BETHEL | HBG 1 | 932
933
934
935
936 | 488
488
488
488
488
488
488
488
488
488 | 161 45W
161 45W | 38
38
38
38
38
38
38
38
38
38
38
38 | 3 | | 3 3 3 3 3 3 3 | 3 3 3 3 3 | Н | 3 333 | 3 | 3 3 3 3 3 3 3 | 3 3 3 | 3 3 3 3 3 3 | | 04 | 12
12
12
12
12
12
12
12
12
12
12
12
12
1 | | | | | | 26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615 | | $^{\circ}$ | 1 1 | $^{\circ}$ | ~ | ~ | \sim | |------------|------|------------|---|---
--------| | A | L. I | м | S | n | н | NUMBER OF MONTHS IN YEAR WITH | r | נחשי | ın m | | | | | | | | | | | | | | | | NL | | OF | MONT | H5 | | EAR H | | |-----------|--|--|--|---|--|---|---|---|---|---|---|--|---|---|---|----------------|-------------------------|----------------------------------|--|--|--|--|-----|---------|---| | | | | | | | но | URI | Υ. | RE | COR | DS | В | Y : | MON | ITH | | / | /
& , | / | / 🟖 / | | / . | / . | /20 | /8/ | | NAME | TYPE | YEAR | 1 | Lava | Leven | | 1 :
i-1 | | | | | | | | | / | ŝ | 2. Tag 1.5. | | Samuel Andrews | 7. 4. 1. 6 M. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | | | WBAN
NUMBER | | BETHEL | HBG | 1938 | 60 48 | | ELEV. | +- | ₩ | - | -+- | + | ╄ | ⊢ | ⊢ | - | - | <u>/'</u> | કે જે
- / | | / | / | /~ | #/ B | */* | · • / • | NUMBER | | | HB0
HB0
HB0 | 1939
1940
1941
1942 | 60 481
60 481 | | 4 22
4 28 | 3 | 3 | 3 | 3 3 3 6 6 | 4 | 4 | 3 | 3 | 3 3 6 | 3 : 6 : 6 | 5 2 | 05
12
10
04 | 12
12
12
12
08 | 12
12
10
12
08 | | | | | | 26615
26615
26615
26615
26615 | | BETHEL | ###################################### | 1943
1944
1945
1946
1948
1948
1951
1951
1953
1954
1955
1956
1957 | 60 47H
60 47H | 161 434
161 434 | 15
15
15
15
15
15
15
15
15
15
15
15
15
1 | 1 | 1 | 1 1 | 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 | 1 1 1 1 1 | | >>5 | 12
12
12
12
12
12 | 04
12
12
12
12
12
12
12
12
12
12
12
12 | | 03
12
11
12
12
12 | | | | 26815
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615 | | OE THEL | ₩ВАS
₩ВАS
₩ВАS
₩ВАS
₩ВАS | 1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970 | 60 47M
60 47M | 161 48W | | 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1
1
1
1 | 1 | 111111111111111111111111111111111111111 | 1 | 1 | 1 | 1 | 1 1
1 1
1 1
1 1
1 1 | 111111111111111111111111111111111111111 | | | | 12
12
12
12
12
12
11
11
12
12
12
12
12
1 | | 01 | 12 | | | 26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615
26615 | | BETTLES | CAA
CAA
CAA
CAA
CAA
CAA | 1944
1945
1946
1947
1948
1949
1950 | 56 54N
56 54N
56 54N
66 54N
66 54N
66 54N | 151 43H
151 43H
151 43H
151 43H | 855
855
855
855
855
855
855 | 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1
1
1
1 | 1 1 1 1 1 | 1 | 1 1 1 | 1 1 1 | 1 1
1 1
1 1 | 1 1 | 1 1 1 | 12 | | 02 | 10
12
12
12
12
12
12
12 | | | | | | 26517
26517
26517
26517
26517
26517
26517
26517 | | BETTLES | CAA
CAA
CAA
CAA
CAA
CAA
FAA
FAA
FAA
FAA | 1972
1973
1974
1975 | 392.000 000 000 000 000 000 000 000 000 00 | 151 31H
151 31H | 672
672
672
672
672
672
672
652
652
652
652
652
652
652 | | 1 | 111111111111111111111111111111111111111 | 1 | 1 | | 11 | 1 | 111111111111111111111111111111111111111 | 111111111111111111111111111111111111111 | | | | 08
12
12
12
12
12
12
12
12
12
12
12
12
12 | | | | | | 26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533
26533 | | BIG DELTA | A
A
A
A
CAA
CAA
AF | 1936
1937
1938
1939
1940
1941
1942
1943
1944 | 64 08N
64 08N
64 08N
64 08N
64 08N
64 00N
64 00N
64 00N | 145 444
145 444 | 995
995
995
995
995
1274
1274
1274 | 3 3 3 3 3 3 3 3 1 1 1 1 | 3 3 3 3 1 1 | 3 3 3 3 1 1 | 3 : 3 : 3 : 5 : 5 : 5 : 1 : 1 | 5 5 | 3 3 1 1 | 3 3 3 1 1 | 3 3 1 1 | 3 3 3 1 1 1 | 3 3 3 3 1 1 1 1 1 | 07
12
06 | | 08 | 10
12
05
03
12 | | | | | | 26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415 | | | ו כ | 2 | K | Δ | |----|-----|-----|----|---| | п: | _ | 1.3 | T١ | _ | NUMBER OF MONTHS IN YEAR HITH | П | | МП | | | | HOL | | , , | EC | ۵. | ne | D V | MU | MT | | | , | /
MBER | /
/ | MUNT
∕₽ | | IR H1
/ | | |--------------|---|--|--|--|--|---|---|-------------|---|------------------|-----------|---|-----------|---|---|-------|----------------------|--|---|------------|----------|------------
---| | | | | | | | | - E | | | | | | | | ., | /6 | \
\\ | , <u> </u> | | | 4 £ 1/2/ | | 8 / | | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | | | | | | | | | | o | S S S | \$/£. | | / State / 1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2 | TA JA. | | 1. 1000 | NUMBER | | BIG DELTA | | 1947
1948
1950
1951
1953
1954
1955
1956
1956
1950
1960
1961
1962
1963
1964
1965
1967
1969
1970
1971
1973
1973
1975 | 64 00N
64 00N | 145 4411
145 4411 | 1275
1275
1275
1275
1275
1275
1275
1275 | 1 | 1 | | 111111111111111111111111111111111111111 | | | 1 | | 111111111111111111111111111111111111111 | 111111111111111111111111111111111111111 | | | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | | | | | 28415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415
26415 | | BIG DELTA | AAF
AAF | 1944
1945 | 64 00N
64 00N | | 1272
1272 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | | 1 | | | 56
60 | 55
50 | | | | 26406
26406 | | BIG LAKE | SAWR
SAWR | 1960
1961 | 61 32N
61 32N | | 150
150 | 3 | | 3 | 3 | 3 | 3 | 3 3 | 3 | 3 | 3 | | | | | | | | | | BIORKA IS | CAA
CAA
CAA
CG
CG
CG
CG | 1941
1942
1943
1944
1972
1973
1974
1975
1976 | 56 51N
56 51N
56 51N
56 51N
56 51N
56 51N
56 51N
58 51N | 135 32W
135 32W
136 32W
135 33W
135 33W
136 33W | 215
215
215
215
50
50
50 | 1
6
5
5 | 6 6
5 5
5 5 | 1
6
5 | 5 5 5 | 6
5
5
5 | 5 5 5 | 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5 5 5 5 5 | 56 5 55 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 11 | 02
10
12
01 | 12
12
12 | | | | | | | BIRCH RGAD | 000P
000P
000P
000P
000P | 1967
1968
1969
1970
1971
1972 | 61 08N
61 08N
61 08N
61 08N
61 08N | 149 46H
149 46H
149 46H
149 46H | 460
460
460
460
460 | : | | | | | | | | | | | - | | 05
12
12
12
12
06 | | | | | | BIRD CAPE | AAF | 1943 | 51 39N | 178 40E | 1008 | . | | 6 | 1 | 1 | 1 | 1 6 | 6 | | | | | | | | | | 45705 | | BLAIR LK RNG | AF
AF
AF | 1974
1975
1976 | 64 20N
64 20N
64 20N | 147 39H | 725
725
725 | 1 5 | 1
5 5 | | | 1 5 | 1 5 | | | 1 5 | 1
1
5 | | | | | | | | 26460
26460
64060 | | BGUNDARY | 44444444 | 1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957 | 64 04N
64 04N
64 04N
64 04N
64 04N
64 04N
64 04N
64 04N
64 04N | 141 07H
141 07H
141 07H
141 07H
141 07H
141 07H
141 07H
141 07H
141 07H | 2600
2600
2600
2600
2600
2600
2600
2600 | 55555 | 5 5
5 5
5 6 | 55555 | 55555 | 55555 | 5 5 5 5 5 | 5 5 5 5 5 5 5 5 5 5 5 | 555555 | 555655555 | 5 | | | | | | | | 26416
26416
26416
26416
26416
26416
26416
26416
26416
26416 | | BRGAD PASS | # F F | 1938
1939
1940
1941 | | | 2127
2127
2127
2127 | 3 | | 3 | 3 | 3 | 3 | 3 3 3 | 3 | 3 3 3 | 3 | | | | | | | | | | BRUIN BAY | CAA | 1943
1944 | | 153 58W
153 59W | 51
51 | 1 | 1 1 | 1 | 1 | 1 | 1 | 7 1 | 1 | 1 | ı | 04 | | 0 4
07 | | | | | | | BULDIR IS | AAF
AAF
AAF | 1943
1944
1945 | 52 22N
52 22N
52 22N | | 49
49
49 | 5
5 | 6 6
6 6 | 6 | 5
6 | 6 | 6 | 6 6 | | 6 | | | | 53
62
58 | 53
62
58 | | | | 45706
45706
45706 | | CANDLE | | 1930
1939
1940
1941
1942
1943
1944
1945 | | 181 554
161 554
161 554
161 554 | 10
10
10
10
10
10 | 3 3 3 | 3 3 3 3 3 3 4 4 5 5 4 4 | 3 | 3 | 3 | ~! | 3 3 3 3 3 3 4 5 5 5 | 3 | 33333455 | 3 3 3 5 4 | | | 12
12
03
10 | | - | | | 26619
26619
26619
26619
26619
26619
26619 | | Al | _AS | KA | | | | |
 | | | | | | | | | NUI | | OF | | | I YEAI | | | |--------------|--|--|--|---|--|---------------------------|---------------------------------------|---|--------------------------------------|---|---|---------------------------------|---|-----------------------------------|-----------------------------------|---|----------------|--|---|--|----------------|--------|--------------|---| | | | | | | | HOU
1 | | | ECO
OB | | | | | NT | Н | / | /
! / | /
*/ | See | TA LA STATE OF THE | | | | \$ / UBON | | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | | | | | | | | | N | D | J. S. | | | | 2 2 | | | TO ON TO SEE | NUMBER | | CANDLE | A A A A | 1946
1947
1946
1949
1950 | 65 56N
65 56N
65 56N
65 56N | 161 55₩
161 55₩ | 24
24
24
24
24 | 6 | 5 5
6 6
5 5 | 5 6
5 6 | 8
6
6 | 5 6
6 6 | 5 1 | 6 6
6 6
6 6
5 5 | 6
6 | 6
6
5 | 6 6 6 5 | | | 03 | | | | | | 26619
26619
26619
26619 | | CANYON CREEK | A | 1940 | | 141 08W | 3500 | | Ì | | 3 | 3 : | 3 : | 3 3 | 3 | 3 | 3 | | | | | | | | 1 | | | CANYON IS | A
CAA
CAA | 1942
1943
1944
1945 | 58 33N
58 33N | 133 40H
133 40H
133 40H
133 40H | 85
85
85 | 6 | 6 6 | 5
5
6 | 6 | | | 5
5
6
6 | 5 |
5 | | | | | | | | | | | | CANYON VILAG | C00P
C00P
C00P
C00P
C00P | 1964
1965
1966
1967 | 67 09N
67 09N
67 09N
67 09N
67 09N | 141 45W
141 45W
141 45W
141 45W | 990
990
990
990
990 | | | | | | | | | | | | | | 06
12
10
12
10 | | | | | | | САРЕ | AAF
AAF
AAF
AAF
AFB
AFB | 1942
1943
1944
1945
1946
1947
1948
1949 | 53 23N
53 23N
53 23N
53 23N
53 23N
53 23N
53 23N
53 23N | 167 54W
167 54W
167 54W
167 54W
167 54W
167 54W | 131
131
131
131
131
131
131
131 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 | 1 1 1 1 1 1 1 1 | 1 | 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1
1
1
1
1 | 1
1
1
1
1 | 1 1 1 1 1 1 1 1 1 | | | 58
62
62
62
62
62
62
62 | 54
62
61
51
55
62
61 | | 04
08
02 | | | 25602
25602
25602
25602
25602
25602
25602
25602
25602 | | CAPE DECISIO | | 1838
1840
1941
1942
1943
1944
1845
1846
1847
1953
1953
1955
1955
1956
1956
1960
1961
1962
1963
1964
1965
1969
1969
1969
1969
1969
1969
1969 | 56 000 00 00 00 00 00 00 00 00 00 00 00 0 | 134 084
134 08 | | 4111555555555555555566666 | 5 4111555555555555555555556666666666 | 554116555555555555555555555555555555555 | 544115555555555555555555556666666666 | 5451165555555555555555556666666666 | 4411165555555555555555555555 | 5 5 5 5 6 6 | 04-1-1-06-05-05-05-05-05-05-05-05-05-05-05-05-05- | 55411156555555555 555555666666666 | 5 4111555555555555555555566666666 | 02
11
109
12
12
12
12
12
12
12
12
12
12
12
12
12 | 02
11
05 | 09 12 12 12 12 12 12 12 12 12 12 12 12 12 | | | | | | 25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315
25315 | | CAPE HINCHIN | | 1939
1940
1941
1944
1944
1944
1949
1950
1951
1952
1954
1955
1956
1957
1958
1960
1963
1964 | 60 1 4 4 7 4 4 4 7 4 4 4 7 4 4 4 7 4 4 4 7 4 4 4 7 4 4 4 7 4 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 | 146 38913 X X X X X X X X X X X X X X X X X X X | 185 185 185 185 185 185 185 185 185 185 | 1 1 4 4 4 4 4 5 5 | 35 111444444455555 | 5 1 1 1 5 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 | 35 11644444455 | 1116444444555555555 | 35 11154444455555555555 | 535 115444444445555555555555555 | 4444444 | 35 | 5 | | | | | | | | | 26417
26417
26417
26417
26417
26417
26417
26417
26417
26417
26417
26417
26417
26417
26417
26417
26417
26417
26417
26417
26417
26417
26417
26417
26417
26417
26417
26417
26417 | 26633 26633 166 02W 166 024 166 02F 02H | А | LAS | KA | | | | | • | | | • • • | | | . • | • | • | | NU | JMBE | R O | Fh | 10NT | -
HS 1 | N Y | EAR I | HIT! | н | |--------------|--|--|--|---|---|---------------------|-------------------------------|--|--|-------------------------|---|---|----------------------------------|-------------------------|----------------------------|--|-------------|--|--|-------------------|------------------------|-----------|--------|--|------|--| | | | | | | | но | URI | LY | REC | OR | DS | BY | MC | INT | н | / | <u>/</u> | /. | /, | ? / | Subsection of the last | / * | / . | ./ | ./. | | | | | | | | | | 1 | - 2 | 4 (| BS | PE | R I | ואכ | 1 | | S. S | 5/2 | Too Maring | To do to | /. | 8 / è | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 4000 | HBAN | | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | 'n | F | M F | H | J | J | A S | 0 | N | D | \\$`\\$ | <i>`</i> /₩ | \$ <u>/</u> | § / | ~. ^R ~ | /** | \$ \\$ | \$ / £ | | | NUMBER | | CAPE ROMANZO | AFS
AFS
AFS
AFS
AFS | 1971
1972
1973
1974
1975
1976 | 51 47N
51 47N
51 47N
51 47N | 166 02W
166 02W
166 02W
166 02W
166 02W | 405
405
405
405
405
405 | 1
6
7
7 | 7 | 1
7
7
7 | 1 1
1 7
7 7
7 7
7 7 | 7 7 7 7 7 | 7 7 7 | 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 6777 | 7777 | 7777 | | | | | | | | | | | 26633
26633
26633
26633
26633
26633 | | CAPE ST ELIA | 000000000000000000000000000000000000000 | 1939
1940
1942
1943
1944
1945
1946
1950
1951
1952
1953
1956
1961
1961
1962
1963
1964
1969
1969
1969
1969
1969
1969
1969 | 46 | 144 364
144 364
144 364
144 364
144 364
144 364 | | 66666666 | 11555455555555555555666666666 | 355511555455555555555556666666 | 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 3555 | 3555115554555555555555666666666666666 | 335551155545555555555555666666666611 | 55511555455555555555556666666661 | *********************** | ************************** | 08 12 12 12 12 12 12 12 12 12 12 12 12 12 | | | 222212222122222222222222222222222222222 | | | | | | |
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401
25401 | | CAPE SARICHE | 00
00 | 1940
1941 | | 164 56H
164 56H | 175
175 | 3 | | 3 3 | | | | 3 3
3 3 | 3 | | 3 | | | | | | | | | | | 25622
25622 | | CAPE SARICHE | 000000000000000000000000000000000000000 | 1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1969
1969
1971
1973
1974
1975
1976 | 54 35N
54 36N
54 36N | 164 56µ | 175
175
175
176
176
176
176
176
176
176
176
176
176 | 5555555555555555555 | 555555555555555555555 | | មិនមានមានមានមានមានមានមានមានមានមានមានមានមាន | 5555555555555 555555555 | 555555555555555555555555555555555555555 | 555555555555555555555555555555555555555 | 55555555555555555555555555 | 55555555555555555555555 | 5555555555555555555555555 | | | 12
12
12
12
12
12
12
12
12
12
12
12
12 | | | | | | | | 25622
25622
25622
25622
25622
25622
25622
25622
25622
25622
25622
25622
25622
25622
25622
25622
25622
25622
25622
25622
25622
25622
25622
25622
25622 | | CAPE SPENCER | CG C | 1938
1938
1940
1941
1942
1943
1944
1946
1946
1948
1950
1951
1951
1953
1953
1954
1955
1955 | 58 12N
58 12N
58 12N
58 12N
58 12N
58 12N
58 12N
58 12N
58 12N | 136 38H
136 38H | 66
68
68
68
68
68
68
68
68
68
68
68
68
6 | 35 511666666666666 | 5 1 1 6 6 6 6 6 6 | 55551116666666666666666666666666666666 | 5511666666 | 55551-655566666666 | | 5 6 6 6 6 6 6 6 6 6 | 345511166666666 | 511166666666666 | 3555111566666666 | 05
12
12
12
12
12
12
12
12
12
12
12
12
12 | | 05
12
12
12
12
12
12
12
12
12
12
12
12
12 | | | | | | | | 25316
25316
25316
25316
25316
25316
25316
25316
25316
25316
25316
25316
25316
25316
25316
25316
25316
25316
25316 | ALASKA NUMBER OF MONTHS IN YEAR WITH | .HI | LHO | NΗ | | | | | | | | | | | | | | | NUMBER | OF | | | | | TH | |--------------|--|--|--|---|---|------------|---------------------|---|--------|-----------|--------|---|---------------|---|-------|----------------------------------|--|--|---|--|----------|--------------|--| | | | | | | | HOL | RL | YF | tEC | ORI | 06 | BY | H | TNE | Н | / | \ / . | / 🔊 | / gg [®] / | 1 21 | / 5/ | /ss/ | 8/ | | | | | | | | | | | | | | ER : | | | | \$ 5.5 S | | A STATE OF THE PARTY PAR | No September 1 of o | /
6 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / | | | HBAN | | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | ٦ | F | IA | M | 기 | 기 | A S | 0 | N | D | \earthi | 2/ E 3/ 6 | | E / E 4 | \$\\\ \mathrea{2}\cdot \\ | <u> </u> | \$ \$ | NUMBER | | CAPE SPENCER | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 1957
1958
1959
1960
1961
1962
1963
1964
1965
1966 | 58 12M
58 12N
58 12N
58 12N
58 12N
58 12N
58 12N | 136 38H
136 36H
136 36H
136 36H
136 36H
136 36H
136 36H
136 36H
136 36H | 88
86
86
86
86
86
86
86
86
86
86
86
86
8 | 6666666666 | 5 6 6 6 6 6 6 6 6 6 | 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 6 | 566666666 | 666666 | 666666666666666666666666666666666666666 | | 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 66866 | 122112122222 | 12
12
12
12
12
11
12
12 | | | | | | 25316
25316
25316
25316
25316
25316
25316
25316
25316
25316 | | | 00
00
00
00 | 1968
1969
1970
1971
1972
1973
1974 | 58 12N
58 12N
58 12N
58 12N
50 12N
50 12N
50 12N | 136 384
136 384
136 384
136 384
136 384
136 384 | 86
88
88
88
88
88 | 6 6 6 6 | 6 6 6 6 6 | 5 6 6 6 6 6 6 6 6 6 6 6 6 | 6 6 6 | 68868 | 68668 | 5 5 5 5 6 6 | 5 6 | 6 6 | 6666 | 12
12
12
12
12
11 | 12
12
12
12
12
08 | | | | | | 25316
25316
25316
25316
25316
25316
25316 | | CAPE STARR | SEE | HIKGES | KI | | | | | | | | | 1 | | | | | | | | 1 | 1 | | 25605 | | CAPE THOMPSO | SPL
SPL
SPL
SPL | 1959
1960
1961
1962
1963 | 68 DBN | 165 46W | 36
36
36
35
36 | 3 | | 3 3 | 3 | 3 | 3 3 | 3 3 | 3 3 | 3 3 3 3 | 3 | | 01 | 01 | | | | | 26636
26636
26636
26636
26636 | | CAPE WRANGEL | NF
NF | 1944
1945 | | 172 31E
172 31E | 50
50 | 6 | 5 5 | 5 6 | 5 | 5 | 5 | 6 5 | 5 | 5 | 5 | | | | | | | | 45713
45713 | | CATON ISLAND | NF
NF
NF | 1943
1944
1945 | 54 25N | 162 26H
162 26H
162 28H | 130
130
130 | 7 7 | 7 7 | 7 7 | | 7 | 7 | 7 | 7 | | | | | | | | | | 25615
25615
25615 | | CATON ISLAND | NS
NS | 1943
1945 | 54 25N
54 25N | 162 28W | 140
140 | | | | 7 | 7 | 7 | | 1 7 | | | | | | | | | | 25612
25612 | | CENTRAL | A
A | 1940
1941
1942 | 65 35N
65 35N
65 35N | | 750
750
750 | | 3 3 | 3 3 | 3 3 | 3 | | 3 3 | 3 3 | 3 | | | | | | | | | 26418
26418
26418 | | CENTRAL | 4 4 4 4 4 4 4 4 | 1946
1947
1948
1949
1950
1951
1952
1953 | 55.55.55.55.55.55.55.55.55.55.55.55.55. | 144 48H
144 48H
144 48H
144 48H
144 48H
144 48H
144 48H | 870
870
870
870
870
870
870
870 | 5 | 5 5 | 5 | 555555 | 555555 | 55555 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5 5 5 5 5 5 5 | 55555 | | | | | | | | | 26418
26418
26418
26418
26418
26418
26418
26418
26418 | | CENTRAL | C00P
C00P
C00P
C00P
C00P
C00P
C00P | 1964
1965
1966
1967
1968
1969
1970
1971
1972
1973 | 65 33N | 144 49H
144 49H
144 49H | 1000
1000
1000
1000
1000
1000
1000
100 | | | | | | | | | | | | | 07
11
12
12
10
10
12
12
12
12
12
11
11
11 | | | | | | | CHALKYITY İK | C00P
C00P
C00P
C00P
C00P
C00P
C00P | 1971 | 66 38N
66 38N
66 38N
66 38N
66 38N
66 38N
66 38N | 143 434
143 434
143 434
143 434
143 434
143 434
143 434
143 434
143 434 | 560
560
560
560
560
560
560
560
560 | | | | | | | | | | | | | 07
12
11
11
12
09
06
06
06 | | | | | | | CHANDALAR | A A A | 1974
1975
1976 | 67 30N | 148 30H
148 30H
148 30H | 1845
1845
1845 | | | | | | | 6 6
6 | 5 E | | 6 | | | | | } | | | | | CHENA HOT SP | CGGP
CGGP
CGGP
CGGP
CGGP | 1964
1965
1966
1967
1966 | 65 03N
65 03N
65 03N
65 03N
65 03N
65 03N
65 03N | 146 03H
146 03H
146 03H
146 03H
146 03H
146 03H
146 03H
146
03H
146 03H | 1200
1200
1200
1200 | | | | : | • | | | | | | : | | 07
12
12
11
11
11
12
12
12 | | | | | | | AL | AS | KA | | | | | | | | | | | | | | | NU | MBER | OF | MONT | HS II | | ar Hi | | |--------------|---|--|---|---|---|---|---------------------------------------|---------------|-----------|--|---------------------------------|---------------|-----------------|---|------------------|--|----------|---|--|--|---------|---------------------|-------|--| | | | | | | | HOU | | | ECO
OB | - | | | | NTH | ١ | | /
& / | /
*/ | The state of s | Te Je | /
4. | /
\$\displaystar | | \s\s\ | | NAME | TYPE | YEAR | LAT. | LONG. | £LEV. | | | | | | | | | N E | D , | S. S | | | | | | | | NUMBER | | CHENA HOT SP | C00P | | 65 03N
65 03N | | 1200
1200 | | | | | | | | | | | | | | 12 | | | | | · | | CHICKEN | * * * * * * | 1935
1936
1937
1938
1939
1940 | 64 04N | 141 56W | 2000
2000
2000
2000
2000 | 3 | 3 3
3 3
3 3
3 3 | 3 | 3 | 3 3 | 3 3 3 3 3 3 | 3 3 | 3 | 3 | 3 3 3 3 3 | | | | | | | | | | | CHIRIKOF | NS
NS | 1943
1945 | | 155 35H
155 35H
| 143
143 | | | 1 | 1 | | | 1 1 | 1 | 1 | 1 | , | | | | | | | | 25505
25505 | | CHIRIKOF IS | NF
NF
NF | 1943
1944
1945 | 55 54N | 155 34W
155 34W
155 34W | 75
75
75 | | 7 7 | | 7 | 7 | , | 7 | | | 7 | | | | | | • | : | | 26511
26511
25511 | | CHIRIKOF IS | SAUR
SAUR | | 55 54N
55 54N | | 25
25 | | 3 | | | 3 3 | 3 3 | | 3 | 3 | 3 | | | | | | | | | 25511
25511 | | CHITINA | | 1939
1940
1941
1942
1943
1944 | 61 32M
61 32M
61 32M
61 32M
61 32M
61 32M | 144 27W
144 27W
144 27W
144 27W | 572
572
572
581
581
581 | 3 : | 3 3
3 3
3 3
3 3 | 3 | 3 | | 3 3
3 3 | 3 3 | 3 3 3 3 | 3 | 3 3 3 3 3 | | | | | | | | | | | CHUGINADAK | AAF
AAF | 1943
1944 | 52 50N
52 50N | 169 50W
169 50W | 60
60 | 6 | 5 6 | В | 6 | | 6 | 6 | 6 | 6 | 6 | | | 56
56 | | , | | | | 25601
26601 | | CIRCLE | *********** | 1931
1932
1933
1934
1935
1936
1937
1939
1940
1941
1943
1944
1945
1946 | 482 A | 144 044
144 044 | 700
700
700
700
700
700
700
700
700
700 | 33333333553 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 0000000000000 | 333333355 | 33 33 33 33 33 33 33 33 33 33 33 33 33 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 00000 0000 00 | 3 3 3 3 3 3 3 5 | 3 | 3333333333, 535 | The state of s | | After of defense in table in the conditional formers with the conditional factor in | | A Contraction of the | | | | 26446
26446
26446
26446
26446
26446
26446
26446
26446
26446
26446
26446
26446
26446 | | CIRCLE HOT S | απαπα | 1935
1936
1936
1939
1940
1941 | 65 29N
65 29N
65 29N
65 29N
65 29N | 144 36W
144 36W
144 36W
144 36W | 935
935
935
935
935 | | 3 3 3 | 3 | 3 | 3 3 | 3 3 | | 1 | 3 3 | - 1 | | | | | | | | | 26418
28419
26419
26419
26419
26419 | | CIRCLE HOT S | A
SAUR
SAUR
SAUR | 1954
1955
1956
1957
1958 | 65 29N
65 29N
65 29N
65 29N
65 29N | 144 36H
144 36H
144 36H
144 36H
144 36H | 935
935
935
935
935 | 3 | 5 5
3 3 | 3 | 3 3 | 3 3 | 3 3 | 3 | 3 | 3 3 | 5
3
3
3 | | | | | | | | | 26419
26419
26419
26419
26419 | | CIRCLE HOT S | 00000000000000000000000000000000000000 | 1962
1963
1964
1965
1966
1967
1968
1969
1970
1971 | 65 29N
65 29N
65 29N | 144 36W
144 36W
144 36W
144 36W
144 36W
144 36W
144 36W | 935
935
935
935
935
935
935
935
935 | 3 | 3 3 3 3 3 3 3 3 3 3 3 | 3 3 3 | 3 3 3 3 3 | 1 | 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2000 | 3 3 3 3 3 3 3 | 3 3 3 3 3 3 | 3 3 3 3 3 3 | | | | | | | | | 26419
26419
26419
26419
26419
26419
26419
26419
26419
26419 | | CLEAR | 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1959
1961
1961
1963
1964
1965
1966
1967
1968
1969
1970
1971 | 64 18N | 149 114
149 114
149 094
149 094
149 094
149 104
149 104
149 114
149 114 | 5800
5800
5846
5446
5442
55440
5586
5685
5685 | 5 5 5 6 5 | 55555465 | 55555465 | 55555 | 3 5 5 5 5 5 5 5 6 6 3 3 | 5 5 5 5 5 4 4 | 55555436 | 55554 | 5555 | 555554 | | | | 01
11
08 | | | | | | | CLEAR STA A | AFS
AFS | 1947
1946 | 62 13N
62 13N | | 537
537 | | | | | | | | 1 | 1 | | | | 52 | 53 | | | | | 26408
26408 | | CGAL CREEK | 8 | 1938
1939
1940 | 65 16N | 143 16H
143 16H
143 16H | 1050
1050
1050 | | | | 3 3 3 3 3 | 3 3 3 3 3 | 3 3 | 3 | 3 | | | | | | | | | | | | | Al | _AS | KΑ | | | | | | | | | | | | | | | | NUI | | OF I | _ | | N YERI | | | |--------------|--|--|--|--|---|---|---|---|---|---------------|--------|---|---|---|--------------------------|---|----------------|--|--|--|--|---|--------|----------|---| | | | | | | | HO | URI | Υ. | RE | COI | RDS | B | Y 1 | 10N | TH | | /. | /
& / | / _/ | The state of s | Te Le Commis | /
&/ | | · æ/ | \ \s \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | ı | | | | | | | | | | | | ER | | | | | S. Moor | | | § / ¿ | | | | | WBAN | | NAME | TYPE | <u> </u> | | LONG. | ELEV. | J | | m I | 1 | IJ | 1 | A | S | 0 1 | • D | 1 | ∕ કે ધે
——— | / ** * | 3/ & | <u> </u> | /** | 1. | E/82 & | <u> </u> | NUMBER | | COAL CREEK | A | 1941 | 65 16N | | 1050 | | | | | | 3 3 | | 3 | 3 | | | | | | | | | | l | | | COFFMAN COVE | A | 1974 | | 132 50H | 10 | | 5 | 5 | 5 | 5 | 5 | 5 | 5 | | | | | | | | | | | 1 | | | COLD BAY | | 1 | ROUGH A | i | | | | | | | | l | | 1 | . I . | | | | | | | | | | 25603 | | COLD BAY | | 1954
1955
1957
1958
1959
1961
1962
1964
1965
1965
1969
1971
1972
1974
1975
1976 | 55 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 162 43H
162 43H | 983
966
966
966
966
99
99
99
99
99
99
99 | 511111111111111111111111111111111111111 | 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 111111111111111111111111111111111111111 | 111111111111111111111111111111111111111 | | | 111111111111111111111111111111111111111 | 1 | 111111111111111111111111111111111111111 | | | | | | | | 06 12 12 12 12 12 12 12 12 12 12 12 12 12 | | | 25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624
25624 | | COLD FT CAMP | SAWR
SAWR
SAWR | | 67 03N
67 03N
67 03N | | 1063
1063
1063 | 1
6 | | 1 | | 3 5 | | 1 | | 1 | 1 1
1 5
5 6 | | | | | | | | | | | | COLLEEN . | 9000
9000
9000
9000
9000
9000 | 1964
1965
1966
1967 | 67 44N
67 44N
67 44N | 142 28W
142 28W
142 28W | 800
800
800
800
800 | | | | | | | | | | | | | | | 06
06
09
11
10 | | | | | | | COLLEGE | A | 1970
1971 | 64 52N
64 52N | | 621
621 | | 3 | 3 | 3 : | 3 3 | 3 | 3 | 5 | 5 9 | 5 5 | | | | | | | | | | | | COPPER CTR | A
A
A
A
A | 1938
1939
1940
1941
1942 | 61 58N
61 58N
61 58N
61 58N
61 58N | 145
19W
145 19W | 1044
1044
1044
1044
1044 | 3 3 3 3 | 3 | | 3 3 3 3 3 3 3 3 | 3 3 | 3 | 3 | 3 | 3 :
3 : | | l | 11 | 0e
0e | 08
09 | | | | | | | | CBROBVA | | 1923
1924
1925
1926
1927
1928
1929 | 60 32N
60 32N
60 32N
60 32N
60 32N
60 32N | 145 42W
145 42W
145 42W
145 42W | 44
44
44
44
44 | | | | | | | | | | | | | 10
12
12
12
12
12
05 | 10
12
12
12
12
12
05 | | 10
12
12
12
12
12
12 | | | | 26410
25410
26410
26410
26410
26410
26410 | | CORDOVA | 5
5
5
5 | 1929
1930
1931
1932
1933 | 50 31N
60 31N | 145 36W
145 36W | 25
25
25
25
25 | 3 | 3 | | 3 : | 3 3 | | | | 3 3 | 3 3 | | | 07
12
12
12
12
05 | 07
12
12
12
12
05 | | 07
12
12
12
12 | | | | 26410
26410
26410
26410
26410 | | CORDOVA | *********** | 1933
1934
1935
1936
1937
1938
1939
1940
1941 | 60 32N
60 32N | 145 42W
145 42W
145 42W
145 42W
145 42W
145 42W
145 42W | 70
70
70
70
70
70
70
70 | 3 3 3 3 3 6 6 5 | 3
3
3
6
6 | 3 3 3 3 3 | 3 3 3 3 3 3 5 6 6 6 | 3 3 3 6 6 6 6 | 333336 | 3 | 3 3 3 5 6 | 3 3 3 3 3 3 3 5 6 6 | 3 3
3 3
3 3
3 3 | | 06
12
12 | 07
12
12
12
12
12
12
12 | 07
12
12
12
12
12
12
12 | | 07
12
12
12
12
12
12 | | | | 26410
26410
26410
26410
26410
26410
26410
26410
26410
26410 | | CORDOVA | AF
AF | 1942
1943 | 60 30N
60 30N | 145 30W
145 30W | 45
45 | | | | | 6 | | 1 | 1 | | | | 07
12 | 06
05 | 07 | | | | | | 26410
26410 | | | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1944
1945
1946 | | 145 30W
145 30W
145 30W
145 30W
145 30W
145 30W
145 30W
145 30W
145 30W
145 30W | - 55 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 | 1 1 1 1 1 | 1 : | ١, | 1 1 1 | 1 1 | 1 1 1 7 | 1 : 7 : 7 | 1 1 1 | | 12 03 | 04
12
12
12 | 04
12
12
12
12
12
12
12
12
12
12 | 01
12
03 | | | | | 26410
26410
26410
26410
26410
26410
26410
26410
26410
26410
26410
26410
26410 | ALASKA NUMBER OF MONTHS IN YEAR WITH | | СПО | ИП | | | | | | | | | | | | | | | NU. | MBER | 0F | | | | ar Hi | | |--------------|--|--|--|--|---|---------------------|---|-------------------------|---|---|---|-----------------|-------------|---|----|--|----------------------------------|--|----------------------|---------------|----------------|--|-------|---| | | | | | | | HOL | JRL' | r R | ECC | RD | 5 I | BY | но | NTH | | / | /
_s/ | / _ / | / & / | | /
&/ | / 8 | 38/ | 8 | | | 1 | 1 | 1 | 1 | | | = | | | ٠. | | | | | | Sept. S. | * / ~ | ************************************** | | Teles Parents | | | | * WBAN | | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | Н | - | ┿ | ⊢⊦ | 4 | - | ╁- | Н | + | 1/ | (6) Q | / 20 | - | <u> </u> | /~~ | / * · | */** | E/ & | | | CORDOVA | WBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | 1959
1960
1961
1962
1963 | 60 300 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X | 145 30W
145 30W
145 30W
145 30W
145 30W
145 30W | 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 | 1 1 1 1 1 1 1 1 1 1 1 1 | 1 | 1 | | | 1 | 1
1
1
1
1
1
1
1
1
1
1 | | | | 122 122 122 122 122 122 122 122 122 122 | | | | The state of s | | 26410
26410
26410
26410
26410
26410
26410
26410
26410
26410
26410
26410
26410
26410
26410
26410
26410
26410
26410
26410 | | CORDOVA | AAF
AAF
AAF
AAF | 1942
1943
1944
1945
1946 | 60 29N
60 29N
60 29N
60 29N
60 29N | 145 30W
145 30W
145 30W | 45
45
45
45
45 | 1 | 1 1 1 | 1 | 1 1 | 1 | 1 1 1 1 1 1 | 1 | | 1 1 | | | | 62
62
58 | 51
62
61
51 | | 07
11
08 | | | 26402
26402
26402
26402
26402 | | COUNCIL | 4 4 4 4 4 | 1936
1937
1938
1939
1940
1941
1942 | 64 53N
64 53N
64 53N
64 53N
64 53N
64 53N
64 53N | 163 41H
163 41H
163 41H
163 41H
163 41H | 95
95
95
95
95
95 | 3 | 3 3 3 4 4 5 5 5 5 | 3 4 | 3
4
5 | 3 3 | 3
3
3
3
4
4
5
5
5 | 3 3 4 5 | 4 3 3 4 5 | 3 3 | 3 | | | | | | | | | | | CRAIG | |
1930
1931
1933
1934
1937
1938
1940
1941
1944
1944
1945
1946
1951
1953
1956
1953
1956
1956
1956
1956
1966
1966
1966
1966 | 00000000000000000000000000000000000000 | 133 O9H
133 O9H | 13 13 13 13 13 13 13 13 13 13 13 13 13 1 | | 555555555555555555555555555555555555555 | | 3333 33355555555 5555555555555555555555 | 3333 3333565555555 55655555555555555555 | 3333 333555555555 555555555555555555555 | | <u> </u> | | | 04
12
12
12
12
12
12
08 | 04
12
12
12
12
04 | 04
12
12
12
12
12
12
12
12
12
12
12
12
12 | 12 | | | | | 25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317
25317 | | CROOKED CREK | A A A A A A A A A A A A | 1930
1931
1932
1933
1934
1935
1936
1938
1940
1941
1842
1943 | 61 52N
61 52N
61 52N
61 52N
61 52N
61 52N
61 52N
61 52N
61 52N | 158 15W
158 15W
158 15W
158 15W
158 15W
158 15W
158 15W
158 15W
158 15W | 150
150
150
150
150
150
150
125
125
125
125 | 3 3 3 3 3 3 3 3 3 3 | 3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | 3333 333333 | 3 | 3 | 3 3 3 3 3 3 3 3 3 | 3 3 3 3 3 3 3 3 | 3 3 3 3 3 3 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | | | | | | | | | 265 18
265 18 | | | | | K | נרטאחפ | INU | E X | r | 1 | . Г | П | Н | וס | = | 1 . | L | ВУ | 51 | HI. | ÜN | NAM | E | | | | |--------------|--|--|---|--|---|-----------------------|---|------------------|---|----------------|---|---------------------------------|---------------------------|-------------------|----------------------------|----------|----------|----------------------------------|----------------------------------|--|----------------------------------|--|-------|---| | A | LAS | SKA | | | | | | | | | | | | | | | NU | IMBEI | R OF | MON | THS | IN YE | AR W | II TH | | | | | | | | но | URL | Υ : | REC | OR | DS | В | 1 | ON | ТН | / | <u>,</u> | / . | /2 | Te change of the | °/ . | ./ . | / | /8/ | | | | | | | | | 1 = | | | | | | - | | | Supp. | | | Supplier | , S | | | | MBAN
NUMBER | | NAME | + | YEAR | | LONG. | ELEV. | J | F | M F | M | J | J | A | \$ I | 0 1 | 1 D | 12,0 | 12 | š/ d | */ | ¥ /2 | #/¥ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | £ / 6 | NUMBER | | CROOKED CREK | 44444444444 | 1944
1945
1946
1947
1948
1950
1951
1952
1953
1954
1955
1955 | 61 52N
61 52N
61 52N
61 52N
61 52N
61 52N
61 52N
61 52N
61 52N | 158 15W
158 15W
158 15W
158 15W
158 15W
158 15W
158 15W
158 15W
158 15W
158 15W | | 33555555555555 | 3555555555 | 3 :
5 : | 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 355555555 | 5555555555 | 555555555 | 555555555 | 5 !
5 !
5 ! | 5 | | | | | | | | | 26518
26518
26518
26518
26518
26518
26518
26518
26518
26518
26518
26518
26518 | | CROOKED CREK | C00F | 1969
1970
1971
1972
1973 | 61 52N
61 52N
61 52N
61 52N
61 52N
61 52N | 158 15W
158 15W
158 15W
158 15W
158 15W | 130
130
130
130
130
130 | | | | | | | | | | | | | 09 | 12
06
12
10
12 | | | | | | | CURRY- | | 1941
1942
1943
1944
1945
1946
1947 | 62 37N
62 37N
62 37N
62 37N
62 37N
62 37N
62 37N
62 37N | 150 02W
150 02W
150 02W
150 02W
150 02W
150 02W | 556
556
556
556
556
556
556 | 5 | 511 | 5 5 5 5 5 5 5 5 | 1.5 | 5 | 5 | 5 !
5 ! | 5 5 5 5 5 | 5 5 | | | | | | | | | | | | DAHL CREEK | A | 1967
1968 | 66 56N | | 270
270 | 4 | 4 | 3 3 | 4 | 4 4 | 4 | 4 | 4 | 4 | 4 | | | | | | | | | | | DAVIS | AAF
AAF
AAF
AAF
AFB
AFB | 1942
1943
1944
1945
1948
1947
1948
1949
1950 | 51 53N
51 53N
51 53N
51 53N
51 53N
51 53N
51 53N | 176 39W
176 39W
176 39W
176 39W | 217
217
217
24
14
15
15 | 1 1 1 1 | 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : | 1 1 1 1 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 | 1 1 | 1 1 1 1 | 1 1 1 1 1 1 | | | 62
62
62
62
62
55 | 62
62
62
62
62
55 | | 01
01
10
09
12
11 | | | 25701
25701
25701
25701
25701
25701
25701
25701
25701 | | DEADHORSE | SAHR
FSS
FSS
FSS
FSS
FSS
FSS | 1969
1970
1971
1972
1973
1974
1975 | 70 12N
70 12N
70 12N
70 12N | 148 27µ
148 27µ
148 27µ
148 27µ
148 27µ
148 28µ
148 28µ
148 28µ | 47
50
50
50
50
83
83 | 1
6
5
6
1 | 1 1
1 1
6 6
6 6
6 6
1 1 | 1
6
6
6 | 1
6
6
6
1 | 1 6 6 6 1 1 | 1
5
6
6 | 1 1 6 6 6 6 6 6 6 6 1 1 1 | 6
6
6
6 | 6
6
1 | 1
6
6
6
1
1 | | | | | | | | | | | DEERING | 4 4 4 4 4 4 | 1936
1937
1938
1939
1940
1941
1942
1943 | 66 04N
66 04N
66 04N
66 04N
66 04N | 162 45W | 15
15
15
15
15
15
15 | 3 3 5 5 | 3 3 3 5 5 5 3 3 3 | 3 3 5 | 3 5 3 | 3 3 3 5 3 3 | 3 :
5 :
3 : | 3 3
3 3
5 5
3 3
3 3 | 3 5 3 | 3 | 3 5 | | | | | | | | | | |
DIETRICH | SAHR | 1974
1975
1976 | 57 41N | 149 44W
149 44W | 1488
1489
1489 | 1 6 | 1 1 | | | | | 1 1 | | 1
1
6 | 6 | | | | | | | | | | | DILL INGHAM | SAUR
SAUR | | | 158 27H
158 27H | 38
38 | 4 | 4 | 4 | 4 | | | 4 | 4 | 4 | 4 | 04
03 | | 04
03 | | | | | | 25513
26513 | | DILL INGHAM | 00000000000000000000000000000000000000 | 1952
1953
1954
1958
1958
1958
1959
1960
1961
1963
1963
1964
1965
1966
1967 | 59 03N
59 59 59 59 59 59 59 59 59 59 | 158 27W
158 27W
158 27W
158 27W | 30000000000000000000000000000000000000 | 5 55555555555 | 5555555555 | 3555555555 | 533455555555 | 53355555555555 | 53 54 55 55 55 55 55 55 55 55 55 55 55 55 | 3545555555 | 5 3 5 4 5 5 5 5 5 5 5 5 5 | 53445555555555 | 5 35555555555 | | | | | | | | | 25513
25513
25513
25513
25513
25513
25513
25513
25513
25513
25513
25513
25513
25513
25513
25513
25513 | | DILLINGHAM | FSS
FSS | 1966
1967
1968
1969 | 59 03N
59 03N
59 03N
59 03N | 158 31W | 86 | 5 5
5 5 | 5
5 | 5 | 5 5
5 5 | | 5 5 5 6 | 5
5
6 | 5
5
6 | 5 | 5
5
6 | | - | | | | | | | 25512
25512
25512
25512 | NUMBER OF MONTHS IN YEAR WITH | | | | | | | HOL | | | | | | | | | тн | ı | /3 | ر
پ / | /
~/ | Te Le J | /
.æ/ | /
&/. | /
3. 5 / | HBAN
NUMBER | |--------------|--|--|--|--|--|---|---|---|-------------------------|-------------------|----------------------|---------------------|----------------------|-----------------------|----------------------------|-----------------------|--|--|--|---------|--|----------|--------------------|---| | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | | | 24
1 A | | | | | | | N C | , | S. S | | | | 1 2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/ | | | HBAN
NUMBER | | DILLINGHAM | F55
F55
F55
F55
F55
F55 | 1970
1971
1972
1973
1974
1975
1976 | 59 03N
59 03N
59 03N
59 03N
59 03N
59 03N | 158 31H
158 31H
158 31H
158 31H | 85
86
86
86
86
86 | 6 6 6 6 6 6 | 6 6 | 6 6
6 6
6 6
6 6 | 6 6 | 6 6 6 | 6 6 | 5
6 | 6 6 6 | 6
6 | | 6
6 | | | / | | | | | 25512
25612
25512
25512
25512
25512
25512 | | DOLLY VARDEN | CG
CG | 1974
1975
1976 | 60 48N
60 48N
60 48N | 151 38H | 108
108
109 | 3 | 3 | 3 3
3 3
3 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 : | 3 | | | 01
09
12 | | | | | | | DRIFT RIVER | SAHR | 1968 | 60 35N | 152 094 | 35 | | 1 | 3 3 | 3 | 3 | | | | | | 1 | | | | | | | | | | DRIFTWOOD BY | AFS
AFS
AFS
AFS
AFS | 1959
1960
1961
1962
1963
1964 | 53 59N
53 59N
53 59N
53 59N
53 59N
53 59N | 166 514
166 514
166 514 | 1277
1277
1277
1277
1277
1277 | 55555 | 5 5 5 5 | 5 5
5 5
5 5 | 5 5 5 | 5 | 5 | 5 | 5 | 5 | 5 !
5 ! | 5
5
5
5
5 | | | | | | | | 25515
25515
25516
25515
25515
25515 | | DRIFTWOOD BY | AFS
AFS
AFS
AFS
AFS | 1964
1965
1966
1967
1968
1969 | 53 58N
53 58N
53 58N
53 58N
53 58N
53 58N | 166 51W
166 51W
166 51W | 1298
1298
1298
1298
1298
1298 | 5 | 5 5 5 5 5 | 5
5
5
5
5
5
5
5
5
5
5 | . 5 | 5 | 5 | 5 5 5 5 5 | 5 | 5
5
5
5 | 5 | 5 5 5 5 | | | | | | | | 25515
25515
25515
25515
25515
25515 | | DUTCH HARBOR | <u> </u> | 1915
1916
1918
1918
1920
1921
1922
1925
1926
1926
1927
1933
1933
1933
1934
1939
1939
1939
1939 | 22 500 100 100 100 100 100 100 100 100 100 | 106 324 1 20 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 47
47
47
47
47
47
47
47
47
47
47
47
47
4 | 3 3 3 | 3 3 3 3 6 4 5 5 | 333333645111 | 3 3 3 5 4 5 1 | 13 | 3 3 3 3 6 4 5 | 3 3 3 3 6 4 5 | 3 3 3 3 6 5 5 | 3
3
3
6
5 | 3
3
3
3
5
5 | 3333335551 | 07 | 01111111111111111111111111111111111111 | 01
12
12
12
12
12
12
12
12
12
12
12
12
12 | | | | |
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616
25616 | | DUTCH HARBOR | | 1955
1956
1960
1962
1963
1964
1965
1967
1968
1969
1971
1972
1973
1974 | 53 630 630 630 630 630 630 630 630 630 63 | 166 324
166 324 | 22
22
23
13
13
13
13
13
13
13
13
13
13
13
13
13 | 5 | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5 5 5 3 5 3 3 3 3 5 5 5 | 5 55 3533 33555 3 | 5 55 35343 35555 3 5 | 5555 3533 35555 3 5 | 55555 5553 35555 3 5 | 55555 3333 335555 | 55555 3343 335553 | 55333343 335553 | | | | | | | | 256614
256614
256614
256614
256614
256614
256614
256614
256614
256614
256614
256614
256614
256614
256614
256614
256614 | | DUTCH HARBOR | NS
NS | 1933
1934 | | 166 32W
166 32W | 26
26 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | | 25611
25611 | | DUTCH HARBOR | NS
NS
NS
NS | 1939
1940
1941
1942
1943
1944 | | 166 32W | 26
26
26
26
26
26 | 1 | 1 1 | 1 1
1 1
1 1
1 1 | 1 1 | 1
1
1
1 | 1 | 1 1 1 1 1 1 | 1 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 1 1 1 1 1 | | | | | | | | 25611
25611
25611
25611
25611
25611 | | ALASKA | | | | | | | | | | | | | | | | | | | N | JMBE | R OF | MON. | гнѕ | IN Y | EAR W | IITH | |--------------|--
--|--|---|---|--|-----------------------|---|-----------------------|---|---|-------------------------|---------------------------------------|-----------------|-------------------------------------|----------------------------|--|-----|--|--|--|-------------|--|---|-------|---| | | | | | | | | | | | | | RD | | | | | Н | /. | /s , | / * | /2 | / See | /_3 | / 2 | 125 | / § / | | NAME | TYPE | YEAR | LAT | . | LONG. | ELEV. | | | | | | ıs
J∣. | | | | | 0 | 100 | 7. " () () () () () () () () () (| To Maria | A STATE OF THE STA | Tre Andrews | | (a () () () () () () () () () | | WBAN
NUMBER | | DUTCH HARBOR | NS
NS
NS | 1945
1946
1947 | 53 5
53 5
53 5 | 3N 1 | 66 32H
66 32H
66 32H | 26
26
26 | 1 1 1 | 1 | 1 1 | 1 | 1 1 | + | 1 1 | 1 1 | 1 | 1 1 | 1 | | | | | | | | | 25611
25611
25611 | | DUTCH HARBOR | NS
NS
NS | 1952
1953
1954 | 53 5
53 5
53 5 | 4N 1 | 66 32W
66 32W | 15
15
10 | | 1 | 1 | 1 | 1 | 1 1 1 | | | 1 | 1 1 | | | | 0 | 1 | 1 | D
11 | 0 | | 25611
25611
25611 | | DUTCH HARBOR | AFS
AFS
AFS | 1950
1951
1952 | 53 5
53 5
53 5 | 4N 1 | 66 324
66 324
66 324 | 23
23
23 | 1 1 | 1 | 1 | | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 1 | | | 5
12
09 | 2 12 | 2 | | | | 25620
25620
25620 | | EAGLE | 984
984
984 | 1899
1900
1901 | 54 4
54 4
54 4 | 5N 1 | 41 12H
41 12H
41 12H | 821
821
821 | | | | | | | | | | | | |
05
12
12 | 05
12
05 | : | 12
12 | | | | 26422
26422
26422 | | EAGLE | $\begin{array}{c} \mathbf{T} & $ | 1909
1910
1911
1912
1913
1914
1918
1920
1922
1928
1928
1928
1928
1928
1931
1933
1934
1935
1936
1939
1944
1948
1949
1949
1951
1955
1956
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959 | 5 4 4 4 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 | 7. | 41 124 144 144 144 144 144 144 144 144 1 | 834
834
834
834
834
834
834
834
834
834 | 33333555 565566555555 | 333 3333555 55555555555555 | 333 33333555 55555555 | 3 | 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 | 3 33333355 1553 5555555 | OO 0000000 ************************** | 333355 155 | 333 3 333355 5535555555555 5 | 333 3 333355 5535555555555 | 3333 B BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB | | 05
12
12
12
12
12
12
12
12
12
12
12
12
12 | 05 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | | | 26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422
26422 | | EAGLE | a aaaaa | 1952
1963
1963
1964
1965
1974
1975
1976 | 64 47
64 47
64 47
64 47
64 47
64 47 | N 14
N 14
N 14
N 14
N 14 | 1 12W
1 12W
1 12W
1 12W
1 12W | 821
821
840
840
840
840
840 | 5 | 4 | | 5 5 | 4 | 44 | 4 | 5 4 4 4 | 4 | 4 4 | 4 | | | | 02
12
11 | | | | | 26422
26422
26422
26422
26422
26422
26422
26422 | | EGAVIK | А | 1938 | 64 02 | N 16 | D 55W | 15 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 | | | | | | | | | | | | | _ _ | | EIELSON | 94F
94F
94F
94F
94F
94F
94F
94F
94F
94F | 1944
1945
1946
1947
1948
1949
1950
1851
1952
1953
1954
1955
1956 | 64 39
64 39
64 39
64 39
64 39
64 39
64 39
64 39
64 39
64 39 | N 14
14
14
14
14
14
14
14
14
14
14
14
14
1 | 7 04H
7 04H
7 04H
7 04H
7 04H
7 04H
7 04H
7 04H
7 04H | | 1 1 1 1 1 1 1 1 1 1 1 | 1 | 1 | 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 | 6
1
1
1
1
1
1 | 1 1 1 1 1 1 1 1 1 1 1 1 | - 1 | | | 51
56
54
62
62
12
12
12
12 | 52
56
03
62
62
62
12
03 | | 10
12
12
12
12
11
11
11 | | | 26407
26407
26407
26407
26407
26407
26407
26407
26407
26407
26407
26407
26407
26407 | | AL | ASI | KA | | | | | | | | | | | | | | 1 | | R Of | | THS IN | | | | |--------------|--|--|--|--|---|---|---|------------------------------------|---|---|--|---|--|--------------------------------|---|---|---------------------------------------|---------------
--|--|--|----------------|--| | | | | | | | HOU. | | | | | | | | | Ή | /2 | / * | | | ?
/u_&/ | /
\$\frac{2}{3} | ``\$\
``\$\ | , s | | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | | | i | | | | R I
A S | | | D | 27 1 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | CAPPOORON. | The Programme of Pr | 2 / 25 / 24 / 34 / 34 / 34 / 34 / 34 / 34 / 34 | Land Company | | HBAN
NUMBER | | EIELSON | AFB
AFB | 1957
1958 | 64 39N
64 39N | 147 04H
147 04H | 539
539 | 1 | 1 | 1 1 | 1 | 1 | 1 | | 1 1 | | 1 1 | | i | 5 | | 12
12 | | | 26407
26407
26407 | | E IEL SOM | AFB | 1959
1960
1961
1962
1963
1964
1966
1966
1969
1970
1972
1973
1974
1975 | 64 36 4 41 | 147 04W 147 05W | 558
558
558
568
568
569
569
569
569
569
569
569
569 | 111111111111111111111111111111111111111 | 111111111111111111111111111111111111111 | | 1 | 111111111111111111111111111111111111111 | 1 | 1 | 11 11 11 11 11 11 11 11 11 11 11 11 11 | 1 | 1 | | 0 1 1 1 1 0 0 | 5 2 2 2 2 2 2 | | 07
05
12
12
12
12
12
12
12
12
12
12
12
12
12 | | | 26407
26407
26407
26407
26407
26407
26407
26407
26407
26407
26407
26407
26407
26407
26407
26407
26407
26407
26407
26407
26407
26407
26407
26407 | | EKLUTNA LAKE | CBBP
CBBP
CBBP
CBBP
CBBP
CBBP
CBBP
CBBP | 1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1970
1971
1972
1974 | 51 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 149 094
149 094 | 880
880
880
880
880
880
880
880
880
880 | | | | | | | | | | | | | | | | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | | | | ELDRED ROCK | 000000000000000000000000000000000000000 | 1939
1940
1941
1943
1944
1946
1947
1950
1951
1953
1954
1955
1959
1950
1961
1962
1963
1963
1966
1967
1969
1969
1969
1969 | 58 580 N N N N N N N N N N N N N N N N N N N | 195 194
139 134
135 134 | 54
54
54
54
54
54
54
54 | 445555555555555555555555555555555555555 | 35 | 35 1111114445555555555555555555555 | 35 111111144455555555555555555555 | 111111444455555555555555555555555555555 | 35 1111114445555555555555555555555555555 | \$ xxxxx4445555555555555555555555555 | 35 111111444655555555555555555555555 | 111114455555555555555555555555 | 551111111445555555555555555555555555555 | | 3 | 022 | | | | | 25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318
25318 | | ELFIN COVE | A | 1974
1975
1976 | 58 12h
58 12h
64 40h | 135 40H
136 40H | 20
20
30 | 5 | 5 | 5 | 5 ! | 5 5 | | 5 | 5 | 5 | 5 5 5 5 5 3 3 | | | | | | | | | | | A | 1938
1939 | 54 401
54 401 | 162 06W | 30
30 | | 3 | 3 | 3 | 3 3 | 3 | | 3 | | 3 3 | | | | | | | | 35.55 | | ELMENDORF | ARF
AAF | 1941 | 61 15N | 149 48H | | | 1 | 1 | 1 | 1 1 | 1 1 | 1 | 1 | 1 | 1 1 | | | 25 | 56
56 | | 59 | | 26401
26401 | #### RECORDS INDEX OF PHORETIC BY STOTION NOME | | | | RE | CORDS | INDE | ΞX | F |) L | P. | Н | A | BI | Ē. | Γ] | C | В | ' S | TATI | ON I | NAME | Ξ | | | | |--------------|--|--|--
--|---|-----------------------|---|---|---|---|---|---|---|---|---|-------|--|--|--|--|--|--|--------------|--| | A | LAS | KA | | | | | | | | | | | | | | | N | UMBER | OF | MONT | HS I | N YE | AR W | [TH | | | | | | | | но | URŁ | Υ. | REC | OR | :08 | ₿ | / H | ON | TH | | / | , | , | _ | | | / | | | | | | | | | | 1 - | 2 | 4 8 | 985 | P | ER | DA | Y | | á | \$ / | / <u>\$</u> }/ | | | 4.5°/ | \$ 1 m | \$ \$ | S HBAN | | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | J | F | n r | A M | J | J | A | s |) N | ם | S. S. | | | See A | To T | / 4/ (6) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4 | | | NUMBER | | ELHENDORF | 995
995
995
995
995
995
995
995
995
995 | 1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953 | 61 150
61 150
61 150
61 150
61 150
61 150
61 150
61 150
61 150
61 150 | 149 48µ
149 48µ
149 48µ
149 48µ
149 48µ
149 48µ
149 48µ
149 48µ | 192
192
192
192
192
192
192
192
192 | 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 | 1
1
1
1
1
1 | 1 1 1 1 1 1 1 1 1 | 1 | 1 1 1 1 1 1 1 1 1 | | | 62
62
62
62
62
62
12 | 51
62
62
62
62
62
62
12 | | 10
09
12
11
12
11
12
12
12
12 | | | 26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401 | | EL MENDORF | | 1958
1957
1959
1950
1960
1961
1962
1963
1964
1965
1967
1969
1970
1971
1972
1973
1974
1976 | 61 156
61 156
61 156
61 157
61 157 | 149 48LL
149 48LL | 258
258
258
258
258
176
176
176
176
176
176
176
176
176
176 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 111111111111111111111111111111111111111 | | | 08
12
12
12
12
12
12
12
12 | | | 09
12
08
10
12
11
07
11
12
12
12
12 | | | 26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401 | | ELMENDBRF 2 | AFB
AFB
AFB | 1953
1954
1955
1956 | 61 15N
61 15N
61 15N
61 15N | 149 48µ
149 48µ | 206
206
206
206 | 1 1 1 | 1 | | 1 1 | 1 | 1 | 1 1 | 1 1 | | 1 1 1 | | | 03
12
12
04 | | | 01
05 | | | 26452
26452
26452
26452 | | EMMONAK | SAWR
SAWR | 1968
1969 | 62 46N | | 8 | 3 | 3 : | 3 3 | , | | | | | | 3 | | | | | | | | | | | EXCURSION IN | A | 1943
1944 | 58 25N
58 25N | | 25
25 | 5 | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | | | | | | | | | | | FAIRBANKS | SEE | TELSO | N AFB | ľ | | | | | | | | | | | | i | | | | | | | | 26407 | | FAIRBANKS | SEE | ADD A | 9 8 | | ľ | | ļ | | H | | | 1 | | | | | | | | | | | | 26403 | | FAIRBANKS | FAA
FAA | 1962
1963 | 64 51N
64 51N | 147 47µ
147 47µ | 432
432 | 5 | 5 5 | 5 5 | 5 | 5 | | | 5 5 | 5 | 5 | | | | | | | | | | | FAIRBANKS | 55-6-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 1923
1924
1925
1926
1927
1927
1930
1931
1932
1933
1934
1936
1937
1938
1940
1841 | 64 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 147 43W
147 43W
147 43W
147 43W
147 43W
147 43W
147 43W
147 43W
147 43W | 500
500
500
500
500
454
454
454
484
484
484
484
484
484 | 44440000 | 4444333567 | 444433355 | 544443335 | 544443335 | 5 4 4 4 4 3 3 3 | 4 4 4 4 3 3 3 3 5 5 | 4 4 4 3 3 | 5444433356 | 554444333557 | 05 | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | 04
12
12
12
12
12
12
12
12
12
12
12 | | 04
12
12
12
12
12
12
12
12
12
12 | | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | | 26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411 | | | AFB
AFB
AFB
AFB | 1949
1950
1951
1952
1953 | 61
61 | 151
151
151
151
151 | 1 149 | 9 48µ
9 48µ
9 48µ | 192
192 | | 1 1
1 1
1 1 | 1 1 | 1 1 1 | 1 | 1] | 1 1 | 1 | 1 1 1 | 1 | 1 | | <u> </u> | 62
62
12
12 | 62
12
12
03 | | 12 | | | 26401
26401
26401
26401
26401 | | |------------------------|--------------------------------------|--|--|--|--|--|--|-------------|---------------------------------------|---|---|---|---|---|---|-------------|---|---|----------------|----------------------|--|--|--|--|--|---|---|--| | ELMENDORF | | 1956
1957
1958
1959
1961
1963
1965
1965
1965
1966
1967
1969
1971
1972
1973
1974 | 61
61
61
61
61
61
61
61
61
61
61 | 15A
15A
15A
15A
15A
15A
15A
15A
15A
15A | 149
149
149
149
149
149
149
149
149
149 | | 258
176
176 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 111111111111111111111111111111111111111 | 111111111111111111111111111111111111111 | 1 | 1 | 1 | 111111111111111111111111111111111111111 | | 111111111111111111111111111111111111111 | 1 | | | 08
12
12
12
12
12
12
03 | | | 09
12
08
10
11
12
12
12
12
12
12 | | | 26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401
26401 | | | ELMENDBRF 2 | AFB
AFB
AFB | 1953
1954
1955
1956 | | | 149 | 484
484 | 206
206
206
206 | 1 1 1 | 1 | | 1 | 1 | | 1 | 1 1 | | 1 | 1 1 1 | | | 03
12
12
04 | | | 01
05 | | | 26452
26452
26452
26452 | | | EIMONAK | SAUR
SAUR | 1968
1969 | | 46N
46N | | | 8 | 3 | 3 | 3 | 3 | | | | | | | 3 | | | | | | | | | | | | EXCURSION IN | 8 | 1943
1944 | | 25N
25N | | 26H | 25
25 | 5 | 4 | | 4 | 4 | 4 | 4 - | 4 4 | 4 | 4 | 5 | | | | | | | | | | | | FAIRBANKS | i 1 | IELSO | | FB | | İ | | | | | | | 1 | | | | | | | | | | | | | | 26407 | | | FAIRBANKS
FAIRBANKS | SEE | ADD A | | | | | | | | | | | | | Ì | | | | | | | | | | | | 26403 | | | 1 HIKOHNKO | FAA
FAA | 1962 | | 51N
51N | | 47µ
47µ | 432
432 | 5 | 5 | 5 | 5 | 5 | 5 | | 5 | 5 | 5 | 5 | | | | | | | | | | | | FAIRBANKS | | 1923
1924
1925
1926
1927
1929
1930
1931
1933
1934
1935
1936
1937
1938
1939
1940
1841
1842 | 54444444444444444444444444444444444444 | 50N
50N
50N
50N
50N
50N
50N | 147
147
147
147
147
147
147
147
147
147 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 500
500
500
500
500
454
454
484
484
484
484
484
484
484 | 4443335571 | 444,4333557 | 444555567 |
4444333567 | 4 4 4 3 3 3 5 6 7 | 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 544433356 | 644445556 | 554444333567 | 554444333567 | 05
07 | | 04
12
12
12
12
12
12
12
12
12
12
12 | | 04
12
12
12
12
12
12
12
12
12
12
12
12
12 | | 03
12
12
12
12
12
12
12
12
12
12
12
12
12 | | 26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411 | | | FAIRBANKS | ₩80
₩80 | 1942
1943 | | 50N | | 36H | 464
464 | | | | | | İ | 1 | 1 | 1 | 1 | 1 | 05
04 | 05
04 | 05
04 | İ | 05
04 | | 05
04 | | 26411
26411 | | | FAIRBANKS | WBAS
WBAS
WBAS
WBAS
WBAS | 1943
1944
1945
1946
1947
1948
1949
1950
1951 | 64
64
64
64
64
64 | 50N
50N
50N
50N
50N
50N
50N | 147
147
147
147
147
147 | 43H
43H
43H
43H
43H
43H | 442
442
442
442
442
442
442
442
442 | 1 1 1 1 1 1 | 1
1
1 | 1 1 | 1 1 1 1 | 6 1 1 1 1 1 1 1 1 1 1 1 | 1 1 | 1 1 | 1
1
1 | 1
1
1 | | 1 1 1 1 1 | 0e
12
10 | 12
12
12
12 | 06
12
12
12
12
12
12
12 | 06
12
12
12
12
12
12
12 | 08
12
12
12
12
12
12
12 | | 05 | | 26411
26411
26411
26411
26411
26411
26411
26411 | | | FAIRBANKS | HBAS
HBAS
HBAS
HBAS
HBAS | 1951
1952
1953
1954
1955
1956
1957 | 54
54
64
64
64 | 491
492
492
492
492
492
492 | 147
147
147
147
147 | 52H
52H
52H
52H
52H | 443
443
443
440
440
440 | 1 | 1
1
1 | 1 1 1 1 | 1 1 1 1 1 | 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 | | | 04
12
12
12
12
12
12 | 04
12
12
12
12
12 | 02
12
12
04 | | | | 26411
26411
26411
26411
26411
26411
26411 | · | | · | | | | Al | LASK | A | | | | | | | | | | | | | | N | | OF | HONTH | | | | |-------------|--|--|--|--|--|---|---|---|---|---|---|----------------------------------|---|--|--|-------|---|--|---|----------------|--
---| | | | | | | | HOU | | | | | | 3Y
R D | | ITH | / | /
 | / <u>*</u> | See | TA LE | | | \s\ \s\ \\ | | NAME | TYPE Y | EAR | LAT. | LONG. | ELEV. | | | | | | | | | N D | \2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | Se Summer | | | \$\\ \$ | | NUMBER | | FAIRBANKS | HBAS 11 | 959
959
961
963
964
965
9667
9667
968
971
972
973
974
976 | 54 49N
54 49N
54 49N
54 49N
54 49N
64 49N
54 49N
54 49N
54 49N
54 49N
54 49N
54 49N
54 49N
54 49N
54 49N | 147 524
147 524 | 440
440
440
440
440
440
440
440
440
455
455 | 1 | 1 | 1 | 1 | 1 | 1 | | 111111111111111111111111111111111111111 | 1 | | | 12
12
12
12
12
12
12
12
12
12
12
12
12
1 | 12
12
12
12
12
06 | | | | 26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411
26411 | | FAREWELL | CAA 11 CA | 9412
9442
9442
9444
9446
9446
9446
9446
944 | 62 32M
62 32M | 153 54W
153 55W
153 | 1503
1503
1503
1503
1503
1503
1503
1503 | 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 451111111111111111111111111111111111111 | 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 111111111111111111111111111111111111111 | 111111111111111111111111111111111111111 | 5 | ************************* | 111111111111111111111111111111111111111 | 461111111111111111111111555555555555555 | 111 12 | 04 | | 09
12
10
12
12
12
12
12
12
12
10
11
10
11
10
11
10
11
10
11
10
11
10
11
10
11
10
11
10
10 | | | | 26519 | | FIRE ISLAND | CG 11 CG 11 CG 12 | 948
939
9401
9401
9401
9401
9401
9401
9401
940 | 57 16H
57 16N
57 16N | 133 374
133 374
134 374
135 374
136 374
137 374
138 | 50
30
30
30
30
30
30
30
30
30
30
30
30
30 | 35 | 5 75 1114 444 55555555555555555555 | 555 ************************* | 355 | 35 11644444555555555555555 | 395 1111994995555555555555555555 | 45 41114444444555555555555555555 | 45 1-1644445555555555555 | 355 111444446555555555555555555555555555 | | | 09
05
03
12
12
12
12
12
04 | 54 | | | | 25519
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319
25319 | | A | LAS | KA | | | | | | _ | | | | _ | | _ | Ī | | N | IUME | BER | OF | HON | iTH: | 5 I | N Y | YEA | R H | t TH | | |--------------|---|--|--
--|--|---|-------------------------------|-------------------------|---|---|---------------------------------------|------------------------------------|---|---|---------------------------------|----------------------|---|--------------|--|-----|------------|---|------------|-----|---------------|------------|---|---| | | | | | | | ноц | IRL' | Y F | REC | ORI | DS | ВY | н | 0N1 | Ή | , | /5 | / | . / | / 2 | We mode of | P / | ,
,e | / | <u>.</u> /. | /
* æ / | /3/ | / | | | | | | ı | ı | | | | | | | | | | | | ₹/. | | | | | 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / | \$\\
\$ | چي | | | ge [™] /HB | BAN | | NAME | TYPE | YEAR | LAT. | LONG. | | | - | 4 | ┰ | Н | - | - | 4 | + | — | 150 | / | · 63/ | | | | * & Z | 1 | 7 | / | / & | NUM | IBER | | FIVE FINGER | CG
CG
CG
CG
CG | 1970
1971
1972
1973
1974
1975
1976 | 57 16N
57 16N
57 16N
57 16N
57 16N | 133 37W
133 37W
133 37W
133 37W
133 37W
133 37W
133 37W | 30 | 5555555 | 5555555 | 5 5 5 | 5 5 5 5 5 5 | 5 | 555555 | 5 5 5 5 | 5 5 5 | 5l 5 | 5 5 5 | | | | | | | | | | | | 253
253
253
253
253
253
253 | 19
19
19
19
19 | | FIVE MILE CP | SAWR
SAWR | 1975 | | 150 00W
150 00W
150 00W | | 1 | 1 5 | | 1 6 | | | | | 1
1
5 6 | 6 | | | | | | | | | | | | | | | FLAT | | 1931
1932
1933
1934
1935
1937
1939
1940
1941
1943
1944
1945
1946
1948
1949
1949
1949
1951
1951
1951
1954
1954 | 62 27NN | 158 004
158 | 303
303
303
303
303
303
303
303
303
303 | 3 3 3 3 3 3 5 5 6 6 6 6 5 3 3 3 3 3 3 3 | 333 333466665343 333333333333 | | 33556665343 333333333333 | 33 3335566665333 3333333333 | n n n n n n n n n n n n n n n n n n n | 333 33355666665333 333333333333333 | 3333333566665333 3333333333333333333333 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 33 3333456666633333333333333333 | | | | 07
12
12
12
12
12
06 | | | | | | | | 265, 265, 265, 265, 265, 265, 265, 265, | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | | FOREST IS | CG
CG | 1943
1944 | 54 48N
54 48N | 133 32W
133 32W | 1210
1210 | | | | | | | | | | | 02
05 | | | 02
05 | | | | | | | | 2072 | -0 | | FORT GLENN | SEE | CAPE A | FB | | | Ì | 2560 |)2 | | FORT MORROW | 5EE | PORT P | EIDEN | ļ | | 2550 | 94 | | FORT MORROW | AAF
AAF
AAF | 1942
1943
1944
1945 | 56 57N
56 57N
56 57N
56 57N | | 94
94
94
94 | 1 | 1 1 1 1 1 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 1 | | 04
12
12
03 | 0 | 1 | | | | | | | | | 2550
2550
2550
2550 |)4
]4 | | FT RANDALL | SEE | THORNE | ROUGH A | ъ | | | İ | | | i | | | | | | | | | | | | | | | | | 2560 | 3 | | FÖRT YUKON | 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1924
1926
1927
1928
1930
1931
1932
1933
1933
1935
1937
1940
1944
1944
1949
1944
1949
1949
1954
1954 | | 145 18W
145 18W | 410
410
410
410
410
410
410
410
410
410 | 33333 33355 66666665666666 | 6 6 | 33333333355 65656556656 | 3 3 3 3 3 3 5 6 6 6 6 6 6 6 6 6 6 6 6 6 | 3333 3356 66666666666666666666666666666 | 3333 3335 6666666666666666 | 33333 3335 6666666666555 | | 3 3 3 3 3 3 3 3 5 6 6 6 5 6 6 6 6 6 6 6 | 33333 33335 66566666666666 | | 1 | 222222221 46 | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | | | | | | | |
26441
26441
26441
26441
26441
26441
26441
26441
26441
26441
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644
26644 | | | Al | _AS | KA | | | | | | | | | | | | | | | | N | MBER | OF | MONTI | HS IN | | | тн | |--------------|--|--|--|--|---|---|---|---|---|---|---|---|---|---|-------------|---|--|----------|--|----------------|------------------|--|--|-----------|--| | | | | | | | | URL | | | | | | | | ł†H | 1 | /. | /
& , | // | | Service Services | / <u>*</u> / | /
\$7/ | /
3.5% | \si \ | | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | | 1 =
 F 1 | | | | | | | | n li | n | S. S | | Town of the second seco | O A | | | / 400 (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | | HBAN
NUMBER | | FORT YUKON | CAA | 1958 | 66 35N | 145 18W | 425 | 6 | 5 | 6 6 | 5 5 | 5 | Б | 5 | 5 | 5 | 6 | 6 | | | 12 | | | | <u>/ ` `</u> | / | 26413 | | | CAA
FAA
FAA
FAA
A
A
SAWR | | 66 35N
66 35N
66 35N
66 35N
66 35N
66 35N | 145 18H
145 18H
145 18H
145 18H
145 18H | 425
425
425
425
425
425
425 | 6
5
5
5
5
5
5 | 5 5 5 | 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5 5 5 5 5 5 | 655555 | 655555 | 5 5 5 | 65555 | 5 | 6
5
5 | | | | 12
12
12
12
12
12 | | | | | | 26413
26413
26413
26413
26413
26413
26413 | | FORT YUKON | A GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG | 1966
1967
1968
1969
1970
1971
1972
1973
1974
1975 | 66 33N
66 33N
66 33N
66 33N
66 33N
66 33N
66 33N
66 33N | 145 12W
145 12W
145 12W
145 12W
145 12W
145 12W
145 12W
145 12W
145 12W
145 12W | 457
457
457
457
457
457
457
457
457 | 56555555 | 5 5 5 3 5 5 | 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5655553 | 5655553 | 5555553 | 5 5 5 5 5 3 | 5 5 5 5 | 5 5 5 | 5 5 5 5 5 5 | 5 5 5 5 5 5 5 5 5 5 | | | 06
12
12
11
10
11
07 | | | 02 | | | 26413
26413
26413
26413
26413
26413
26413
26413
26413
26413
26413 | | FBR⊤ YUKBN | 4 4 4 4 4 4 | 1968
1969
1970
1971
1972
1973
1974 | 56 34N
66 34N
66 34N
66 34N
66 34N
66 34N | 145 16W
145 16W | 435
435
435
435
435
435
435 | 3 | 3 | | 3 3 3 | 3 | 3 3 | 3 | 3 | 3 | 3 : | 3 3 3 3 | | | | | | | | | | | FRANKLIN BLK | | 1974
1975
1976 | 69 43N
69 43N
69 43N | 148 41H
148 41H
148 41H | 357
357
357 | 1 | | 3
1
1
6 | | 1 | 1 | 1 | | 1 | 1 6 | 1 | | | | | | | | | | | FUNTER BAY | a a a | 1974
1975
1976 | 58 15N
58 15N
58 15N | 134 54W
134 54W
134 54W | 5
5
5 | | 5 | 5 5
5 5 | 5 | 5 | 5 | | 5 | 5 9 | 5 s | 5 | | | | | | | | | | | GAL BRAITHE | SAUR
SAUR
SAUR
SAUR
SAUR | 1971
1974
1975 | 68 29N
68 29N
68 29N
68 29N
68 29N | 149 29W
149 29W
148 28W
149 29W
149 29W | 2665
2665
2665
2665
2665 | | 1 | 1 1 | 3 1 1 | 1 | | 1 | 1 | 1 . | 1 1 1 | 1 | | | | | | | 04
07 | | | | GALENA | CAA
HBAS
HBAS
HBAS
HBAS
HBAS
HBAS | | 64 43N
64 43N
64 43N
64 43N
64 43N
64 43N
64 43N
64 43N | 156 54W
155 54W
156 54W
156 54W
156 54W
156 54W
156 54W
156 54W
156 54W | 130
130
139
139
125
125
125
125 | 1 1 1 1 | 1 1 1 | | 1 1 1 1 1 1 | 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 | 1 1 1 | 1 | 1 1 1 | 1
1
1
1 | | 03 | 02
12
12
12
12
12
12 | | | | | | 26509
26509
26509
26509
26509
26509
26509
26509 | | GALÉNA | AFS
AFS
AFS
AFS | 1941
1942
1943
1944
1945 | 64 43N
64 43N
64 43N
64 43N
64 43N | 156 54H
156 54H
156 54H
156 54H
156 54H | 135
135
136
135
123 | 1 | 5 1 | 1 1
1 1 | 1 | 1 | 1 1 1 | 1 | | 1 : | 1 1 1 | 1 | ļ | | 54
62
62
60 | 55
62
59 | | 04
07 | | |
26501
26501
26501
26501
26501 | | GALENA | AFS
AFS
AFS
AFS
AFS
AFS
AFS | 1953
1954
1955
1956
1957
1958
1959
1960 | 64 43N
64 43N
64 43N
64 43N
64 43N
64 43N | 155 54H
156 54H
156 54H
156 54H
156 54H
156 54H
156 54H
156 54H
156 54H | 125
125
125
126
125
125
125
125 | 1
1
1
1
1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1
1
1 | 1
1
1
1
1 | 1
1
1
1 | 1
1
1
1
1 | 1 1 1 1 1 1 1 1 1 | 1 : 1 : 1 : 1 : 1 : 1 : 1 | 1 1 | 1 | | | 07
12
12
11
12
12
12
12 | | | | | | 26501
26501
26501
26501
26501
26501
26501
26501 | | GALENA | AFS
AFS
AFS
AFS
AFS
AFS
AFS
AFS
AFS
AFS | 1951
1962
1963
1964
1965
1966
1967
1958
1969
1970
1971
1972
1973
1974
1975 | 94 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 125
125
149
149
149
149
149
149
149
149
149 | 1 | 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 | 1 | 1 | 1 | 1 | | | 111111111111111111111111111111111111111 | | | 09
12
12
03 | | | 15 15 15 15 15 15 15 15 15 15 15 15 15 1 | | | 26501
26501
26501
26501
26501
26501
26501
26501
26501
26501
26501
26501
26501
26501
26501
26501 | | GAMBELL | 5A
5A
5A
5A
5A | 1935
1936
1936
1939
1940 | | 171 36W
171 36W
171 36W | 30
30
30
30
30 | | 3 3 | | 3 | 3 | 3 | 3 | 3 | | 3 3 3 | 3 | 09 | 09 | 0.8 | ļ | | | | | 26703
26703
26703
26703
26703 | | AL | ASI | KA | | | | ••• | | | ٠ | | | _ | • | • | _ | | NUM | BER | OF M | IONTH | IS IN | | R WI | | |------------------------|--|--|--|---|--|---|---|---|-------------------------|---------------------------|-------------------------|---|--------------------------|--------------------------|-------------------|---|----------------|---|--|---|-------------------|-------------|----------------|---| | | | | | | | HOU | RL | r R | ECC | RD | 5 | ΒY | но | NT | н | / | ,
, / | ' . <i>!</i> | / æ / | Telela Sentas | / */ | Tellow Park | /**/ | \ \s \\\ | | | | | | | | 1 | = | 24 | 06 | 38 | PE | R D | AY | | | 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | STATE OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COL | \$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | HBAN | | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | ادا | F | A | m | J). | J | 3 5 | 0 | Ŋ | ٥ ؍ | \&_& | 146 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | / æ | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 7/ 2 4 | 7/20 4 | / * | NUMBER | | GAMBELL | 250
200
200
200
200
200
200
200
200
200 | 1947
1948
1949
1950
1951
1952
1953
1954
1955
1955 | 63 51M
63 51M | 171 36W
171 36W | 30
30
30
32
32
32
32
32
32
32
32
32
32
32
32
32 | 1 | 1 | 1 | 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 | 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 | 12 12 12 12 | 12 12 12 12 12 | 12
12
12
12
12
12
12
12
12
12
12
12
12
1 | | 10
12
12
12
12
08 | | | | 26703
26703
26703
26703
26703
26703
26703
26703
26703
26703
26703
26703
26703
26703 | | GAMBELL | SAUR
SAUR
SAUR
SAUR
SAUR | 1965
1957
1968
1969
1970
1971
1972
1973
1974 | 63 46N
63 46N
63 46N
63 46N
63 46N
63 46N
63 46N
63 46N
63 46N
63 46N | 171 45W
171 45W
171 45W
171 45W
171 45W
171 45W
171 45W
171 45W
171 45W
171 45W | 25
25
25
25
25
25
25
25
25
25
25
25
25
2 | 3 3 3 3 3 3 3 3 | | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 3333333 | 3 3 3 3 | 3 3 | 3 3 3 3 3 3 3 3 3 3 3 3 | 33333333 | 333 | 3 3 3 3 3 | | | | , 1 | | | | | | | GILMORE CREK | COOP
COOP | | 64 59N
64 59N | 147 25H
147 25H | 973
973 | | | | | | | | | | | | | 04
04 | 03
04 | 04 | | | | | | GLACIER | COGP | 1974 | 58 27N | 135 53W | 50 | | ı | | | | | | | | | | . | | | | | 02 | - | | | G⊗LOVIN | ~~~~~~~~~~~~~~ |
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1941
1942
1943
1944 | 64 33M
64 33M | 163 01M
163 01M | 20
20
20
20
20
20
20
20
12
12
12
12 | 3333333345566 | 3 3 3 3 3 3 3 4 5 5 6 6 1 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 3 3 3 3 3 3 3 4 5 5 6 6 | 33335555555566 | 3 3 3 3 3 3 3 4 5 5 6 6 | 3 3 3 3 3 3 3 3 3 3 3 3 3 4 5 5 6 6 6 6 6 6 6 | 333333345666 | 3 3 3 3 3 3 3 4 5 6 6 6 | 3456 | 07
12
12 | | 07
12
12
10 | | | | | | 26628
26628
26628
26628
26628
26628
26628
26628
26628
26628
26628
26628
26628
26628
26628
26628 | | GBGD PASTER | A
A
A
A | 1939
1940
1941
1942
1943 | | 144 05W | 2500
2500
2500
2500
2500 | 3 3 5 | | 3 3 | 3 | 3 | 3 5 | 3 3
3 3
5 5 | 3 5 | | 3 3 5 | | | | | | | | | | | GRAVINA | A | 1939 | | 131 49W
131 49W | 40
40 | 4 | 4 | | 5 | 5 | 5 | 5 5 | 5 | 5 | 5 | ļ | | 01 | | | | | | | | GRUBSTAKE GUARD ISLAND | A CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC | 1941
1940
1941
1942
1944
1945
1946
1946
1952
1954
1955
1956
1957
1956
1959
1960
1962
1963
1964
1965 | 55 27 X X X X X X X X X X X X X X X X X X | 131 53W
131 53W | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | 1
1
1
4
5
5 | 5 11114455555555555555 | 354 1111444555555555555555555555 | 54 | 5 11144455555555555555555 | 35 1114445555 | 3 35 111444555555555555555555 | 5 1111444555555555555555 | 35 111144455555555555555 | 11114445555 | | | 02
11
02
04
12
10
05
10 | | | | | | 25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320
25320 | ALASKA NUMBER OF MONTHS IN YEAR WITH | | | | | | | нои | RL | Y R | EC | DRO |)8 | BY | MG | NT | н | / | /
.u./ | /
/ | , | TALE COMPANY | /
.es/ | / 5-/ | ·/ | | |--------------------|---|--|--|---|--|---------------------------------|--|---|---|-----------------------|---|---------------------------------------|---|-----------------|-------------------------|---|----------------|--|---------------|--------------|--|-------|----------------|--| | NAME | TYPE | YEAR | LAT. | LONG. | FI FV. | | | | | | | Ri | | | ln. | | | | Second Second | | (2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/ | | | HBAN
NUMBER | | HAINES | A | 1938 | 59 14N | 135 27W | 15 | $\vdash \dagger$ | + | ┿ | - | 3 | 3 | 3 : | 3 3 | 3 | 3 | | | 7 ~ | | | / - | | / ` | 25323 | | | A
A | 1939
1940 | 59 14N
59 14N | 135 27W
135 27W | 15
15 | | 3 | 3 3 | 3 | | 3 | | 3 | 3 | 3 | | | | | | | | | 25323
26323 | | HAINES | CAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA | 1940
1941
1942
1943
1944
1945
1946
1947
1949
1950
1950
1953 | 59 13N
59 13N
59 13N
59 13N
59 13N | 135 26W
136 26W
135 26W | 257
257
257
257
257
257
257
257
257
257 | 5
1
1
1
1
1
1 | 5 1
1
1
1
1
1
1
1 | 5 6 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 | 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 | 12
12
12
12
12
12
12
12
12
12
12
12
12
1 | | 01
12
12
12
12
12
12
12
12
12
12
12
12
12 | | | | | | 25323
25323
25323
25323
25323
25323
25323
25323
25323
25323
25323
25323
25323
25323 | | HAINES | | 1963
1964
1965
1966
1967
1968
1973
1974
1975 | 50 14N
50 14N
50 14N
50 14N
50 14N
50 14N
50 14N
50 14N
50 14N
50 14N | 135 27W
135 27W
135 27W
136 27W
135 27W
135 26W
135 26W
135 26W
135 26W
135 26W | 70
70
70
60
60
90
31
31
31 | 5555 35 | 5 !
5 !
5 ! | 5 5
3 3 | | 5 5 3 3 5 | 5 5 3 3 5 | 5
5 5 | 5 5 5 5 5 5 5 | 5 55 555 | છ | | | 07
11
12
12 | | | | | | 25323
25323
25323
25323
25323
25323
25232
25232
25232
25232 | | HAPPY VALLEY | SAUR
SAUR
SAUR | 1974
1975
1976 | 69 10N
69 10N
69 10N | 148 50H
148 50H
148 50H | 948
948
948 | | 1 : | 3 3 | 1 | | 1 | 1 1 1 | 1 | | | | | • | | | | | | | | HAYCBCK | A
A | 1940
1941
1942 | 65 12N | 161 09W
161 09W | 500
500
500 | 3 | | 3
3
3 | | | | 3 3 | 3 | 3 | 3 | | | • | | | | | | | | HAYES RIVER | 4 4 4 4 4 | 1971
1972
1973
1974
1976
1976 | 61 59N
61 59N
61 59N
61 59N | 152 05H
152 05H
152 05H
152 05H
152 05H
152 05H | 1000
1000
1000
1000
1000 | 5 | 5 5
5 5 | 5 5 5 5 5 5 | 5
5 | 5
5 | 5
5
5 | | 5 5 5 | 5 5 5 | 555 | | | | • | | | | | | | HEAL Y | | 1938
1939
1940
1941
1942
1943
1944
1945 | 63 51N
63 51N
63 51N
63 51N
63 51N | 148 58H
148 58H
148 58H
148 58H
148 58H
148 58H
148 58H | 1350
1350
1360
1350
1350
1350
1350 | 5
6
8 | 3 3
5 6
6 6
8 6 | 3 3
3 3
5 5
6 6
5 6 | 3
5
6
6 | 5 6 6 6 | 3
6 | 3 5
6 6
6 6 | 6 6 6 | 3 7 4 6 6 | 7466 | | | 07
D1 | | | | | | 25447
26447
26447
25447
25447
26447
26447
26447 | | HEALY | SAWR | 1959 | İ | 148 57W | 1273 | | | 5 | 5 | 5 | 5 | 5 | | | | . | | | | | D1 | | İ | | | HEALY
HOG RIVER | SAHR | 1976 | Į | 149 01W | 1475 | | 3 : | | 3 | | | | | 5 | 5 | ļ | | | | | | | İ | | | HOLTZ BAY | AAF | 1943 | į | 173 10E | 45 | | 1 | | | | | , , | 1 | | | | | 53 | 53 | | | | | 45704 | | HOLY CROSS | C C C C C C | 1940
1941
1942
1943
1944
1945 | 62 10N
62 10N
62 10N
62 10N | | 150
150
150
150
150
150 | 3 3 3 3 | 3 : | 3 3
3 3
3 3
3 3 | 3 3 3 3 | 3 | 3 | 3 3 3 3 3 3 3 3 3 3 3 | 1 3 | 3 3 3 | 3 | | | | | | | | | 26521
26521
26521
26521
26521
26521 | | HOMER | A A A CCCCCAAAAAAAAAAAAAAAAAAAAAAAAAAA | 1939
1940
1941
1942
1944
1944
1946
1946
1946
1952
1953
1955
1956
1956
1960
1960 | 000 000 000 000 000 000 000 000 000 00 | 151 30W
151 30W | 95
55
55
55
55
73
73
73
73
73
73
73
73
73
73
73
73
73 | 3 5 | 3 3
5 5
6 6 | 3 3 3 3 3 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 | 3 | 5 | 355611111111111111111111111111111111111 | | 5 6 | 5 6 | 33561111111111111111111 | 08
12
12
12 | 12
12
07 | | | | | | | 25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507 | | А | LAS | KA | | | | | - | | | | | _ | _ | • | | | ٠. | | | ER. | OF | MON' | -
1HS | I | N YE | AR | WI | тн | |-------------|---|--|--|--|--|---|---|---|---------------|---------------------------|---|---|---|--|---|---|-------|----------|-------
--|--|-----------------|---|------------------|------------------|-------|-----|--| | | | | | | | но | URL | Υ | RE(| COF | 105 | В. | Y 1 | 101 | I TH | | , | , | 1 | | , | | | | | | | \ <u>\</u> \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | | | | | 1 = | 2 | 4 (| 089 | P | ER | DA | ¥Υ | | | Singe | ي
حد∕ | 2.5 | The state of s | ************************************** | \$ \$ \. | \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \ | \$

 | | 11000 | | HBAN | | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | J | F | M F | H | J | J | A | s | 0 | N C | / | 18 | \$/{ | £ 35/ | | / Å | ^g /2 | | 5 4 | ⁸ /\$ | */ | £ 8 | NUMBER | | ном€я | FAA
FAA
FAA
FAA
FAA
HBAS
HBAS
HBAS
HBAS
HBAS
HSB
HSB | 1968
1969
1970
1971 | 58 38N
59 38N
59 38N
59 38N
59 38N
59 38N
59 38N
59 38N
59 38N
59 38N | 151 30W
151 30H
151 30H
151 30H
151 30H
151 30H
151 30H
151 30H | 73
73
73
73
73
73
73
73
73
69
69
69 | 111111111111111111111111111111111111111 | 1 | 1 1 1 1 1 1 1 1 | | | 1 | 1
1
1
1
1
1
1
1
1 | 1 | 1
1
1
1
1
1
1
1
1
1 | 1 1 1 1 1 1 1 1 1 1 1 | 1 | | | | 12 12 12 12 12 12 12 12 12 12 | | | | | | | | 25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507
25507 | | HBONAH | A | 1941
1942 | 58 07N
58 07N | 135 27H
135 27H | 49
49 | 5 | | | 5 5 | 5 | | | 5 | 5 | 5 5 | • | | | | 09 | | | | ļ | | | | | | HOGPER | SAUR
SAUR
SAUR
SAUR
SAUR
SAUR
SAUR | 1963
1964
1965
1966
1967
1968 | 61 30N
61 30N
61 30N
61 30N
61 30N
61 30N
61 30N
61 30N | 166 06#
166 06#
166 06#
166 06#
166 06# | 80
80
80
80
80
80 | 3 3 3 3 3 3 | 3 3 3 | 4 3 3 3 3 3 3 3 3 3 3 3 | 3 3 3 3 3 3 3 | 3 3 3 3 | 3 3 3 | 3 3 3 3 | 3 3 3 | 3 3 3 3 3 3 3 | 3 | 3 | | | | | | | | | | | | | | HGT SPRINGS | | 1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1940
1942
1943 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 150 40H
150 40H
150 40H
150 40H | 275
275
275
275
275
275
275
275
275
275 | 3 3 3 3 3 3 3 3 | 3 3 3 3 3 3 3 3 3 3 3 | 3 | 3 3 3 3 3 3 3 | 3333333 | 333333333 | 3 3 3 3 3 3 3 3 3 | 3 3 3 3 3 3 3 3 3 3 3 3 | 3 | 3 | | | | | | | | | | | | | | | HUGHES | | 1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950 | 66 66 66 66 66 66 66 66 66 66 66 66 66 | 154 14w
154 14w | 545
545
545
545
545
545
545
545
545
545 | 35555666 | 3 5 5 5 5 6 6 | 3 5 5 5 5 5 6 6 6 6 6 6 | 35555655 | 3555566 | 3555666 | 3555566 | 3555666 | 3 3 5 5 5 5 6 6 6 6 | 3 3 3 3 5 5 5 5 5 6 6 6 6 | | | | | 12
12
12
12
12
12
12
12 | | | | | | | | 26522
26522
26522
26522
26522
26522
26522
26522
26522
26522
26522 | | нивнеѕ | | 1953
1954
1955
1956
1957
1959
1960
1961
1963
1964
1965
1966
1966
1969
1969 | 56 04N
66 04N
66 04N
66 04N
66 04N
66 04N
66 04N
66 04N | 154 14W
154 14W
154 14W
154 14W
154 14W
154 14W
154 14W | 5445
5445
5445
5445
5445
5445
5445
544 | 55555555555555 | 6 555555555555555 | 5 | 5555555555555 | 5 5 5 5 5 5 5 5 5 5 5 5 5 | 55555555555555 | 555555555555 | 555555555555555555555555555555555555555 | 5 | 5 | | | | | | | | | | | | | 26522
26522
26522
26522
26522
26522
26522
26522
26522
26522
26522
26522
26522
26522
26522
26522 | | HULL | SAUR
SAUR | 1969
1970 | | 148 57H
148 57H | | 1 | | | | | | | 1 | 5 6 | 6 | | | | | | | | | | | | | | | HYDABURG | А | 1940 | 55 12N | 132 49H | 25 | | 3 3 | 3 | 3 | 3 | HYDER | A | 1942 | 55 54N | 130 014 | 9 | | | | 5 | 5 | 5 | 5 | 5 5 | 5 | 5 | | | | (| 6 | | | | | | | | | | ICY BAY | SAUR
SAUR | 1956
1957 | | 141 48W
141 48W | 10 | | 4 3
5 5 | | | 3 | 1 | 1 | 1 2 | 1 1 | 1 | | | | | | | | | | | | | | | 1GF 66 | A | 1937 | | 165 04H | 4 | | 3 | | | | 3 | | | | | | | | | | | | | | | | | | | IL IAMNA | 4 4 | 1939
1940
1941
1942 | 58 44N
59 44N | 154 48W
154 49W
154 48W
154 49W | 68
68
68
68 | 4 | 5 5 6 6 6 | 3
6 | 4 | 5 | 3
4
6 | 5 5 | 5 5 | 4 | 5 5 | | 10 | 10 | | 16 | | | | | | | | 25506
25506
25506
25506 | | AL | .AS | KA | | | | | | | | | | | | | | | NU | | OF | | | N YEA | | |--------------|--|--|--|--|--|--------------------------------|---|---|---|---|---|---|---|---|----------------------------|--|----------------------------|--|--|----------------|----------------------------
--|---| | | | | | | | HOU | | | REC | | | | | | Ή | / | /
5 / | /
È/ | Samuel A | Ze Je. | | Lange of the state | | | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | | | · | | | | | | | D | S. S | * \$\f | A CONTRACTOR | | | | | NUMBER | | ILIAMNA | FAA CAA CAA CAA CAA CAA CAA CAA CAA CAA | | | 154 55W
154 65W
154 55W | 10000000000000000000000000000000000000 | 611111111111111111166666555555 | 611111111111111111111111111111111111111 | 6 | 111111111111111111111111111111111111111 | 111111111111111111111111111111111111111 | 111111111111111111111166665555555 | 611111111111111111111111111111111111111 | 611111111111111111111111111111111111111 | | 61111111111111166666555555 | 05
12
12
12 | 04
12
06 | | 07
12
12
11
12
12
12
12
12 | | | | 25506
26506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506
25506 | | IMURUK LAKE | AAF
AAF | 1944
1945 | 65 35N
65 35N | 163 50W
163 50W | 557
557 | | | | 1 | 1 | 1 | 1 | 1 | 1 1 | | | | 5 t | | | | | 26613
26613 | | INDEPENDENCE | A | 1939
1940 | 61 47N
61 47N | | 3600
3600 | 3 | | | | | | | | | 3 | | | | | | | | | | INDIAN MTN | AFS
AFS
AFS
AFS
AFS
AFS
AFS
AFS | 1951
1952
1953
1954
1956
1956
1957
1958
1959
1960
1961 | 66 03N
66 03N
66 03N | 153 45W
153 45W
153 45W
153 45W
153 45W
153 45W
153 45W
153 45W | 1075
1075
1076
1076
1075
1075
1075
1075
1075
1075 | 1
6
1
1
1
7 | 1
6
1
1
1
7 | 1 : | 1 1
5 6
1 1
1 1 | 1
6
1
1
7
7 | 1
6
1
1
7
7 | 6
6
1
1
7
7 | 6
5
1
1
7 | 5 6
1 1
1 1
1 1
7 7 | 6
6
1
1
7
7 | | | 06
12
12
12
12
12
12
03 | | | | |
26535
26535
26535
26535
26535
26535
26535
26535
26535
26535 | | INDIAN MTN | A F F F F F F F F F F F F F F F F F F F | 1961
1962
1963
1964
1965
1966
1967
1970
1971
1972
1973
1974
1975 | 56 00N
56 00N
56 00N
66 00N
66 00N
66 00N
66 00N
66 00N
66 00N
66 00N | 153 424
153 424 | 1075
1075
946
946
946
945
945
946
946
946
946 | 7
1
1
7
6 | 1
7
1
7
7
7
7
7
1
1
7
6
7 | 77171771761167 | 1 1
7 1
7 7
7 1
7 1
5 6 | 7777117161767 | 7
7
7
1
1
7
7
1
6
1
7
6
7 | 7177111771767 | 7 1 7 7 1 1 1 7 6 7 | 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7 1 1 7 7 1 1 5 5 1 7 5 6 | | | 09 | 2 | | 12
10
04
12
05 | | 26535
26535
26535
26535
26535
26535
26535
26535
26535
26535
26535
26535
26535
26535
26535 | | JACK WADE | A
A | 1940
1941
1942 | | 141 35W
141 35W
141 35W | 1800
1800
1800 | | 3 | | 3 3 | 3 | 3 | 5 | 3
5
5 | | 3 | 04
07 | 06 | 00 | 5 | | | | | | JOHNSTONE PT | A | 1975
1976 | 60 29N
50 29N | 146 36W
146 36W | 24
24 | 3 | | | 3 3 | | 3 | | | | 3 3 | | | | | | | | | | URBNUL | HB0
HB0
HB0
HB0
HB0
HB0 | 1917
1918
1919
1920
1921
1922 | 58 18N | | 80
80
80
80 | | | | | | | | | *************************************** | | | 12
12
12
12
12 | 1: | 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | 12
12
12 | | | 25324
25324
25324
25324
25324
25324 | | UABRUL | HB0
HB0
HB0
HB0 | 1922
1923
1924
1925
1926
1927 | 58 18N
58 18N
58 18N
58 18N | 134 25H
134 25H
134 25H
134 25H
134 25H
134 25H | | | | | | | | | | | | | 08
12
12
12
12 | 1: | 12
12
12
13
14 | 12
12
12 | | | 25324
25324
25324
25324
25324
25324
25324 | | Al | LAS | KA | | | | | | | | | | | | | | | NUI | 1BER | OF I | 10NT | S I | N YER | | | |------------|--|--|--|---|---|---|----------------|-----------------------------|-------------------------|---|---|---|---|-------------------|---|--|--|--|--|---|--|--|---|---| | | | | | | | HOL | RL' | Y I | REC | ORE |)\$ | BY | MO | NTH | | / | /
& / | / _/ | / & / | | /
&/ | / 2/ | /
===/ | 8/ | | NOME | l tune | luess | 1 | 1 | 1 | | 1 | _ | 4 (0)
Janes | | _ | | | 1_ | | S. S | | | Same And | Te Je Je | \$ ⁵ /\$ | Topice of the second se | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | WBAN
NUMBER | | JUNEAU | TYPE | 1920 | LAT.
58 18N | LONG. | | J | - | 1 A | M | J | J f | 3 5 | 0 | N C | ' | / 8° 4° | 12 | 12 | 12 | 12 | | F & & | | NUMBER
25324 | | 00.0.0 | HB0
HB0 | 1929
1930
1931 | 58 18N
58 18N | 134 25W | 203
203 | | | | | | - | | | : | 3 | | 12
12
01 | 12
12
01 | 12
12
01 | 12
12
01 | | | | 25324
25324
25324 | | JUNEAU | | 1931
1932
1933
1834
1835
1936
1937
1938
1949
1949
1944
1943 | 58 18M
58 18M
58 18M
58 18M
58
18M
58 18M
58 18M
58 18M
58 18M | 134 24W
134 24W
134 24W
134 24W
134 24W
134 24W
134 24W
134 24W | 132
132
132
132
132
132
132
132
132 | 3
5
5
6 | 3 3 3 3 3 3 3 | 3 3 3 3 3 3 3 5 5 5 1 1 1 | 3 3 3 3 3 5 5 6 6 1 1 1 | 3333556711 | 3 3 3 5 5 | 3 3 3 3 3 3 3 3 5 5 5 6 6 6 6 1 1 | 3
3
3
5
6
6 | 3 : | 5 | 12
12
13
06 | 11
12
12
12
12
12
12
12
12
12
12
12
12 | 11
12
12
12
12
12
12
12
12
12
12
12
12
06 | 11
12
12
13
13
13
13
13
13
13
13
13
13
13
13
13 | 11
12
12
12
12
12
12
12
12
12
12
12
12
1 | | | | 25324
25324
25324
25324
25324
25324
25324
25324
25324
25324
25324
25324 | | JUNEAU | ###################################### | 1944
1945
1946
1947
1948
1950
1951
1952
1953
1954
1957
1959
1960
1961
1963
1964
1964
1966 | 58 8 20 20 20 20 20 20 20 20 20 20 20 20 20 | 134 35M
134 35M | 22 22 22 22 22 22 22 22 22 22 22 22 22 | 1 | | | | 111110000011111111111111111111111111111 | 111111111111111111111111111111111111111 | 1 | 111111111111111111111111111111111111111 | | | 06
12
09 | | | 90 11 11 11 11 11 11 11 11 11 11 11 11 11 | 05 12 12 12 12 12 12 12 12 12 12 12 12 12 | 03
12
12
12
12
12
12
12
12
12
12
12
12
12 | | | 25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309
25309 | | KAD RIVER | SAWR | | 70 0 4 N | 1 | 75 | | | 1 | | - | 1 | 1 1 | | | | | | | : | | | | | | | KAKE | | 1971
1972
1973
1974
1975
1976 | 56 58N | 133 57W | 30
30
30
30
30 | 3
3
5 | 3 i 3 | 3 3 | 3 3 5 5 | 3 5 | 3 :
5 : | 3 3 | 5 | 3 3
5 5 | 3 5 5 | | | | | | | | | | | KAL SKAG | 444 | 1939
1940
1941
1942
1943 | 61 27N
61 27N
61 27N
61 27N
61 27N | 160 49H
160 49H
160 49H | 90
90
90
90 | 5 | 5 5 5 | 5 6 | 5 6 | 5
5 | 5 9 | 5 5
5 5
5 5 | 5 | 5 5
5 5
5 6 | 5 | | | | | | | | | | | KAL TAG | | 1931
1932
1933
1934
1935
1936
1938
1938
1940
1941
1942
1943
1944 | 64 20N | 158 45W
158 45W
158 45W
158 45W
158 45W
158 45W
158 45W
158 45W
158 45W
158 45X | 93
93
93
93
93
93
93
93
93
93 | 3 3 3 3 3 3 3 5 5 | 333333 3345555 | 3 3 3 3 3 3 3 5 5 5 5 5 5 5 | 3 3 3 3 3 5 5 | 3 3 3 3 3 3 3 5 5 | 3 3 3 3 3 3 3 3 5 5 5 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 | 3 3 3 3 3 3 4 5 5 5 | 3333333334555 | 3 | | | | | | | | | | | KAL TAG | AAF
AAF | 1943
1944
1945 | 64 18N
64 18N
64 18N | | 158
158
158 | | 1 1 | | | 1 | | 1 1 1 | | 1 1 | | | נם | 52
52
59 | 54
59 | | | | | 26502
26502
26502 | | KANAGA BAY | N5
N5 | 1934
1942 | 51 43N
51 46N | | 50
50 | 1 | 1 | | 1 | 1 | 1 | | | | | | | | | | | | | 25711
25711 | | қанақанақ | A | 1931 | 59 DIN | 158 31W | 85 | | | | | | | 3 | 3 | 3 3 | 3 | | ŀ | | | | | | | | | | | | RE | CORDS | IND | ΕX | A | L | ΡI | HF | 18 | βE | T | IC | • | ВΥ | ST | ATI | ON | NAM | Ε | | | | | |-------------|-------------------|----------------------|----------------------------|-------------------------------|-------------------|---------------------|---------------------------------------|-----------------------|-------------|---|-------------------|-----------------------|---|--------------------------|-----|--|----------------|----------------|------------|----------------|----------------|------------|-----|----------|-------------------------| | A | LAS | KA | | | | | | | | | | | | | | | NU | MBE F | OF | MON | THS | IN | YEA | iR W | I TH | | | | | | | | ноц | JRL | Y R | £C | ORD | IS I | BY | MOI | NTH | | /. | /
/ | / | / & | / g 4 | 9/ | <u>*</u> / | s:/ | /
&&. | /8/ | | NAME | TYPE | YEAR | LAT. | LONG. | FIFV. | | | 24
داه | | | | | | u lo | . , | Sept. S. | | | Supplied A | Temonopolica (| (5.6)
\$.6) | 30 | | | MBAN
NUMBE | | KANAKANAK | A | 1932 | 59 01N | 158 31W | 85 | 3 | - 1 | | 1 I | | - | ┿ | } → | 3 : | | ~ | <u>/ ` `</u> | <u>/ `</u> | | $\frac{1}{1}$ | 7 | 7 | | | NUMBE | | | 8 8 | 1933
1934
1935 | 59 01N
59 01N
59 01N | 158 31W | 85 | 3 | 3 : | 3 3 | 3 | 3 | 12 1 7 | 3 3 3 3 3 3 3 3 3 3 3 | 3 | 3 3 3 3 3 | 3 | | | | | | | | | | | | | A | 1936
1937 | 59 01N
58 01N | 158 31W
158 31W | 65
85 | 3 | 3 3 3 | 3 3 | 3 | 3 | 3 3 | 3 3 | 3 3 3 3 3 3 | 3 3 | 3 | | | | | } | ŀ | | | | | | | AAA | 1938
1939
1940 | 59 01N
59 01N
59 01N | 158 31H | 85
85
85 | 3 | 3 3 | 3 3 3 3 3 3 3 3 3 3 3 | 3 | 333333 | 3 3
3 3 | 3 3 | 3 | 3 3
3 3 | 3 | | | | | | | | | | | | KANAKANAK | A
SA | 1941 | 59 DIN | 158 31W
158 31W | 85
99 | 3 4 | 4 | 4 4 | ٩ | 4 | 4 | | | | | ne i | O.E. | ne. | | | | | | | | | KANATAK | A | 1939 | 57 34N | 156 02H | 23 | | | 3 | 3 | | | | | | | 05 | 05
04 | 05 | | | | | | | | | | A | 1940
1941 | 57 34N
57 34N | 156 02W
156 02W | 23
23 | | | | | İ | | | | | | 10 | 08
08 | 10
08 | | | | | | | | | KAS IL OF | A | 1936
1939 | 60 19N | 151 17⊯
151 17⊮ | 60
60 | 3 | 3: | 3 3 | | | 3 | 1 | 3 | 3 3 | 3 | | | | | | | | | | | | | A | 1940 | | 151 17₩
151 16₩ | 60
60 | | 3 : | | | 3 | | 3 | 3 | 3 3 | | ŀ | | | | | | | | | | | KAVIK RIVER | SAHR
SAHR | | | 146 56H
146 56H | 617
617 | 2 | 1 : | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | | | | | | | | | | | | | KAVIK | SAUR
SAUR | | | 146 56H
146 56H | 617
617 | | 6 6 | | 6 | 6 | Б | | | | | | | | | | | | | | | | KENAI | A | 1939
1940 | 60 34N
60 34N | 151 15H
151 15H | 85
85 | 3 | | 3 3 | 3 | | | | | 3 3 | • | | | | | | | | | | 26523
26523 | | | A
CAA
CAA | 1941
1942
1943 | 60 34N
60 34N
60 34N | | 85
91
91 | | 6 6 | 6 | 6 | 6 | 5 6
1 1 | 6 | 6 | 6 6
1 1 | | | 01 | 01
12 | | | | | | | 26523
26523 | | | CAA | 1944
1945 | 60 34N | 151 15H
151 15H | 91
91 | 1 1 | 1 1 | 1 | 1 | 1 : | 1 1
1 1 | 1 | 1 | 1 1 | | | 04 | 12
12 | | | | | | | 26523
26523
26523 | | | CAA
CAA | 1946
1947
1948 | 60 34N
60 34N
60 34N | 151 15H | 81
91
91 | 1 | 1 1 1 | 1 | | 1 | 1 1
1 1
1 1 | 11 | 1 | 1 1
1 1
1 1 | | | | 12
12
12 | | İ | | | | | 26523
26523
26523 | | | CAA
CAA
CAR | 1949
1950 | 60 34N | 151 15W
151 15W | 91
91 | 1 | 1 1 | 1 | 1 1 | 1 : | 1 1 | 1 | 1 | 1 1
1 1 | | | | 12
12 | | | | | Ì | | 26523
26523 | | | CAA | 1951
1952
1953 | 60 34N
60 34N
60 34N | 151 15H
151 15H
151 15H | 91
91
91 | 1 | 1 1 | 1 | 1 1 | 1 : | 1 1 1 | 1 | 1 | 1 1
1 1
1 1 | | | | 12
12 | | | - |
| | | 26523
26523
26523 | | | CAA
CAA
CAA | 1954
1955
1956 | | 151 15H
151 15H
151 15H | 91
91
91 | 1 | 1 1 1 | 1 | 1 | 1 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | | 12
11 | | | | ļ | | | 26523
26523 | | | CAA | 1957
1958 | 60 34N | 151 15W | 91
91 | 1 | 1 1 | 1 1 | 1 | 1 1
1 1
1 1 | 1 1 | 1 1 | 1 | 1 1
1 1
1 1 | 1 | | Ì | 12
12 | | | | | | | 26523
26523
26523 | | | FAA
FAA | 1959
1960
1981 | 60 34N | 151 15H
151 15H
151 15H | 91
91
91 | 1 1 1 | 1 1
1 1
1 1 | 1 | 1 | 1 1
1 1 | 1 | 1 1 | 1 | 1 1
1 1
1 1 | | | | 12
12
12 | | | | | | | 26523
26523
26523 | | | FAA
FAA
FAA | 1962 | 50 34N | 151 15H
151 15H | 91
91 | 4.1 | | | | | 1 1 | 1 1 | 1 | 1 1
1 1 | | ĺ | | 12
12 | | | | | | | 26523
26523 | | | FAA
FAA | 1964
1965
1966 | | 151 15W
151 15W
151 15W | 91
91
91 | 1 1 1 1 1 1 1 | 1 1
1 1
1 1 | 1 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1 | 1 1
1 1
1 1 | 1 | ł | | 12
12
11 | | | | | ļ | | 26523
26523
26523 | | | FAA
FAA | 1967
1966 | 60 34N | 151 15W | 106 | 1 | 1 1 | 1 1 | 1 | 1 1 | 1 1 | 1 | 1 | 1 1 | | | | 12
12 | | | | | | | 26523
26523 | | | FAA
FAA | 1969
1970
1971 | 60 34N
60 34N | 151 15W
151 15W
151 15W | 106
106
106 | 1 1 | 1 1
1 1
1 1 | 1 4 1 | 41 | 1 1
1 1
1 2 | 1 1 | 1 1 | 11 | 1 1
1 1
1 1 | 1 | | İ | 11
12
12 | | | | | | ļ | 26523
26523
26523 | | | FAA
FAA
FAA | 1972
1973
1974 | 60 34N | 151 15H
151 15H
151 15H | 106
106
106 | 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 | 1 1 1 1 | 1 | 1 1
1 1
1 1
1 1 | | | | 12 | | | | | | | 26523
26523 | | | FAA
FAA | 1975
1976 | 60 34N | 151 15H
151 15H | 106 | 1 | 1 1
1 1
1 1
1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 1 | | | | 10
11 | | | | | | | 26523
26523
26523 | | KETCHIKAN | SA
SA | 1929
1930 | | 131 39H
131 39H | 16
16 | | | | | | 3 | 3 | 3 | 3 | | | 03 | 03
11 | | | | | | | 25325
25325 | | KETCHIKAN | SA
SA
SA | 1930
1931
1932 | 55 21N | 131 39W | 16
16 | | 3 3 | | 3 | 3 3 | 3 | 3 | 3 | 3 3 | | | D1 | 01
12 | | | | | | | 25325
25325 | | | 5A
5A | 1933
1934 | 55 21N | 131 39W
131 39W
131 39W | 16
16
16 | 3 : | 3 3
3 3 | 3 | 3 | 3 3
3 3
3 3 | 3 | 31 | 3 3 | 3 3
3 3
3 3 | | | 12 | 12
12
12 | | | | | | | 25325
25325
25325 | | | SA
SA
SA | 1935
1936
1937 | 55 21N | 131 39W
131 39W
131 39W | 16
16
16 | 3 3 3 | 3 3 | 3 | 3 | 3 3 | 3 3 3 | 3 | 3 : | 3 3 | | | 12 | 12
12 | | 12 | | | | | 25325
25325 | | i | SA
SA | 1938
1939 | 55 21N | 131 39W | 15
15 | 3 3 | 3 3 | 3 3 4 | 3 | 3 3
3 3
4 4 | 304 | 33353 | 3 3 3 5 3 | 3 3
3 3 | ١, | 06 | 12
12 | 12
12
12 | | 12 | ĺ | | | | 25325
25325
25325 | | | HB0
HB0 | 1940
1941
1942 | 55 21N | 131 39H
131 39H
131 39H | 15
15
15 | 3 3 3 3 4 5 5 5 5 5 | 3 3 3 3 3 3 4 5 5 5 | 5 | 5 | 4 4
5 5 | 5 | 4 | 5 | 4
5
5
5
5 | | 12 | 12 | 12 | | | | | | Ì | 25325
25325 | | | ₩80
₩80 | 1943
1944 | 55 21N
55 21N | 131 39H
131 39H | 15
15 | 5 1 | 6 | 6 | 6 | 3 | 5
1 | 5 1 1 1 1 1 | 5 1 1 1 1 1 | 1 1 | | 12 | 12
12
12 | 12
12
12 | | | | | | | 25325
25325
25325 | | | µ80
µ80
µ80 | 1945
1946
1947 | 55 21N | 131 39H
131 39H | 15
15
15 | 1 1 | | 1
1
1
1 | 1 1 | 1 1
1 1
1 1 | 1
1
1 | 1 | 1 1 | 1 1
1 1
1 1 | | 12 | 12
12
12 | 12
12
12 | | | | | | | 25325
25326 | | | SAHR | 1948 | 55 20N
55 20N | 131 34H
131 34H | 0 | 5 5 | ۶ ا د | 5 | 51: | 5 i 5 | 5555 | 5 5 5 | 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5 | | | | 01 | | | | | | | 25325
25325
25325 | | | | 1950
1951 | | 131 34H
131 34H | 0 | 5 5 | 5 | 5 | 5 | 5 5
5 5 | 5 | 5 | 5 5 | 5 5 | | | | | | | | | | | 25325
25325 | | | | | | | | | | | | | | | | | | - | · | | | | • | ٠ | , | • | | | Al | LAS | KA | | | | | | | | | | | | | | | NŲ | MBER | OF | | | N YEA | | | |--------------|--|--|--|---|--|---------------------|---------------------------------------|---|---|---|---|---|---|---|---|--|----------------------------------
---|---|--|--|--|-----|---| | | | | | | | HOU | | | | | | | | (TH | 1 | /. | /
& / | /
<u>*</u> / | | | /
/ | / &/ | `&/ | \$ | | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | | | | ов
. н | | | | | N C | D . | S. S | | Town of the state | See | To lot of the state stat | 1 2 / Signature 1 Signatur | William Constitution of the th | | NUMBER | | KETCHIKAN | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | 1953
1954
1955
1956
1958
1959
1960
1981
1963
1963
1964
1965
1967
1968 | 55 200
55 200
56 | 131 344
131 344 | 000000000000000000000000000000000000000 | 6555545555555555 | 5555545555555555 | | 555555555555555 | 5 | 55555555555555 | 5565555555555 | 5555555555555555 | 555555555555555555555555555555555555555 | 55555555555555 | | | | | | | | | 25325
25325
25325
25325
25325
25325
25325
25325
25325
25325
25325
25325
25325
25325
25325
25325
25325
25325
25325
25325 | | KETCHIKAN | FSS
FSS
FSS
FSS
FSS
FSS
FSS
FSS | 1969
1970
1971
1972
1973
1974
1975
1976 | 55 20N
55 20N
55 20N
55 20N
55 21N
55 21N | 131 40W
131 40W
131 40W
131 40W | 122
122
122
122
122
96
96 | 5
5 | 5 5
5 5
6 6
1 I | 5
6 | 5 5 6 6 | 5 5 5 5 5 5 5 1 1 1 | 5
6
6
1 | 5 6 1 | 5
5
1 | 6 (
5 (| 1 | | | | | | | | | 25325
25325
25325
25325
25325
25325
25325
25325 | | KETCHIKAN | 83
83
83
83
83 |
1972
1973
1974
1975
1976 | 55 35N
56 35N
55 35N
55 35N
55 35N | 131 30W
131 30W
131 30W | | 5 | 5 5
5 5
5 5 | l 5 | 5 9 | 5 5 5 | 5 | 5 | 5
5 | 5 : | 5 | | | | | | | | | | | KIMZHAN | G G G | 1940
1941
1942
1943 | | | 13
13
13
13 | 5 | 4 4 5 4 | 5 | 5 | 4 5 4 4 | 5 | 5 | 5 | 5 9 | 4 5 4 | | | 06
12
12
06 | | | | | | | | KING ISLAND | e e | 1939
1940 | 64 56N
64 56N | 168 01W | 100
100 | 3 | 3 3 | 3 | 3 : | 3 | | İ | | 3 : | 3 | | | | | | | | | | | KING SALMON | 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1956
1957
1958
1959
1960
1961
1962
1963
1964
1966
1966
1966
1967
1968
1970
1971 | 58 41N
58 41N | 156 394
156 394 | 49
49
49
49
49
47
47
47
47
47
47
47
47
47
46
46
46
46 | 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 | 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 111111111111111111111111111111111111111 | 1 | 111111111111111111111111111111111111111 | 1 | 111111111111111111111111111111111111111 | | | | | 01 | 11
12
11
10
12
12
12
12
12
12
12
12
12
12
12
12
12 | | | 25503
25503
25503
25503
25503
25503
25503
25503
25503
25503
25503
25503
25503
25503
25503
25503
25503
25503
25503
25503
25503 | | KISKA ISLAND | NAAF
NAAF
NAAF | 1942
1943
1944 | 51 58N | 177 33E
177 32E
177 32E | 71
71
71 | | 1 1
1 1 | Ш | 1 : | 1 1 | | | | 1 2 | ۱. | | | | | | | | | 45710
45710
45710 | | KISKA ISLAND | AAF
AAF | 1943
1944
1945 | 51 59N | 177 34E
177 34E
177 34E | 298
298
298 | 1 | 1 1 | 1 | 1 2 | 1 1 | 1 | 1 | 1 | 1 1 | | | | 54
62
60 | 54
62
60 | | | | | 46703
45703
45703 | | KIVALINA | A A | 1942
1943
1944 | 67 45N | 164 42H
164 42W
164 42H | 10
10
10 | 5 | | 5 | 4 3 | 3 | 3 | 3 | | 3 3 | | 02
04 | | 02
12
02 | | | | | | | | KLUKWAN | 0 0 0 | 1939
1940
1941
1942 | 58 24N
59 24N | 135 54µ
135 54µ
135 54µ
135 54µ | 91
91
91
91 | | 4 4 | | 4 | 4 | | | - | 4 | 4 [| | | 11
03 | | | | | | | | KOBUK | A | 1953
1954 | | 156 52H
156 52H | 140
140 | 5 | 5 | | | | 5 | 5 | 5 | 5 5 | 5 | | | | | | | | | | | KODIAK | 26
26
26
26
26
26
26 | 1915
1916
1917
1918
1919
1920
1921 | 57 46N
57 46N
57 46N
57 46N
57 46N | 152 22W
152 22W
152 22W
152 22W
152 22W
152 22W
152 22W | 12
12
12
12
12
12 | | | | | | | = | | | | | 03
12
12
12
12
12 | 08
11
08
12
11 | | | | | | 25509
25509
25509
25509
25509
25509 | | 1 | ALASKA | | | | | | | | | | NUI | | 0F h | | | | R WITH | |----------|--|---|---|---|---|-------------------|-------------------------|------------------------------------|-----------------------|---|--|--|--|----------------------|--|---|--| | | | | | JRLY I | | | | | H | / | /
& / | / <u>*</u> / | The of the state o | Ve Je Je Je | 41/00/3/EP | E/: | WBAN NUMBER | | NAME | TYPE YEA | AR LAT. LONG. | 1
ELEV. J F | l = 2·
Finio | | | | | ln. | S. S | | | | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | WBAN
NUMBER | | KODIAK | NF 192 | | | - ' ' | 1113 | ' | 1 3 | U | 1 | / 3 | 12 | 12 | / | | / • • | | 25509 | | | NF 192
NF 192
NF 192
NF 192
NF 192
NF 193
NF 193
NF 193 | 23 57 46N 152 22L
57 46N 152 22L
55 57 46N 152 22L
66 57 46N 152 22L
77 57 46N 152 22L
88 57 46N 152 22L
98 57 46N 152 22L
98 57 46N 152 22L | 12
12
12
12
12
12
12 | | | | | | | | 12
12
12
12
12
12
12
12 | 12
12
12
12
12
12
12 | | | | | 25509
25509
25509
25509
25509
25509
25509
25509
25509 | | KGDIAK | SA 193
SA
193
SA 193
SA 193
SA 193
SA 193
SA 193
SA 194
SA 194 | 22 57 48N 152 24W
134 57 48N 152 24W
144 57 48N 152 24W
15 57 48N 152 24W
15 57 48N 152 24W
17 57 48N 152 24W
18 57 48N 152 24W
19 57 48N 152 24W
10 57 48N 152 24W | 152
152
152
152
152
152
152
152
152
3
152
3 | 3 | 3 3 3 | 3 3 | 3 3
3 3
4 3 | 3 3
3 3
3 3
3 3 | 3 | 06
12
06 | 06
15
15
15
15
15
15
15
16 | 10
12
12
12
12
12
12
12
12
12 | | Q 5 | | | 25509
25509
25509
25509
25509
25509
25509
25509
25509
25509 | | KODIAK | CAA 194
NF 194
NF 194
NF 194
NF 194 | 2 57 45N 152 31H
3 57 45N 152 31H
4 57 45N 152 31H | 39 1
39 1
39 1 | 1 1 1 | 1 1 1 | 1 1 | 1 1 | 6 5
1 1
1 1
1 1 | 1 | 06 | 06
12
12
12
05 | 06 | | | | | 25509
25509
25509
25509
25509 | | KBDIAK | NAF 194
NAF 194
NAF 194
NAF 194
NAF 194 | 2 57 44N 152 30H
3 57 44N 152 30H
4 57 44N 152 30H | 112 1 | | 1 1 1
1 1 1 | 1 1 1 | 1 1 | 1 1 1 1 1 | 1 | | | 03 | | | | | 25501
25501
25501
25501
25501 | | KODIAK | NAFF 1944
NAFF 1944
NAFF 1944
NAFF 1955
NAFF 1955
NAFF 1955
NAFF 1955
NAFF 1956
NAFF 1966
NAFF 1 | 18 | 112 1 112 1 112 1 112 1 112 1 112 1 112 1 112 1 112 1 112 1 112 1 112 1 112 1 113 1 114 1 115 1 115 1 116 1 116 1 116 1 116 1 116 1 111 1 111 1 111 1 111 1 | 1 | | | | 1 1 | | | | 11 11 12 12 12 12 12 12 12 12 12 12 12 1 | 02
01
05
12
12
12
12
12
12
12 | 09
11
11
12 | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | 12
11
12
12
12
12
12
12
12
12
12
12
12
1 | 25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501
25501 | | KØDIAK | ₩SØ 197
₩SØ 197
₩SØ 197
₩SØ 197 | 4 57 45N 152 30H
5 57 45N 152 30H | 111 1 | 1 1 1 | | 1 1 | 1 1 | 1 1
1 1
1 1
1 1 | 1 | | | 11
12
12
11 | | | 07
01 | | 25501
25501
25501
25501 | | KOGGIUNG | A 193 | 9 59 02N 156 20H | 50 | | | : | 3 3 | 3 3 | 3 | | | | Į | | | | | | KÖKRINES | AAF 194
AAF 194
AAF 194 | 4 64 54N 154 40W
5 64 54N 154 40W | 185 1
185 1 | 1 1 1 | | 1 1 | 1 1 | 1 1 | 1 | | | 56
62
59 | 54
62
59 | | | | 26503
26503
26503
26503 | | KBTZEBUE | SA 193
SA 193
SA 193
SA 193
SA 193
SA 193
SA 193
SA 193
SA 194
SA 194
WBAS 194
WBAS 194 | 1 66 52N 162 38H
3 66 52N 162 38H
6 52N 162 38H
6 65 52N 162 38H
6 65 52N 162 38H
6 65 52N 162 38H
6 65 52N 162 38H
6 65 52N 162 38H
9 65 52N 162 38H
10 65 52N 162 38H
11 65 52N 162 38H
12 66 52N 162 38H
13 66 52N 162 38H
14 66 52N 162 38H
15 65 52N 162 38H
16 65 52N 162 38H
17 65 52N 162 38H
18 65 52N 162 38H
18 65 52N 162 38H | 11 3
11 3
11 3
11 3
11 3
11 3
11 3
11 4
11 3
12 5
12 5
20 6 | 3 3 3 3 3 5 5 5 5 5 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 6 6 6 6 | 3 3 5 5 4 5 6 6 1 | 3 3 3 3 3 3 5 5 5 7 1 1 | 33 3 33 33 35 54 5 5 5 5 1 1 1 1 1 | 3 3 3 3 3 5 6 5 5 1 1 | 05
12
12
12 | 05
12
12
12 | 06
06
12
12
12 | | | | | 26616
26616
26616
26616
26616
26616
26616
26616
26616
26616
26616
26616
26616
26616
26616 | | AL | ASK | A | | | | | | | | | | | | | | NUI | | OF M | | | YEAR | | |--------------|----------------------|----------------------|----------------------------|-------------------------------|-------------------|----------|-------------|-------------------|-------------------|------------------|--------|-------|-------|-------------------|-------------------|---------------------------------------|----------------|----------------|----------------|---|--|-------------------------| | | | | | | | HOL | | | | | | | | | н | /2/ | | * / | 14.P. E. E. E. | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | NAME | TYPE 1 | YEAR | LAT. | LONG. | FLEV. | | : =
F (P | - | | ٠. | | | | | ما | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | E 2 3 | ?/2
*** | | HBAN
NUMBER | | KOTZEBUE | | 1946 | 66 52N | | 50 | \sqcup | + | 1 1 | 1 | 1 | 1 | | 1 1 | 1 1 | 1 | 12 | 12 | | - 1 | | / | 26616 | | | WBAS : | 1947
1948 | 66 52N | 162 38H
162 38H | 20
20 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 : | 1 1 | 1 1 | 1 | 12 | 12
12
12 | | | | | 26616
26616
26616 | | | WBAS : | 1949
1950
1951 | 56 52N
56 52N
66 52N | 162 384 | 20
20 | 0 | 0 0 0 | | 000 | 0 0 | 000 | 0 0 | ם ום | o lc | | | 12 | ŀ | | | | 26616
26616 | | | WBAS . | 1952
1953 | 66 52N
66 52N | 162 38W | 50
50 | 0 | 8 | | | 0 | | 이 | | 미미 | 0 | | 12 | | | | | 26616
26516 | | | HBAS
HBAS
HBAS | 1955 | 66 52N
66 52N
66 52N | 162 38₩ | 20
20
20 | 1 | | 1 1
1 1
1 1 | וו | 1 | 1 1 1 | 1 : | 1 : | 1 1 | lıl | | 12
12
12 | İ | | | | 26616
26616
26616 | | | HBAS
HBAS | 1957
1958 | 66 52N
66 52N | 162 38⊬ | 20
20 | 1 | 1 | 1 1 | 1 1 | 1 | 1 | 1 | 1 : | 1 1 | 1 | | 12 | | | | | 26616
26616 | | | WBAS . | 1960 | 66 52N | 162 38H | 20
20 | 1 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1 | 1 : | 1 1
1 1
1 1 | 1 | | 12
12 | | | | | 26616
26616
26616 | | | HBAS
HBAS | | 65 52N | 162 38W
162 38W
162 38W | 50
50
50 | 1 1 | 1 | 1 | 1 1 | 1 1 | 1 | 1 : | 1 : | | 1 | | 12 | | | | | 26616
26616 | | | HBAS | 1964 | 66 52N
66 52N | 162 38W | 20
20
20 | 1 1 1 | 1 | 1 1 | 1 1 | 1 | 1 1 | 1 | 1 : | 1 1
1 1
1 1 | ı | | 12
12
12 | | | | | 26616
26616
26616 | | | ₩BAS
₩BAS
₩BAS | 1967 | 66 52N
66 52N
66 52N | 152 38H | 20
20 | 1 | 1 | 1 1 | 1 1 | 1 | 1 | 1 | 1 : | 1 1 | 1 | | 12
12 | | | | | 25515
26516 | | | ₩BAS
₩BAS
₩BAS | 1970 | 66 52N
66 52N
66 52N | 162 38H | 50
50 | 1 1 1 | 1 | 1 1 1 | 1 1 | 1
1
1
1 | 1 1 | 1 | 1 : | 1 1
1 1
1 1 | 1 1 | | 12
12
12 | • | | | | 26616
26616
26616 | | | ₩BAS | 1972
1973 | 66 52N | 152 38W | 20
20 | 1 | 1 | 1 1 | 1 1 | 1 1 | 1 | 1 | 1 | 1 1
1 1 | 1 | | 12
12 | | | D1
D8 | | 26516
26516 | | | HSO | 1974
1975
1976 | | 162 38W
162 38W
162 38W | 20
20
20 | 1 1 | | 1 2 | 1 1 | 1 | 1 1 1 | 1 | 1 | 1 1
1 1
1 1 | | | 12
12
12 | | | 11
10
12 | | 26616
26616
26616 | | KOUGAROK | AAF | 1945
1946 | 64 54N | 154 40H
154 40H | 185
185 | 1 | | - | 5 6 | iΙ | | - [| 1 | | | | 51
59 | 51
59 | | | | 26614
26614 | | KGYUK | A | 1941
1942
1943 | 64 57N
64 57N
54 57N | | 10
10
65 | 5 | 5 | | 5 5 | 5 | 5 | 5 | 5 | 5 5 | | | | | | | | | | KOYUK | AAF | 1943
1944
1945 | 64 52N
64 52N
64 52N | 161 06W | 41
41
41 | 1 | | 1 | 1 1
1 1 | 1 | | 1 1 1 | 1 1 1 | 1 1 | | | 54
52
59 | 53
58 | | | | 26602
26602
26602 | | KULIK LAKE | SAHR | 1958 | 58 59N | 155 D7W | 400 | | | 1 | | | 5 | 4 | 4 | | | | | | | | | | | LADD | AAB | 1940
1941
1942 | 64 51N
64 51N
64 51N | 147 35W | 464
464
464 | 1 | 6 | | 1 1 | 1 | | 1 | | 1 1 | 1 | 12 | 51
52
62 | 58
62 | | | | 26403
26403
26403 | | | AAB | 1943 | 64 51N | 147 35₩ | 464
464 | | 1 1 | 1 | 1 1
1 1 | 1 | 1
1 | 1 | 1 | 1 1 | 1 | 15 | 62
62 | 62
61 | | 11
12 | | 26403
26403 | | | AAB | 1945
1946
1947 | 64 51N
64 51N
54 51N | 147 35W | 454
454
464 | 1 1 | 1 | 1 . | 1 1
1 1
1 1 | 1 | 1 | 1 | 1 | | 1 1 1 | 12 | 60
62
59 | 60
62
59 | | 11
10
12 | | 26403
26403
26403 | | | AAB
AAB | 1948
1949 | 64 51N
64 51N | 147 35W
147 35W | 464
464 | 1 | 1 | 1 | 1 1
1 1 | 1 | 1 | 1 | 1 | 1 2 | 1 1 | | 62
62 | 62
61 | | 10
12 | | 26403
26403 | | | AAB | 1950
1951
1952 | 64 51N
64 51N
64 51N | 147 35W | 464 | 1 | 1 1 1 | 1 1 | 1 1
1 1
1 1 | 1 1 1 | 1 | 1 | 1 | | 1 1 | | 52
12
12 | 60
11
12 | | 12
12
12 | | 26403
26403
26403 | | | AAB
AAB | 1953
1954 | 64 51N
64 51N | 147 35W
147 35W | 454
454 | 1 | 1 | 1 | 1 1 | 1 11 | 1 1 | 1 | 1 | 1 : | 1 1 | | 12
12 | őŽ | | 12 | | 26403
26403 | | | AAB | 1955 | 64 51N | | 464 | 1 1 1 | | 1 | 1 1
1 1
1 1 | | 1 | | 1 | 1 : | 1 1 | | 11
11
12 | | | 12
09 | | 26403
26403
26403 | | | BAB | 1957
1958
1959 | 64 51N
64 51N
64 51N | 147 35W | 484
484 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 : | | | 12
12 | | | 01
12 | | 26403
26403 | | LAWS GUANDA | | 1950 | | 147 35W | | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | | | 10 | 07 | | 10 | | 26403 | | LAKE CHANDAL | COOP | 1963
1964
1965 | 67 30N
67 30N
67 30N | 148 30H | 1900 | | | | | | | | | | | | | 12
09 | | | | | | LAKE CHANDAL | A | 1968
1969 | 67 30N | 148 304 | 1825 | | | 4 | 4 4 | | 4 | 4 | 4 | | 4 4 | 1 1 | | | | | | | | | | 1970
1971
1972 | 67 30N | 148 30W
148 30W
148 30W | 1625 | | | 5 | 5 5 | 5 | | | 5 | 5 ! | | | | | | | | | | | A | 1973
1974 | 67 301 | 148 30H | 1825 | 5 | 5 | | 5 5
5 5 | 5 | 5 | | 5 | 5 ! | 5 5 | 1 | ' | | | | | | | | A | 1975
1976 | 67 30N | 148 30H | | | | 5 | 5 5 | 5 | 5 | 5 | 5 | 5 9 | 5 | | | | | | | | | LAKE CLARK | A | 1970
1971 | 60 171 | 154 17h | 271 | 5 | 5 | 5 | | 5 | | 6 | 5 | 5 | 5 5 | | | | | | | | | LAKE HOOD | L AWR | 1968
1969
1970 | 61 11M | 149 57h
149 57h
149 57h | 148 | 6 | | 6 | 5 5
5 6 | 6 6 | 5 | | 6 | 6 | 5 6
5 6 | | | | | | | | | | L AHR | 1971
1972 | 61 11M | 149 574
149
574
149 574 | 148 | 3 | 3 | 3 | 3 3 | 3 3 | 3 | 3 | 3 | 3 3 | 3 3
3 3
3 3 | 1 1 | | | | | | | | | LAME | 1974 | 61 111 | 149 574
149 574 | 148 | 3 | 3 | 3 | 3 3 | | 3 | 3 | - 1 | 3 : | 3 3 | 1 | | | | | | | | | ; 1 | | ı | 1 | ł | 1 | 1 1 | ' | i | 1 | 1 | . ! | 1 | ' | 1 | 1 1 | 1 | • | | | 4 J | 1 | NUMBER OF MONTHS IN YEAR WITH | A) | ם ו | S | ĸ | n | |----|-----|---|---|---| | H | | | n | н | | | | | | | | | н | JUR | LY | RE | co | RD | SE | ŧΥ | но | NTI | н | | /&
 | / | / | / 2 | To September 1 |
]/ | ./ | * | | / 8° / | |--------------|---|--|--|---|--|---|------------|-------------------|-----------------------------|---|---|-----------|-----------------------|---|------------------------|-------------------------|-----------------|------------|--------|----------|--|---------------------------------------|----------------|-----------------|----|----|--|---| | NAME | TYPE | YEAR | ا ا | at. | Lano | lerev | ١, | | | | | | PEF | | | 1 | | | | /
~ : | | O O O O O O O O O O O O O O O O O O O | | | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | WBAN
NUMBER | | LAKE HOBD | LAME | <u> </u> | ∔— | 11A | | ELEV. | ┿. | + | | Н | + | 3 | 3 | ↓ | Н | | 3 | <u>/</u> ° | 7 | F 65 | / % | <u> </u> | | */ * | 7 | ~~ | */ * | NUMBER | | LAKE LOUISE | A | 1972
1973 | 62 | 18N
18N | 146 35 | 2450 | | 5 | | 5 | 5 | - | 5 5 | t | 11 | | 3 | | | | | | | | | | | | | LEVEL ISLAND | A
A
A | 1973
1974
1975
1976 | 56
56 | 26N
26N
26N
26N | 133 064
133 064 | 30 | 5 | | 5 | 5 | 5 | 5 5 | 5 5 | 5 | 5 | | 5 | | | | | | | | | | | | | LINCOLN ROCK | 999999999999999999999999999999999999999 | 1942
1943
1944
1945
1946
1948
1951
1952
1953
1954
1955
1956
1955
1966
1956
1966
1966
1966 | 55655656565656666665566555555555555555 | 03N
03N
03N
000
03N
000
03N
000
03N
000
03N
000
03N
000
03N
000
03N
000
03N
000
03N
000
03N
000
03N
000
03N
000
000 | 132 46L
132 46L | 25
25
25
25
25
25
25
25
25
25
25
25
25
2 | 1 | | 111444444455555555555555555 | 1114444444555555555555 | 51114444445555555555555 | 5 5 5 5 5 | 511144444455555555555 | 5 | 7116444444555555555555 | 11144444444555555555555 | 5 5 5 | | | | 06
12
12
12
12
12
12
12
12
12 | | | | | | | 25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326
25326 | | LITTLE PORT | A
A | 1940
1941
1942 | 56
56
56 | 23N | 134 39H
134 39H
134 39H | 14
14
14 | 3 | 3 | 3 | 3 : | 3 3 | | 3 | 3 | | 3 : | | | į | | | | | | | | | 25327
25327
25327 | | L 1VENGOOD | 4444444444 | 1931
1932
1933
1934
1935
1936
1936
1938
1940
1941
1942
1946 | 65 :
65 :
65 :
65 : | 35N
35N
35N
35N
35N
35N
35N
35N
35N
35N | 148 29W
148 29W | 550
550
550
550
550
550
550
550
550
550 |
3333333333 | 3 3 3 3 3 3 3 3 | 3 3 3 3 3 3 3 3 3 | 3 | 3 | 3333333 | 3 3 3 3 3 3 | 3333333 | 3 3 3 3 3 3 3 3 3 3 | 3 : | 3 3 3 3 3 3 3 3 | | | | | | | | | | | 26428
26428
26428
26428
26428
26428
26428
26428
26428
26428
26428
26428
26428 | | L IVENGOOD | COOP | 1963
1964
1965
1966
1974
1975
1976 | 65 3 | 32N
32N | 148 29W | 580
580
580
580 | 5 | 56 | 6 | 6 6 6 | 5 6 | 6 | 6 | 6 | 6 6 | 5 6 | 3 | | | | | 07
12
12
02 | | | | | | | | LUCKY SHOT | A | 1939
1940 | | | 149 25W
149 25W | 3300
3300 | 3 | 3 | 3 | 3 3 | | 3 | 3 | 3 | 3 | 3 3 | 3 | | | | İ | | | | | | | | | MACLEGD HARB | A | 1972
1973
1974
1975
1976 | 59 5
59 5 | 126
186
186
186
186
186 | 147 45µ
147 45µ | 45
45
45
45
45 | | 3 | 3 : | 3 3
3 3
3 3
3 3 | 3 3 | 3 | 3 | 3 | 3
3 : | 3 3 3 3 3 3 | 3 3 | | | | | | | | | | | | | MCCARTHY | SAUR
SAUR
SAUR | 1956
1957
1958
1959
1960 | 61 2
61 2
61 2 | 6N
6N | 142 55H
142 55H
142 55H
142 55H
142 55H | 1600
1600
1600
1600 | 3 3 3 | 3 | | 3 3 3 | 3 | 3 | 3 | 3 | 3 3 | | 3 | | | | | | | | | | | | | MCCARTHY | SAHR
SAHR
SAHR | | 61 2 | 26N : | 142 55W
142 55W
142 55W | 1600
1600
1600 | 6 | 5
6 | 6 6 | 5 5 | 6 | 6 | 6 | 6 | Б (| 5 6 | ١. | | | | | 07
11 | | | | | | | | MCGRATH | 99999 | 1931
1932
1933
1934
1936
1936
1937
1938
1939 | 62 5
62 5
62 5
62 5
62 5
62 5 | 8N
8N
8N
8N
8N | 155 37H
155 37H
155 37H | 333
333
333
333
333
333
333
333 | 3 3 3 3 3 | 3 : 3 : 3 : 3 : 3 | 3 3 3 3 3 3 3 3 3 | 3 3 3 3 3 3 3 3 3 3 3 3 | 3 3 3 3 3 | 3 | 3 3 3 3 | 3 | 3 3 3 3 3 3 3 | 3 | | 10 | 10 | , | 10 | | | | | | | 26510
26510
26510
26510
26510
26510
26510
26510
26510 | | AL | _ASI | KA | | | | | | _ | • | • | _ | | | - | _ | - | NU | MBER | OF I | MONTH | ıs II | N YEA | R WI | тн | |--------------|------------------|------------------------------|---|--|----------------------|-------------|------|-------------------|------------------|-------------|---------|-------|-----|-------------------|-----|--|----------------|----------------|----------------|------------------|----------|---------|----------|----------------------------------| | | | | | | | HOL | JR L | Y F | REC | ORI | os | BY | H | TNE | н | / | /
. , | / / | 2 | To I'm Same | / * | // | 1 | 8 | | | | | | | | 1 | = | 24 | . 0 | 88 | PE | R | DA | Y | | S. S | ₹ /
\$\ | | September 1 | Service Services | S/s | | | MBAN . | | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | 4 | F | 1 A | H | ١ | J | A S | 5 C | N | D | \e_{\varepsilon_{\varepsiloo_{\varepsilon_{\ | \$\#\. | 3/8 | / ² | 12.4 | ÿ/\$\$ ¢ | ¥ \$ \$ | 9 8 | NUMBER | | MCGRATH | A
CAA
WBAS | 1940
1941
1942 | 62 58N
62 58N
62 58N | | 333
328
341 | 3
6
6 | | 6) E | 6 6 | 6 | 6 | 6 | ıi. | 3 6 | 6 | 12
12
03 | 12
12
12 | 12
12
12 | | | | | | 26510
26510
26510 | | | ₩BAS | 1943
1944 | 52 58N | 155 37₩
155 37₩ | 341
341 | 1 | 1 | 1 1 | l 1 | 1 | 1 | 1 | 1 | 1 1 | 1 1 | | 12 | 12 | | | | | | 26510
26510 | | | ₩BAS
₩BAS | 1946 | 62 58N
62 58N | 155 37₩ | 341
341 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | | 12 | 12 | | | | 1 | | 26510
26510
26510 | | | µ8A5 | 1947 | 62 58N
62 58N | 155 37H | 341
341 | 1 | 1 | 1 1 | | | | | - 1 | 1 1 | 1.1 | | 12
12 | 12
12
12 | | | | ł | | 26510
26510 | | | MBAS | 1949
1950
1951 | | 155 37H
155 37H
155 37H | 341
341
341 | 0 0 | 00 | | 9 0 | 0 | 200 | | | | 0 | | | 12 | | | | | | 26510
26510 | | | HBAS | 1952 | 52 58N
52 58N | 155 37₩ | 341
341 | 0 | 000 | 0 0 | | 000 | 000 | 00000 | 0 1 | | 000 | | | 12 | | | | | | 26510
26510 | | | WBA5 | 1954 | 62 58N
62 58N | 155 37H | 341
341 | 1 1 | 11 | 1 1 | 1 1 | 1 | 1 1 1 | 1 | 1 | 1 1 | 1 1 | | | 12 | | | | | | 26510
26510 | | | HBAS | 1956
1957 | 62 5BN | 155 37H | 341
341 | 1 | 1 | i i | 1 1 | 1 | 1 | 1 . | 1 | 1 1 | 1 1 | | | 12 | | | | | | 26510
26510 | | | MBAS | 1958
1959 | | 155 37₩ | 341
341 | 1 | 11 | 1 1 | 1 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 1 | | | 12
12 | | | | | | 26510
26510 | | | µ8A5 | 1960
1961 | 62 58N
62 58N | 155 37₩
155 37₩ | 341
341 | 1 1 | 1 | 1 1 | l 1 | 1 | 1 | 1 | 1 | 1 1 | 1 1 | | | 12
12 | | | | | | 26510
26510 | | | MBAS | 1962
1963 | 62 58N | 155 37W
155 37W | 341
341 | 1 | 1] | 1 1 | 1 1 | 1 1 | 1 | 1 | 1 | 1 1 | 1 1 | | | 12 | | | | | | 26510
26510 | | | WBAS | 1964
1965 | 62 58N | 155 37H
155 37H | 341
340 | 1 | 1 | 1 1 | 1 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | | | 12 | | | | ļ | | 26510
26510 | | | ₩BAS | 1956
1957
1958 | 62 58N | 155 37H | 340
340 | 1 1 | 1 | 1 1
1 1
1 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | | | 12
12
12 | | | | | | 26510
26510
26510 | | | ₩BAS | 1969 | 62 58N | 155 37H
155 37H
155 37H | 340
340
340 | 1 1 1 | 1 | 1 1
1 1
1 1 | 1 1 | 1
1
1 | 1 1 1 1 | 1 | 1 | 1 1 1 1 1 1 | 1 | | | 12 | | | | Ì | | 26510
26510 | | | ₩BAS | 1971 | 62 58N | 155 37W | 340
340 | 1 1 | 1 | 1 1 | 1 1 | 1 | 1 | 1 | 1 | i i | 1 | | | 12 | | | | | <u> </u> | 26510
26510 | | | HS0 | 1973
1974 | | 155 37H | 340
340 | 1 | 1 | | 1 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | | | 12 | | İ | | | | 26510
26510 | | | H50
H50 | 1975
1976 | 62 58N
62 58N | 155 37₩ | 340
340 | 1 | 1 | 1 1 | | 1 | 1 | 1 | | 1 1
1 1
1 1 | 1 | | | 12 | | | | | | 26510
26510 | | MCKINLEY PRK | C00P
C00P | | 63 [°] 44N
63 [°] 44N
63 [°] 44N | 148 55H | 1730
1730
1730 | | | | | | | | | | |
 01
12
07 | | | | | | | 26429
26429
26429 | | MCKINLEY PRK | A
A | 1941
1942
1943 | 63 43N
63 43N
63 43N | 148 58W | 5085
5085
5085 | 5 | 5 | | 5 5 | 5 | 5 | | 5 | 5 5 | | | | | | | | | | 26429
26429
26429 | | MCKINLEY PRK | A A A | 1949
1951
1975
1976 | 63 43N
63 39N | 148 584
148 584
148 484
148 484 | 2050 | 5 | 4 | 5 5 | | | 5 | 5 | 5 | ŀ | 5 | | | | | | | | | 26429
26429
26429
26429 | | MANLEY HOT S | A | 1945 | | 150 39W | 325 | | | 1 | | | | | | 6 | 6 | | | | | | | | | 26524 | | | A | 1946
1947 | 65 00N | 150 39W
150 39W | 325
325 | 6 | 6 | 6 6
6 6 | 6
6
6
6 | 6 | 6
6 | 6 | 6 | 6 E | 6 | | | | | | | | | 2652 4
2652 4 | | | A | 1948
1949 | 65 00N | 150 394 | | 6 | 6 | 6 E | 5 6 | [6] | 6 | 6 | 6 | 5 6 | 6 | ٠ | | | | | | | | 26524
26524 | | | A A | 1950
1951
1952 | 65 DON | 150 39H | 325 | 5
5 | 5 | 6 6
6 6 | 5 6
5 6 | 6 | 6 | | 5 | 6 [E | 6 | | | | | | | | | 26524
26524
26524 | | | A | 1953
1954 | 65 00N | 150 39W
150 39W
150 39W | | 6
6 | 6 | 미 | 5 6 | i bi | 티티 | 6 | 6 | 5 6 | 6 | | | | | | | | | 2652 4
26524 | | | A | 1955 | 65 DON | 150 39⊭ | 325 | 6 | | 6 E | 5 6 | 6 | 6 | 6 | 6 | | 6 | | | | | | | | | 25524
26524 | | | A | 1957
1958 | 55 00N
54 59N | | 325
265 | 5 | 5 | 5 9
5 9 | 5 5 | 5 | 5 | 5 | 5 | | | | | | | ŀ | | | | 26524
2652 4 | | MANLEY HOT S | A | 1959 | 64 59N
65 00N | | 265
265 | 5 | 5 | 5 ! | 5 5 | 5 | 5 | 5 | 5 | 5 5 | 5 | | | | | | | | | 26524
26524 | | | A | 1960
1961 | 65 00N
65 00N | 150 39W | 265
265 | 5 | | | 5 5 | | | | 5 | 5 S | 5 | | | | | | | | | 26524
26524 | | | A | 1962
1963 | | 150 39W | 265 | 5 | 5 | 5 9 | 5 5 | 5 | 5 | 5 | 5 | 5 5
5 9 | 5 | | | | | | | | | 26524
26524 | | | A | 1964
1965 | 65 DON | 150 39W
150 39W | 265
265 | 5 | 5 | 5 5 | 5 5 | 5 | 5 | 5 | 5 | 5 5
5 5 | 5 | ' | | | | | | | | 26524
25524 | | | A | 1966 | 65 DON | 150 39H | 265
265
265 | 5 | 5 | 5 5 | 5 5
5 5 | 5 | 5 | 5 | 5 | 5 5
5 5 | 5 | | | | <u>.</u> | | | | | 26524
26524
26524 | | | A | 1956
1969
1970 | 65 00N | 150 39W
150 39W
150 39W | 265 | 5 | | 5 9 | 5 5 | 5 | 5 | 5 | 5 | | 5 | | | | | | | | | 26524
26524 | | | Ä | 1976 | | 150 38H | | | | ľ | | | | | | | 3 | | | | | | | | | 26524 | | MANLEY H SPG | AAF
AAF | 1943
1944 | | 150 38W | | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | | 5 | | | 51
59 | 51
59 | | | | | 26505
26505 | | MANLEY H SPG | AAF
AAF | 1944
1945 | | 150 39H | | 1 | | - | 1 1 | П | 1 | | 1 | | 1 | | | 53
61 | 53
61 | | | | | 26505
26505 | | MARSHALL | A | 1940
1941 | 61 51N | 161 43H | 87 | 5
3 | 3 | 3 3 | 5 5
3 3 | 5
3 | 3 | | 3 | 5 5
3 3 | | | | | | | | | | | | MARY ISLAND | CG | 1942 | | 161 43H | | | | | 3 3 | | | | | 4 | 4 | | | 01 | | | | | | | | (mai latad | " | 1.570 | J 35 00M | 1 | 38 | 1 | 3 | 3 : | ٦] | 3 | 4 | 4 | 1 | 4 | 17 | l | | ١ ،, | 1 | 1 | l | ł | 1 | | ALASKA NUMBER OF MONTHS IN YERR WITH | | _,,, | | | | | HOL | IRL | Y F | RÉC | ORI | os | BY | н | 3N1 | н | | <i>i</i> | / | / | | | | ERR W | | |--------------------------|---|--|--|---|--|---|---------------------------------------|---|---|---|---|---|------------------|---|---|----------------------------|----------|--|---|-------|---------------------------------------|---|-------|---| | | | | | | | | | | | | | R | | | •• | | | | 1 00 / 12 / 12 / 12 / 12 / 12 / 12 / 12 | TA LE | 4 5 / | | | ∕§°
≸ ∕ MBΩN | | NAME | TYPE | YEAR | LAT. | | ELEV. | ادا | F | f A | М | 1 | J | A S | c | N | D | \2.5° | | | */ * | | 3 3 3 3 3 3 3 3 3 3 | # (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | MBAN
NUMBER | | MARY ISLAND
MATANUSKA | CG | 1941 | 55 06N | | | 5 | 5 | 5 | | IJ | - 1 | | 5 9 | 1 | i i | | | 09 | | | | | | | | in indeas | 8 8 8 | 1942
1943
1944
1945 | 61 32N
61 32N
61 32N
61 32N | 149 14H | 166
166
166
166 | 3 | 3 | | | 3 | 3 | 3 3 | 3 3 3 | 3 3 | 3 | | | 09
12
07 | | | | | | 26448
26448
26448
26448 | | MIDDLETAN IS | CAAA
CAAAA
CAAAA
CAAAA
CAAAA
CAAAA
CAAAA
CAAAA
CAAAA
CAAAA | 1942
1943
1944
1945
1946
1948
1948
1950
1951
1952
1953
1954
1955
1956
1956 | 50 50 50 50 50 50 50 50 50 50 50 50 50 5 | 146 194
146 194
146 194
146 194
146 194
146 194 | 45 45 45 45 45 45 45 45 45 45 45 45 45 4 | 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5 1 1 1 1 1 1 1 1 1 | 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 | 1 | 5
1
1
1
1
1
1
1
1
1
1 | 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | 1 | 5
5
1
1 | 02
12
12
12 | 05 | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | | | | | | 25402
25402
25402
25402
25402
25402
25402
25402
25402
25402
25402
25402
25402
25402
25402
25402
25402
25402
25402
25402 | | MIDDLETON IS | AFS
AFS
AFS
AFS | 1959
1960
1961
1962
1963 | 59 27N
59 27N | 146 194
146 194
146 194
146 194
146 194 | 121
121
121
121
121 | 1 1 1 | 7 1
1 1
1 1
1 1 | 1 | 1 1 | 1 | 1 | 1 1
1 1
1 1
1 1 | 1 1 | 1
1
1 | 1
1
1 | | | 12
12
12
06 | | | | -: | | 25403
25403
25403
25403
25403 | | MINCHUMINA | FAA
FAA
FAA
WBAS
WBAS
FAA
FAA | 1941
1943
1944
1943
1944
1946
1947
1950
1951
1952
1953
1954
1955
1956
1963
1963
1963
1964
1965
1963
1963
1964
1965
1965
1965
1965
1965
1965
1965
1965 | 63 53N
63 53N | 152 17W
152 17W
152 17W
152 17W
152 17W
152 17W | 701 701 701 701 701 701 701 701 701 701 | 111111111111111111111111111111111111111 | | 111111111111111111111111111111111111111 | 1 | 111111111111111111111111111111111111111 | | 1 | 1111111111166555 | 1111111111111111666555 6 | 1 1 6 6 6 6 6 5 6 | 10
12
01
12
07 | 04 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 12
04 | | | | | 26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512
26512 | | MOOSE RUN | C00P | 1966
1967
1968
1969 | 61 15N
51 15N | 149 40W
149 40W
149 40W
149 40W | 395
395
395
395 | | | | | | | | | | | | | | 03
08
09
01 | | | | | | | MOSES POINT | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC | 1941
1942
1945
1946
1946
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1959
1960
1961
1962 | 54 42N
42N
42N
42N
42N
42N
42N
42N | 162 03H
162 03H | 16
21
21
21
21
21
21
21
21
21
21
21
21
21 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 | 56 111111111111111111111111111111111111 | 1 | 5 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 | 1 | 1 | 1 | 05 | 03 | 08 12 06 02 12 12 12 12 12 12 12 12 12 12 12 12 12 | 7.700.000.000.000.000.000.000.000.000.0 | | | | | 26620
26620
26620
26620
26620
26620
26620
26620
26620
26620
26620
26620
26620
26620
26620
26620
26620
26620
26620
26620
26620 | | А | 1 | Ω | S | ĸ | ۵ | |---|---|---|-----|----|----------------| | п | | | . 1 | 11 | \blacksquare | NUMBER OF MONTHS IN YEAR WITH | | | | | | | | URL | | | | | | | | ŊŤ | н | / | /
& / | // | | Vale Samuel | /
.&/ | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1. (COM) | \s\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | |-------------|---|--
--|---|--|---|---|---------------------------------|---|---|---|---------------------------|---|--|--|---|--|--|--|--|-------------|--|---|---|---| | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | | 1 =
 F | | | | | | | | мĺ | n | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 2. T. S. | See | See | | 25/00/14
10/00/14 | | | HBAN
NUMBER | | MOSES POINT | FAA
FAA
AC
AC | 1954
1955
1966
1967
1968
1969 | 64 42N
64 42N
64 42N
64 42N
64 42N
64 42N | 162 03H
162 03H
162 03H
162 03H
162 03H | 21
21
21
21
21 | 1
6
6 | 1
5
5
6 | 1 | 1
6 6
6 6 | 1 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 1 6 6 6 5 | 6
6
6 | 6 6 6 | 5
6
5 | 6
6
6 | 6 6 6 6 | | | 12
12
12
12
06 | | | | | | 26620
26620
26620
26620
26620
26620
26620 | | MOSES POINT | AAF
AAF | 1943
1944
1945 | 64 43N
64 43N
64 43N | 162 05W | 21
21
21 | | 1 | 1 : | 1 3 | 1 1
1 1
1 1 | 1
1
1 | 1 | 1 1 3 | 1 | | 1 | | | 57
62
62 | 54
61 | | | | | 26603
26603
26603 | | MT VILLAGE | 5A
5A
5A
5A
5A
5A | 1945
1946
1947
1948
1949
1950 | 62 Q7N | 163 45W
163 45W
163 45W | 44
44
44
44
44 | 3 | 3 | 3 3 | | 3 3 | | | 3 | 3 | 3 | 3 | 11
12
11
11 | | 01
11
12
12
11
05 | | | | | | 26621
26621
26621
26621
26821
26621 | | MT VILLAGE | 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 1950
1951
1952
1953
1954
1956
1957
1958
1959
1960
1961
1962
1963
1964 | 62 07N
62 07N
62 07N
62 07N
62 07N
62 07N
62 07N
62 07N
62 07N
62 07N | 163 43µ
163 43µ
163 43µ
163 43µ
163 43µ
163 43µ
163 43µ
163 43µ
163 43µ
163 43µ | 44
44
44
44
44
44
49
49
49 | 4 4 4 3 3 3 3 3 3 3 3 3 | 4 4 4 3 3 3 3 3 3 3 3 | 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 | 4 | 3,3 | 444999999 | 4433333333 | 4455555555 | 4 4 3 3 3 3 3 3 3 3 3 3 3 3 | 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 | 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 05
11
12
12
12
12
12
12
12
12
12
12
12
12 | | 05
12
12
12
12
12
12
12
12
12
12
12
12
12 | | | | | | 26621
26621
26621
26621
26621
26621
26621
26621
26621
26621
26621
26621
26621
26621 | | MTN VILLAGE | AAF
AAF
AAF | 1943
1944
1945 | 62 07N
62 07N
62 07N | 153 45H | 496
496
496 | 1 | 1 2 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 53
59 | | | | | | 26635
26635
26635 | | MURPHY LAKE | SAHR
SAHR | 1974
1975 | | 149 34W
149 34W | 2450
2450 | | 1 1 | 4 4 | 1 | | | 1 | | 1 | 1 | 1 | | | | İ | | | | | | | NAKNEK | C C C C C C C | 1935
1936
1937
1938
1939
1940 | 58 42N
58 42N
58 42N
58 42N
58 42N | 157 02H
157 02H
157 02H
157 02H
157 02H
157 02H
157 02H | 86
85
85
86
86
85 | 3 | 3 3 3 3 3 3 3 6 6 | 3 3 3 3 3 3 3 | 3 | 3 | 3 | 3 | 3 3 3 | 3 3 3 | | 3 3 | De | 09 | 09 | | | | | | | | NAKNEK | CAA
AAF
AAF | 1941
1942
1943 | 58 40N | 156 45W
156 45W
156 45W | 67
49
49 | | | | | | | | | | | | 01
12
01 | 08
01 | 01
02 | | | | | | | | NAKNEK | | 1942
1943
1944
1945
1946
1948
1949
1950
1951
1952
1953
1954
1955 | 58 41N
58 41N
58 41N
58 41N
58 41N
58 41N
58 41N
58 41N
58 41N
58 41N | 156 39W
156 39W
156 39W
156 39W
156 39W
156 39W
156 39W
156 39W
156 39W
156 39W | 49
49
49
49
49
49
49
49
49
49
49
49
49 | 1 1 1 1 1 1 1 1 1 1 1 | 5 E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 | 111111111111111111111111111111111111111 | 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 | 1
1
1
1
1
1
1
1
1
1 | 1
1
1
1
1
1 | 1 | | | 11
62
62
62
62
62
62
62
12
12
12 | 52
62
62
62
62
62
62
62
62
62
62
62
62
63 | | 03
12
12
09
09
12
12
12
12
12
12
08
08 | | | 25503
25503
25503
25503
25503
25503
25503
25503
25503
25503
25503
25503
25503 | | NENANA | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1930
1931
1933
1934
1935
1936
1936
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1948
1949
1952
1953 | 64 33M
64 33M | 149 05W
149 05W | 364
364 | 3 3 3 3 3 3 3 5 1 1 1 1 1 1 1 1 1 1 1 1 | 3 3 3 3 3 3 3 5 5 5 1 1 1 1 1 1 1 1 1 1 | 33333333511111111 | 3 3 3 3 3 5 1 1 1 | 3 3 3 3 3 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 | 333333333111111111111111111111111111111 | 3 3 3 3 3 3 3 3 3 3 3 | 3 | 3 | 33 33 33 33 33 33 33 33 33 33 33 33 33 | 333333333333333333333333333333333333333 | 01 | | 02
12
12
12
12
12
12
12
12
12
12 | | | | | | 26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435 | | | ALAS | KA | | | | | | | | | | | | | | | | NU | | 0F 1 | | | | (AR H) | | |----------|--|--|--|--|--|-----------|---|---
---------------------------|---|--|---|--|-------------------------------|-----------------------------------|---|--|--|--|--|--|--|------------|-----------|---| | | | | | | | | | | | COF | | | | | ITP | ŧ | / | (s / | /
<u>*</u> / | #2 / | | /
v. & | / 🐉 | [= # / | \s\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | NAME | TYPE | YEAR | LAT. | LONG. | ELFV. | | | | | oes
niu | | i | | | n l | D | S. S | | | Service of the servic | Terra Comments | / \$3/8/
\$3/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8/
\$4/8
\$4/8 | A COMPLETE | 1. 10 mg/ | HBAN
NUMBER | | NENANA | CAA
CAA
CAA
CAA
CAA
CAA
FAA
FAA
FAA
FAA | 1954
1956
1956
1957
1958
1950
1961
1963
1964
1965
1965
1966
1967
1972
1972
1973
1974
1975
1976 | 64 33N
64 33N | 149 0534
149
0554
149 0554 | 364
364
364
364
364
364
364
364
364
364 | , | 111111111111111111111111111111111111111 | 111111111111111111111111111111111111111 | 1 1 1 1 1 1 1 1 1 6 6 6 5 | 111111111111111111111111111111111111111 | 11 11 11 11 11 11 11 11 11 11 11 11 11 | 111111111111111111111111111111111111111 | 11 11 11 11 11 11 11 11 11 11 11 11 11 | 1 1 1 1 1 1 1 1 1 1 1 6 6 6 5 | 1 1 1 1 1 1 1 1 1 1 6 6 6 5 5 5 5 | 111111111111111111111111111111111111111 | | | 12
12
12
12
12
12
12
12
12
12
11
11
12
12 | | | | | | 26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435
26435 | | NENANA | AAF | 1943 | 54 33N | 149 05W | 367 | | | | | | 5 | 1 | 1 | 1 | 1 | | | | 55 | | | | | | 26404 | | NIKOLAI | C89P
C89P
C89P
C89P
C89P | 1971
1972
1973
1974 | 63 01N
63 01N
63 01N
63 01N
63 01N | 154 22H
154 22H
154 22H
154 22H | 425
425
425
425
425
425 | | | | | | | | | | | | | | 08 | 12
11
10
05 | | | | | | | NIKBLSKI | A
A
A | 1942
1972
1973
1974 | 52 57N
52 57N
52 57N
52 57N | 168 52W
168 52W | 24
24
24
70 | 3 | 3 | 3 | 3 | 3 3 | | 3 | | 3 | 3 | 3 | 01 | | 01 | : | | | | | | | NIKOLSKI | AAF
AAF
AAF
AAF | 1942
1943
1944
1945 | 52 55N
52 55N
52 55N
52 55N | 168 58W
168 58W
168 58W
168 58W | 315
315
315
315 | 566 | 6 | 6 | 5 | 7 5
6 6 | 5 6 | 6 | 7
5 | 5
7
6 | 7 | 5
7
6 | | | 59
52
62
58 | 58
58 | | | | | 25605
25605
25605
25605 | | NIKGLSKI | AFS
AFS
AFS
AFS
AFS
AFS
AFS
AFS | 1959
1960
1961
1962
1963
1964
1965
1966
1967
1968 | 52 55 55 55 55 55 55 55 55 55 55 55 55 5 | 168 47W
168 47W
168 47W
168 47W
168 47W
159 47W
168 47W
168 47W
168 47W
168 47W | 705
705
705
705
705
705
705
705
705
705 | 155555555 | 5555555 | 5555555 | 5555555 | 1555555555 | 1 5 5 5 5 5 5 5 5 | 1555555 | 15555555 | 5
5
5 | 15555555 | 1 1 5 5 5 5 5 5 5 5 | | | | | | | | | 25626
25626
25626
25626
25626
25626
25626
25626
25626
25626
25626 | | NO GRUB | A | 1939 | 64 50N | 145 58H | 1300 | | 3 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 | 3 | | | | | | | | | | | | ngme | SPL
SPL
SPL
SPL
SPL
SPL
SPL
SPL | 1908
1909
1910
1911
1912
1913
1914
1915 | 64 30N
64 30N
64 30N
64 30N
64 30N
64 30N | | | | | | | | | | | | | | | 12
12
12
12
12
12
12
12 | | | 06
12
12
12
06 | | | | 26617
26617
26617
26617
26617
25617
26617
26617
26617 | | NGME | 555555555555555555555555555555555555555 | 1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927 | 64 29N
64 29R
64 29R
64 29R
64 29R
64 29R
64 29R
64 29R
64 29R | 165 24W
165 24W
165 24W
165 24W
165 24W
165 24W
165 24W
165 24W
165 24W | 10
10
10
10
10
10
10
12
12
12
12
12 | | | | | | | | | | | | | 06
12
12
12
12
12
12
12
12
12
12 | 06
12
12
12
12
12
12
12
12
12
12 | 06
12
03
12
12
12
12
12
12 | 06
12
12
12
12
12
12
12
12
12 | | | | 26617
26617
26617
26617
26617
26617
26617
26617
26617
26617
26617
26617 | | NGME | S
S
S | 1928
1929
1930 | 64 29N | 165 21H
165 21H
165 21H | 33
33
33 | | | | | | | | | | | | | 06
12
07 | 06
08
07 | 06
12
07 | 06
07
06 | 1 | | | 25517
26517
26617 | | ngme . | 186
186
186
186
186
186 | 1930
1931
1932
1933
1934
1935 | 64 29N | 165 24W | | | 3 | 3 | 3 | 3 | 3 3 | | 3 | 3 | 3 | 3 | | 12
12
12
12
12 | 12
12
12
12
12 | 05
12
12
12
12
12 | 05
12
12
12
12
12 | | | | 26617
26617
26617
26617
26617
26617
26617 | NUMBER OF MONTHS IN YEAR WITH ALASKA |--| NUMBER OF MONTHS IN YEAR WITH | 1711 | | ΙΝΠ | | | | HOL | 1D: 1 | , D | cco | | | . | MO | MŤI | _ | | , | , | U†
∕ | | | N YEA | 1H
/ 6- / | |--------------|--|--|--|--|--|---|---|---|---|---|---|---|---|---|-----------------------------|--|----------------------------|--|-----------------|---------------|--|---
---| | | | | | | | | - | | | | | | | | | á | / بخ | * / | | | 450/ | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | \$ /UDON | | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | J | F M | A | H . | . <i>د</i> | J F | s | 0 | N | D | Shape | \$ \\ \tilde{\pi} \cdot \\ | Table of the second | Signal Services | Te In Company | / 4/9/2/
4/4/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/ | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | NUMBER | | NORTHEAST CA | AFS
AFS
AFS
AFS
AFS
AFS | 1963
1964
1965
1966
1967
1968
1969 | 63 19N
63 19N
63 19N
63 19N
63 19N
63 19N | 168 584
168 584
168 584
168 584 | 33
30
30
30
30
30 | 7 | 1 1 1 7 7 7 1 7 7 1 6 7 7 1 1 1 1 1 1 1 | 1 1 7 7 1 1 | 7
7
1
7 | 77771 | 7 1 1 1 | 7 1 | 1
1
1 | 1
7
1 | 7 1 7 1 | | | 07
03 | / | | | | 26632
26632
26632
26632
26632
26632
26632 | | NORTH SHORE | SEE | IMMAK | ISLAND | 25610 | | NGRТИШАY | HBAS
HBAS
HBAS | 1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955 | 62 57N
62 57N | 141 56W 56 | 1713
1718
1718
1718
1718
1718
1718
1718 | 1 | 1 | 111111761111111111111111111111111111111 | 111111111111111111111111111111111111111 | 111111111111111111111111111111111111111 | 1 | 1 | 1 | | 1 1 1 1 1 | 04
12
12
08 | 03 12 12 12 12 12 | 90 20 20 20 20 20 20 20 20 20 20 20 20 20 | | | | | 26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412
26412 | | NOXAPAGE | AAF | 1943 | | 164 12W | 250 | | | | | | , | 1 | | | | ļ | | 52 | 52 | | | | 26606 | | NULATO | 9 | 1931
1932 | 54 43N
54 43N | 158 04W
158 04W | 128
128 | | 3 3 | | 3 | | 3 3 | | | 3 | 3 | | | | | | | | | | NUL ATO | 4444444 | 1935
1936
1937
1938
1939
1940
1941
1942
1943 | 64 43N
64 43N
64 43N
64 43N
64 43N
64 43N
64 43N
64 43N
64 43N | 158 04W
158 04W
158 04W
158 04W
158 04W | 153
210
210
210
210
210
210
210
210
210 | 3 3 6 6 | 5 5
5 5 | 3 3 6 6 5 | | 3 3 5 6 6 6 | 3 3 3 3 5 6 6 6 6 6 6 6 | 3 3 5 6 6 5 | 3 3 3 6 6 5 | 3
3
3
6
6 | | 09
10
11 | 10
12
12
12
12 | 09
12
12
12
12
12 | | | | | | | NUNIVAK | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1940
1941
1944
1945
1947
1947
1957
1959
1959
1959
1969
1969
1968
1968
1968
1970 | 000 000 000 000 000 000 000 000 000 00 | 166 12W | 77770000000000000055\$\$\$\$\$\$\$\$\$\$\text{A}\$ | 5444 24444444432222222222 | 55443334444444 333333333333333333333333 | 5445534444444 55555555 | 54433344444444 35555555 | 5449494949444999999999 | 5544 4544455555555555555555555555555555 | DAR BOARAAAAA SUUDOOD | реворые ветечен пропропе | 5 4 4 5 5 5 5 4 4 4 4 4 4 4 5 1 5 5 5 5 | 554433344444443133333333444 | 02
12
06
04
12
12
12
12
12
12
12
12
12
12
12
12
12 | 08 12 08 | 02
05
11
12
12
12
12
12
12
12
12
12
12
12
12 | | | | |
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
266222
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
2662
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622
26622 | ALASKA NUMBER OF MONTHS IN YEAR HITH | | | | | | | но | URL | Υ. | RE | COI | RDS | 6 B | Y | MO | NT | н | /2 | /_ | / & | Te fee man and a fee fee fee fee fee fee fee fee fee f | /
&/ | / &/ | /
38/ | \ <u>\</u> | |--------------|--|--|--|---|--|-------------------|-------------|---|--|---|---------------------------------|---------------|---------------|-----------------|-----------------|------------|---|--|---|--|---------|--------------|----------|---| | NAME | TYPE | YEAR | Lor | Liano | Leven | | 1 =
 - | | | | | | | | | اما | 77. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Ser Summer | San | | | (CC)40 (C.4) | | HBAN | | NUNIVAK | SA
SA | 1971
1972 | 60 23N | | 52
52 | 4 4 | 4 | 4 | 4 | +- | 4 | 4 | | Н | - | ١ | 12 | 06 | | | 7 | 7 * * | 7 * | 26622
26622 | | | SA
SA
SA
SA | 1973
1974
1975
1976 | 60 23N
60 23N
60 23N
60 23N | 166 12W | 52
52
52
52 | 3 3 | 3 | 3 | | 3 3 | 3 3 | 3 | 3 | 3 | 3 | | 02 | 02 | ' | | | | | 26622
26622
26622
26622 | | MUNIVAK IS | AAF
AAF
AAF | 1943
1944
1945 | 60 12N
60 12N
60 12N | | 50
50
50 | 5
5 | 5 | 5 | 5 5
5 5 | 5 5 | 5 5 | | | | 5 | 5 | | 54
62
56 | 62 | | | | | 26605
26605
26605 | | NYAC | | 1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962 | 61 00N
61 00N
61 00N
61 00N
61 00N
61 00N
61 00N
61 00N
61 00N
61 00N | 159 594
159 584
159 594
159 594
159 594
159 594
159 594
159 594 | 450
450
450
450
450
450
450
450
450
450 | 33333333333333333 | ***** | 3 3 3 3 3 3 3 3 3 | 99999999999999 | 3 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | ************* | 333333333333 | 33333333333 | 33333333333 | 3333333 | | | | | | | | 265 25
265 25 | | BCEAN CAPE | 00
00
00 | 1972
1973
1974
1976 | 59 33N
59 33N
59 33N
59 33N | 139 42H
139 42H | | 5 | 5 | - | 3 3 | 5 | | 5 5 | 5 | 5 | 5 | 5
5 | | | | | | | | | | OCEAN RANGER | SAUR | 1976 | 55 32N | 166 57⊭ | | | | | | | 5 | Б | Б | 5 | 6 | 6 | | | | | | } | | | | GGT INGU | AAF
AAF | 1943
1944 | 51 33N
51 33N | 178 48W
178 48W | 50
50 | 7 | | 5 | 5 E | 5 7 | 6 | 6 | 6 | 6 | 6 | 6 | | 61
58 | 52
58 | | İ | | | 25702
25702 | | ОНОБАМИТЕ | A | 1937
1936 | 61 38N
61 38N | 161 54W
161 54W | 45
45 | | 3 | | | 3 3 | | 3 | 3 | 3 | 3 | 3 | | | | | | 1 | | | | OLD EDGERTON | C00P
C00P
C00P | 1974
1975
1976 | 61 48N
61 48N
61 48N | 144 59µ
144 59µ
144 59µ | 1320
1320
1320 | | | | | | | | | | | | | | 07
12
12 | | | | | • | | GLD MAN | SAWR
SAWR
SAWR | 1974
1975
1976 | 67 27N
67 27N
67 27N | 150 35W | 1271
1271
1271 | 1 | | | 1 1 6 | | 1 | 1 | | 1 | | 1 | | | | | | | | | | GPHIR | A A A | 1939
1940
1941
1942 | 63 10N
63 10N
63 10N
63 10N | 156 33H
156 33H
156 33H
156 33H | 400
400
400
400 | 3 | 3 | | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 3 | | | | | | | | | | PAINTERS CRK | SAWR | 1967 | 57 10N | 157 26W | 545 | | 5 | 5 ! | 5 5 | 5 | 5 | 5 | | İ | | | | | | | | | | | | PALMER | 444444444 | 1947
1948
1949
1950
1951
1952
1963
1954
1955
1956 | 61 36N
61 36N
61 36N
61 36N
61 36N
61 36N
61 36N
61 36N
61 36N
61 36N | 149 08H
149 08H
149 05H
149 05H
149 05H
149 05H
149 05H
149 05H | 245
300
300
300
198
198
198
198
198
198
225 | 3 3 3 3 | 3 3 3 3 | 3 | 3 3
3 3
3 3
3 3
3 3
3 3 | 3 3 3 | 333333 | 3 3 3 3 | 3 3 3 3 3 3 3 | 3 3 3 3 3 3 3 3 | 3 3 3 3 3 3 3 3 | | | | | | | | | 25331
25331
25331
25331
25331
25331
25331
25331
25331
25331
25331
25331 | | PALMER | A
A
A
A | 1958
1959
1960
1961
1962 | 61 36N
61 36N
61 36N
61 36N
61 36N | | 230
230
230
275
275 | 3 | | 3 3 | 3 3 | 3 | 3 | 3 | 3 | 3 3 | 3 | 3 | | | | | | | | 25331
25331
25331
25331
25331 | | PALMER | A
A
FAA
FAA
FAA
FAA
FAA
FAA
FAA
FAA | 1962
1963
1964
1965
1966
1967
1968
1969
1971
1972
1973
1974
1975
1976 | | 149 05W
149 05W
149 05W
149 05W
149 05W
149 05W
149 05W
149 05W
148 05W | 198
198
198
198
240
240
240
240
240
240
240
240
240
240 | 5 5 5 5 5 5 5 5 5 | 54555555555 | 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5 5 5 5 5 5 5 5 5 5 | 54555555555 | *********** | 3455555555 | 3345555555555 | 5455555555 | 444555555555 | 5555555555 | | 01
11
12
11
12
12
12
12
12
12 | 04 | | | | | 25331
25331
25331
25331
25331
25331
25331
25331
25331
25331
25331
25331
25331
25331
25331
25331
25331 | | PAXSON | A | 1939
1940 | | 145 27W
145 27W | 2697
2697 | 4 | 3 | | 3 | 4 4 | 3 | 3 | 3 | 3 | 3 | 3 | | | | | | | | | ALASKA NUMBER OF MONTHS IN YEAR WITH | | | | | | | ноц | JRL' | ΥI | REC | OR | DS | BY | M | MT | н | /. | /
& / | / _/ | / & / | In in in the second | , (60) (6
4) (60) (60) (60) (60) (60) (60) (60) (60 | TECONOES
TUMINOES | 1. (C. 00.) | WBAN
NUMBER | |--------------|-------------|--|--
---|--|---|--|-------------|---|---|---|---|---|---|---|--|----------------------|--|------------------|---------------------|--|----------------------|--|---| | , | | | ı | ı | , | | 1 = | | | | | | | | | | | | Sept 1 | | | | | WBAN | | NAME | TYPE | YEAR | LAT. | | ELEV. | J | FM | P | M | - | - | 4 | + | + | - | <i>/ के वे</i> | · * • | \$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | <u> </u> | /×· | */* | * * 4 | * | NUMBER | | PAXSON | | 1941
1942
1943
1944
1974
1975
1976 | 63 03N
63 03N
63 03N
63 03N
63 03N
63 03N | 145 274
145 274
145 274
145 274
145 274
145 274
145 274 | 2697
2697
2697
2697
2697 | 3 3 | 3 3 5 5 | 3 :
3 : | 3 3
3 3
5 5
5 5 | 5 5 | 3
3
3 | 3 5 | 3 | 3 3 | 3 | | | | - | | | | | | | PETERSBURG | A | 1932
1933 | 56 49N
56 49N | 132 57W
132 57W | | 3 | | | 3 3 | 3 3 | | 3 | 3 : | 3 | | | | | | | | , | | 25329
25329 | | PETERSBURG | | 1936
1937
1940
1941
1942
1944
1945
1947
1949
1950
1951
1951
1955
1953
1954
1956
1966
1961
1966
1966
1966
1966
1967
1966
1967
1975
1975 | | 132 57H | 50
50
50
111
111
111
111
111
111
111
111 | 222266711111111111111111111111111111111 | 3336811111111111111115555555555555555555 | | | 333661111111111111555555555555555555555 | 333661111111111111155555555555555555555 | 333611111111111111111155555555555555555 | 336611111111111111115555555555555555555 | 3 8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 333661111111111111155555555555555555555 | 04
12
12
12
12
12
12 | 04
12
06
05 | 04
12
12
12
12
12
12
12
12
12
12
12
12
12 | | | | | |
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329
25329 | | PIGOT | A | 1939
1940 | 60 47N
60 47N | 148 20H | | 3 | 3 | | | | | 3 | 3 : | 3 3 | 3 | | | | | | | | | | | PILGRIM SPRG | A A A | 1937
1938
1939
1940
1941 | 65 05N
65 05N
65 05N
65 05N | | 50
50
50 | 3 3 | 3 | 3 | 3 3 3 3 5 5 5 | 3 3 | 3 | 3 | 3 : | 3 3 3 3 3 3 3 | 3 | | | | | | | | | | | PILOT POINT | 8 8 8 8 8 8 | 1938
1939
1940
1941
1942
1943
1944
1945 | 57 37N
57 37N
57 37N
57 37N
57 37N
57 37N | 157 34H | 50
50
50
50
50
50 | 3333355 | ១១១១១ | 3 : | 3 3 | 3 3 | 3 | 3 | 3 : | 3 3 | 3 3 | | | 01
10
03
12
07 | | | | | | 25514
25514
25514
25514
25514
25514
25514
25514
25514 | | PINGO | SAHR | 1969 | 70 02N | 147 43W | 100 | | | İ | | | 1 | i | 1 | 1 | | | | | | | | | | | | PLATINUM | A
A
A | 1939
1940
1941
1942 | 59 01N
59 01N | 161 47W
161 47W
161 47W
161 47W | 15
15 | 3 3 | 3 : | 3∣: | 3 3 | 3 3
3 3
3 3 | 3 | 3 | 3 5 | | 3 | 1ם | 01 | 05
08 | | | | | | 25613
25613
25613
25613 | | PLATINUM | 44444444444 | 1945
1946
1947
1948
1948
1950
1951
1952
1953
1954
1955
1956
1957 | 59 01M
59 01M
59 01M
59 01M
59 01M
59 01M
59 01M
59 01M
59 01M | 161 47H 151 47H 161 | 50
50
50
50
50
50
50
50
50 | 6666666666 | 66666666 | 66665566666 | 6 | | 6665556666 | 66665556666 | 66665556 | 5 | 666666666666 | | | 04
12
12
12
12
12
12
12
12
12
12 | | | | | | 25613
25613
25613
25613
25613
25613
25613
25613
25613
25613
25613
25613
25613 | | Al | _AS | KA | | | | | | _ | | | _ | | | _ | _ | | | NU | нВі | ΞR | OF | MON | (TH | 15 1 | | | | | | |--------------|---------------------------------------|--|--|--|--|---|-----------------------|---|---|---|---------------------|-------------------|---------------------------|---|---|--|------------|----|-----|--|------------|--------|-----|---|---|--|---------|-----|---| | | | | | | | HO | URI | Υ | REC | OR | DS | BY | H | ON' | ТН | | / <u>s</u> | , | /_ | . / | | / g | 2/ | /
& | / | s/ | /
38 | / | §°/ | | NAME | TYPE | YEAR | LAT. | LONG. | lerev i | 1. | | | | | i PE | | | | ılı. | S. P. L. | Se | Ž. | | 4 | State of 1 | Temode | | (5 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / | | \$ 0 mg | | 400 | HBAN
NUMBER | | PT RETREAT | CG | 1953 | 58 25N | 134 57H | 20 | ١. | 5 | 5 | 5 4 | 5 | 5 | 4 | 5 | 5 4 | 4 5 | (| Ÿ | | 7 | ٦ | | + | 1 | <u>/ `</u> | 7 | ì | | 7 | 25330 | | PT SPENCER | | 1954
1955
1956
1957
1958
1960
1961
1962
1963
1963
1965
1966
1968
1970
1971
1972
1973 | 58 8 25 56 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 134 57H
134 57H | 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 21 41 42 41 41 41 41 41 41 41 41 41 41 41 41 41 | 555555555555555555 | 555555555555555555555555555555555555555 | 5 | 555555555555555555555555555555555555555 | 5555555555555555555 | 55555555555555555 | 555555555555555555 | 5555555555555555555 | 555555555555555555555555555555555555555 | | | | | 0.1 | | | | | | The state of s | | | 25330
25330
25330
25330
25330
25330
25330
25330
25330
25330
25330
25330
25330
25330
25330
25330
25330
25330
25330
25330
25330 | | | AAF | 1945 | 65 15N | 166 21µ | 10 | 1 | 1
1 | 1 | 1 1 | i | 1 | i | 1 | i | 1 | | | | | | | | | | | | | | 26612 | | PORTAGE | **** | 1935
1936
1937
1938
1939
1940
1941
1942
1943
1944 | 60 51N
60 51N
60 51N | 148 594
148 594
148 594
148 594
148 594
148 594 | 35
35
35
35
35
35
35
35
35 | 3 5 | 3 5 5 | 3 : | | 3 3 3 5 5 | 3 3 3 5 5 | 3 3 3 6 | 3 3
 3 3 3 3 3 3 5 6 6 | | | | | | | | | | | | | | | 26437
26437
26437
26437
26437
26437
26437
26437
26437
26437
26437 | | PORT ALEXAND | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1949
1951
1951
1952
1953
1954
1855
1956
1957
1958
1959
1960
1961
1962
1963 | | 134 394
134 394
134 394
134 394
134 394
134 394 | 18
18
18
18
18
18
18
18
18
18 | | 55555555555 | 5555555555 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 555555555555 | 55555555555 | 55555555555 | 555555555 | 555555555555555555555555555555555555555 | 5 5 5 5 5 5 5 | | | | | | | | | | | | | | 25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348 | | PORT ALSWORT | 4 4 4 4 4 | 1971
1972
1973
1974
1975
1976 | 60 12N
60 12N
60 12N
60 12N | 154 18W
154 18W
154 18W
154 18W
154 18W
154 18W | 268
268
268
268
268
268
268 | 5 5 5 6 | 5
5 | 5 5 | 5 5 5 6 | 5
5
5
6 | 5
5
6 | 5
5
6 | 5
5
5
6 | 5 5
5 5
6 6 | 5 5 5 5 6 | | | | | | | | | | | | | | | | PORT ALTHORP | A | 1943 | 58 09N
58 09N | 136 22W | 12
12 | 5 | 5 | 6 | | 5 | Б | Б | 7 | 7 5 | 5 | | | | | | | | | | | | | | | | PORT CLARENC | | 1962
1963
1964
1965
1966
1967
1968
1970
1971
1972
1973
1974
1975 | 65 55 155 155 155 155 155 155 155 155 15 | 166 524
166 524
166 524
166 524
166 524
166 524
166 524
166 524 | 18
18
18
18
18
18
18
18
18
18
18
18
18 | | 55555555555 | 15555555555555 | 5 5 5 5 5 5 5 5 5 5 5 5 5 | 15555555555555 | 1555555555555 | 55555555565 | 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5 | 5 5 | 06
11
12
12
11
12
12
12
12
12
11 | | | | | | | | | | | | | | | PORT HEIDEN | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959 | 56 57N
56 57N
56 57N
56 57N
56 57N
56 57N
56 57N
56 57N
56 57N
56 57N | 158 37H
158 37H
158 37H
158 37H
158 37H
158 37H
158 37H
158 37H | 102
102
92
92
92
92
92
92
92
92
92
92
92 | 11 11 11 11 11 11 11 11 11 11 11 11 11 | 1 1 1 5 5 5 5 5 5 5 5 | 1 1 5 5 | 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1115 556555 | 1 5555555 | 1 5 5 5 5 5 5 5 5 | 1 1 4 5 5 5 5 5 5 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5 | 03
09
05
06
10
07 | | | | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | | | | | | | | | 25508
25508
25508
25508
25508
25508
25508
25508
25508
25508
25508
25508
25508
25508
25508
25508 | | AL | _ASI | ۲A | | | | | | | | | | | | | | NUI | MBER | OF N | 10NTH | S IN | YEAR | | | |--------------|--|--|--|---|--|----------------------------------|---|---|---|--------------------------------|--|---|------------------------------------|-----------------------------|---|------|--|--|--|-------------------|-------|----------------|---| | | | | | | | HOU | | | | | | | | (TH | , | /s / | / ند / | | TA LA CE AND | / ₂ =/ | | <i>&</i> / | 8 | | NAME] | TYPE | YEAR | LAT. | LONG. | £1 EV | | | 24
 a ı | | | | | | w I n | Z. | | ************************************** | The Contract of o | | | | | HBAN
NUMBER | | PORT HEIDEN | A | 1961 | | 158 37W | 92 | \vdash | 5 5 | ₩ | 5 | 5 ! | 5 5 | ┺ | 5 | 5 5 | | | | / | | / ` ` | 7 - 7 | \dashv | 25508 | | | | 1962
1963
1964
1965
1966
1967
1969
1970
1971
1972
1973
1974 | 56 57N
56 57N | 158 37W
158 37W | 92
92
92
92
92
92
92
92
92
92
92
92
92 | 5555555555555 | 555555555555555555555555555555555555555 | 555555555555 | 55555555555 | 555555555555 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 555 555 555555 | មាមមាមមាមមាមមាមមាម | 55555555555555 | | | | | | | | | 25508
25508
25508
25508
25508
25508
25508
25508
25508
25508
25508
25508
25508 | | PORT HEIDEN | AAF
AAF
AAF
AAF | 1942
1943
1944
1945 | 56 57N | 158 394 | 84
84
84 | 1 | 1 1
1 1
1 1 | 1 | 1 1 1 | 1 : | 1 1
1 1
1 1 | . 1 | 1 | 6 6 | .] | | 54
62
60 | 54
62
62
60 | | 06
12
10 | | | 25504
25504
25504
25504 | | PORT MOLLER | AFS
AFS
AFS
AFS
AFS
AFS
AFS
AFS | 1959
1960
1961
1962
1963
1964
1965
1966
1967
1968 | 56 00N
56 00N
56 00N
56 00N
56 00N
56 00N
56 00N
56 00N | 160 31W
160 31W
160 31W
160 31W
160 31W
160 31W
160 31W
160 31W
160 31W
160 31W | 1038
1038
1038
1038
1038
1083
1083
1083 | **** | 5 | 5555555 | 5555555 | 5 !
5 !
5 !
5 ! | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 6555555 | 5555555 | 55555555 | | | | | | | | | 25625
25625
25625
25625
25625
25625
25625
25625
25625
25625
25625
25625 | | PROSPECT CRK | SAWR
SAWR
SAWR | 1975 | 56 48N | 150 38W
150 38W
150 38W | 1105
1105
1105 | | 3 2 | 1 | 1 | 3 1 | | 1 1 | 1 | 1 2 1 1 1 1 | | | | | | | | | | | PRUDHOE BAY | SAHR
SAHR | 1967
1968 | 70 19N
70 19N | | 10
10 | 6 | 6 | 6 | | | | | | • | 5 | | | | | | | | | | PRUDHOE BAY | 2 | 1969
1970
1971
1972
1973
1974
1975 | 70 15N | 148 20W
148 20W
148 20W
148 20W
148 20W
148 20W
148 20W | 45
45
45
45
45
45
45
45 | 1
5
6 | 1 1
1 1
6 6
6 6
6 6 | 1 5 6 6 6 6 | 1
1
6
6 | 1
5
6
6 | 1 1
1 1
1 1
6 6
6 6
6 6 | 1 1 5 5 5 5 5 5 5 | 1 6 6 6 6 | 6 1 1 1 6 6 6 6 6 6 | 1
1
3
5 | | | | | | | | | | PUNTILLA | | 1941
1942
1943
1944
1946
1946
1946
1950
1950
1951
1952
1954
1955
1956
1957
1958
1960
1961
1962
1963
1964
1968
1968
1968
1968
1968
1968
1969
1970
1971
1972
1973 | 62 06N
62 06N
62 06N
62 06N
62 06N
62 06N
62 06N
62 06N | 46444444444444444444444444444444444444 | 1837
1837
1837
1837
1837
1837
1837
1837 | 6566666666666 555555555555555555 | 666666666666666666666666666666666666666 | 666666666666666666666666666666666666666 | 666666666666666666666666666666666666666 | 6666666666666 555555555555 555 | 5 566666666666666666666666666666666666 | 6 | 66666666666666 9555555555555555555 | 666666 55565955555555555555 | 555555555555555555555555555555555555555 | | 10
12
06 | | | | | | 26526 26526 26526 26526 26526 26526 26526 26526
26526 | | GN 1NH&GAK | SAUR
SAUR
SAUR
SAUR | 1967
1968 | 59 45N
59 45N
59 45N | 161 54W | 10
10
10 | 4 | 4 | 4 4 | 4 | 4 4 | 3 : | 3 3 | 3 | 4 | 3 | | | ļ | | | | | | | A | LAS | KA | | | | | | | | | | | | | | | | | | , NI | JMBER | OF | | | | | | | |--------------|--------------------------------------|--|--|--|--|---|---|-------------------|---------|-----------------------|---------------------|---|---------------------------|---------------------------------------|---------------------------|-----------|------------------|----------------------------|---|----------------------------------|--|--|----------|---|-------------|--------|---------|---| | | | | | | | | | | | | * RI
24 | | | | | | | H | / | | /
\$}/ | Suppose / | TEMOSEO. | 1 2 7 6 3 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | <u>\$</u> / | /
Ž | 1.000 J | /3/ | | NAME | TYPE | YEAR | _ | AT. | Lo | NG . | ELEV. | J | F | н | А | н | ٠ د | ן א | ı s | 0 | N | 0 | \2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. |), 40° | Total Se | | | 2 E | 13 | 4000 m | | MBAN
NUMBE | | GUINHAGAK | SAWR
SAWR | 1971 | 59 | 451 | 161
161
161 | 54₩ | 10
10
10 | 3 | 3 | 3 | | 3 | | 3 : | | | 3 | 3 | | | | | | | • | | | | | RADIGVILLE | ********** | 1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945 | 57
57
57
57
57
57
57
57 | 361
361
361
361
361
361
361
361 | | 20000000000000000000000000000000000000 | 15
15
15
15
15
15
15
15 | 3 3 3 3 3 3 3 3 3 | 222222 | 333333 | 3 3 3 3 | 3 3 3 3 3 3 | 3 3 3 3 3 3 3 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 3 3 3 3 3 3 3 3 3 3 3 3 3 | 333333333 | 33333333 | 3 3 3 3 3 3 3 3 3 | | | | | | | | | | 25332
25332
25332
25332
25332
25332
25332
25332
25332
25332
25332 | | RAMPART | C00P | 1964
1965
1966
1967 | 65
65
65
65
65
65 | 30N
30N
30N
30N
30N
30N | 150 | 081
081
180
180
180
180
180 | 400
400
400
400
400
400
400
400
400 | | | | | | | | | | | | | | | 07
12
12
12
12
13
14
12
05
02 | | | | | | | | rap I ds | | 1935
1936
1937
1938
1938
1940
1941
1942
1943 | 63
63
63
63
63
63
63 | 32N
32N
32N
32N
32N
32N
32N
32N | 145
145
145
145
145
145
145
145 | 51W
51W
51W
51W
51W
51W | 2128
2128
2128
2128
2128
2128
2128
2128 | 333556666 | 3355666 | 3
5
5
6
6 | 3 5 5 6 | 3
5
6
6 | 3 3 3 5 5 6 6 6 6 6 6 6 6 | 3 3
3 5
5 6
6 6
6 6 | 6 | 33355566 | 3 5 5 6 6 | 3
3
5
5
6
6 | 03
12
12
12
07 | 03
12
08 | 08
12
12
12 | | | | | | | | | REINDEER PAS | ARF
AAF
AAF
AAF | 1942
1943
1944
1945 | 53
53 | 31N
31N
31N
31N | 167
167 | 55H
55H | 74
74
74
74 | 5
1
1 | 6 1 | 6
1
1 | 5 1 1 | 5 1 | 5 E | 5 5 1 1 | 7 | 1 | 6 | | | | 52 | 52 | | | | | | 25606
25606
25606
25606 | | RICHARDSON | | 1935
1936
1937
1938
1939
1940
1941
1942 | 64
64
64
64
64 | 17N
17N
17N
17N
17N
17N
17N | 146
145
146
146
146 | 21H
21H
21H
21H
21H | 880
880
880
880
880
880
880 | 5 3 5 5 4 | 5 | 53555 | 3 | 3 | 3 3 3 3 3 4 | 3 3 | 33354 | 3 5 5 3 | 5
3
5
5 | 3 3 5 3 4 3 | | | 03
04
03 | | | | | | | | | ROCK RIDGE | C00P
C00P
C00P | 1972
1973
1974 | 61 | 07N | 149
149
149 | 45H | 840
840
840 | | | | | | | | | | | | | | | 02
12
04 | | | | | | | | RUBY | | 1931
1932
1933
1935
1936
1937
1938
1939
1940
1941
1942 | 54
64
64
64
64
64
64
64 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 155
155
155
155
155
155
155 | 26H
26H
26H
26H
26H
26H
26H | 175
176
175
175
175
175
175
175
175
705
705 | 3 3 3 5 6 | 3 3 3 | 3 3 3 5 6 | 3 3 6 6 6 | 3 3 3 3 3 5 6 6 | 3 3 3 5 6 6 6 | 33566 | 3 3 3 5 6 6 | 3 5 6 | | 3 3 3 3 5 5 | 10
12
08 | 03
12
12
12
12
12 | 08
02
12
08 | | | | | | | | | SAGWBN | SAWR
SAWR
SAWR
SAWR | 1966
1967
1968
1969
1970 | 69
69
69 | 22N | 148
148
148
148
148 | 42H
42H
42H
42H | 650
650
650
650
650 | 1 | 1 | 4
6
1 | 4 4 6 6 1 1 1 6 6 6 | \$ 6 | al . | 4 | 4 | 4 | | 4 | | | | | | | | | | | | T MARYS | C00P
C00P
C00P
C00P
C00P | 1968
1969
1970
1971
1972
1973
1974
1975
1976 | 62
62
62
62
62
62 | 041
041
041
041
041
041
041 | 163
163
163
163
163
163
163
163 | 11H
11H
11H
11H
11H
11H | 30
30
30
30
30
30
30
30 | | | | | | | | | | | | | | 07
12
12
11
11
10
12 | 05
11
12
09
12
11
11 | | | | | | | | HAHTTAM T | ASC | 1942
1943
1944 | 60 | | 172
172
172 | 42W | 97
97
97 | | | | | | | | | | | | 03
12
05 | | | | | | | | | | | IT МАТТНЕW | | 1942
1943 | | | 172
172 | | 97
97 | 1 | 1 | 1 | 1 1 | . 1 | 1 | 1 | | 1 | 1 1 | | | | 53
61 | 53 | | | İ | | | 26701
26701 | | AL | _ASI | ΚA | | | | | | | | | | | | | | | | NUF | | OF M | | | YEAR | | | |-------------|--|--|--|---|---|--|---|---------------------------------|---|---|---|--|---
---|---|-----------------|---|---|--|----------------|---|----------------------|------|--|--| | | | | | | | HOU | | | | | | | | | TH | | /ś | ;
; / | /خ | See / | Te la | | | | 8 | | NAME ! | TYPE | YEAR | LAT. | LONG. | ELEV. | | =
F M | | | | | | | | ı lo | . , | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | 12.6 | \$\\ \$ | | 2 A CONTRACTOR OF THE PROPERTY | NUMBER | | ST MATTHEW | AAF | 1944 | 60 21N | 172 42H | 97 | \dashv | † | t | + | ╁ | 1 | 1 | 1 | 1 | 1 1 | | | _1 | 62
60 | 62
60 | | | | 1 | 26701
26701 | | ST MICHAEL | AAF
SAUR | 1945 | | 172 42W | 97
35 | | 3 : | :
د اه | 3 3 | 1 | Į | 1 | | 3 | | | | | | 00 | 1 | | | | | | ST PAUL IS | SPL | 1911 | 57 Q7N | 170 16W | 20 | | | ļ | | | | | | | | | | 04
08 | | | ļ | | | | 25713
25713 | | ST PAUL IS | SPL
S | 1912 | 57 07N
57 07N | 170 16W | 20 | | | Ì | | | | | | | | ł | | 05 | | | | | | | 25713 | | ST PAUL IS | | 1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1927
1929
1930
1931
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1946
1946
1947 | 57 O7N
57 O7N | 170 16M
170 16 | 200
200
200
600
600
466
466
922
199
199
199
199
199
199
199
199
199 | 3 3341 | 3 4 | 3 3 4 1 | 3 3 3 4 4 | 333341 | 3 3 | 3 3 | 3 3 | 3 3 3 | 3 3 3 4 | 133334 1 | 06 12 | 10
10
10
10
10
10
10
10
10
10
10
10
10
1 | 06
12
12
12
12
12
12
12
12
12
12
12
12
12 | 02
07
06 | | | | | 25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713 | | ST PAUL IS | ###################################### | 1947
1948
1949
1950
1951
1952
1954
1956
1956
1956
1958
1960
1960
1965
1965
1967
1968
1969
1969
1969
1969
1969
1969
1969 | 57 091
57 091
57 091
57 091
57 091
57 091
57 091
57 09
57 09
57 09 | 170 13i | | 00 00 04 44 55 55 55 55 55 11 11 11 11 11 11 11 11 | 000445555551111111111111111111111111111 | 0445555551111111111111111111111 | 000455555551111111111111111111111111111 | 000045555555111111111111111111111111111 | 000000000000000000000000000000000000000 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 000455555555555555555555555555555555555 | 000045555551111111111111111111111111111 | 000045555555111111111111111111111111111 | 1 1 1 1 1 1 1 1 | | 06 12 | 06 12 12 12 12 12 12 12 12 12 12 12 12 12 | | | 01
11
12
12 | | | 25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713
25713 | | ST PAULS IS | AAF
AAF
AAF | 1944
1944
1946 | 57 Q8 | N 170 16
N 170 15
N 170 16
N 170 16 | H 86 | 1 | 1 1 | | | | 1 | | | 1 1 | | 1 | | | 52
62
60 | 62 | | | | | 25705
25705
25705 | | ST PAUL IS | NS
NS | 1933
1934 | | N 170 16
N 170 16 | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | | | | | | | | | 25712
25712 | | SAND PBINT | S
NF
NF
CAA
CAA | 194 | 55 20
55 20
55 20
55 20
55 20 | N 160 30
N 160 30
N 160 30
N 160 30
N 160 30 | H 33
H 33
H 33
H 33 | | 7 7 7 1 1 5 6 | 771 | 4
7
7
1
6 | 7
1
1 | 7 1 1 | 1 | 7 1 | 7 7 1 1 | 7
7
1
6 | 7 7 1 | 04
05
03
12
09 | | | | | | | | 25617
25617
25617
25617
25617
25617
25617 | | SAND PGINT | 5AL
5AL
5AL
5AL | IR 196:
IR 196:
IR 196: | 55 20
55 20
55 20
55 20 | IN 160 30
IN 160 30
IN 160 30 |)H 51
)H 51 | | 5 5 5 5 | 4 | 5 | 5 | 5 5 5 5 | 5 | | 5 5 | 5 5 5 | 5 | | | | | | | | | 25617
25617
25617
25617
25617 | ALASKA NUMBER OF MONTHS IN YEAR WITH | | | | | | | н | DUR | LY | RE | CO | RD: | 5 E | 3 Y | MO | N1 | Н | , | /2 | / | ,
/ | / & / | Tele Paris | / & | / | æ/ | /
- e- | / § / | |-----------------------------|--|--|--|--|--|----------------------|---|-------------------|-------------------|-----------------------|---------------------------------------|-------------------|---
---|---|---------------------------------|----------------------|----------------------------|-----------|--|------------------|------------|--|---|----|-----------|--| | NAME | TYPE | YEAR | LAT | Liene | . ELEV. | 1. | | = 2
 <u> </u> | | | | | | | | lo. | Z. | 77. 40 / 34
4 / 34 / 34 | /
~_\$ | Sp. | | |) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | | | | MBAN
NUMBER | | SAND POINT | SAME
SAME
SAME
SAME
SAME
SAME
SAME
SAME | 1966
1967
1968
1969
1970
1971
1972 | 55 20
55 20
55 20
55 20
55 20
55 20
55 20 | ON 160 3
ON 160 3
ON 160 3
ON 160 3
ON 160 3
ON 160 3 | 0H 50
0H 50
0H 50
0H 50
0H 50
0H 50 | a. a. a. a. a. a. a. | 5 | 5 5 5 5 | 5555533 | 5
5
5
5
3 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5 5 5 5 5 5 5 5 5 | 5 5 5 5 5 3 3 | 5 | 5 5 5 5 3 3 | 5
5
5
5
5
5
5 | - | | 7 | / & | <u> </u> | | -/+ | | ** | | 25617
25617
25617
25617
25617
25617
25617
25617
25617
25617 | | SAVOONGA | 8 8 8 8 8 | 1930
1931
1932
1933
1934
1935 | 63 41
63 41
63 41 | | 54 35
54 35
54 35
54 35 | 3 | | 3 | 3 | 3 3 | 3 3 | 3 | 3 | 3 | 3 | 3 | | | | ļ | | | | | | | | | SAVBONGA | A
A | 1947
1948
1949 | 63 41
63 41
63 41 | N 170 2 | | 3 | 3 | 3 | 3 : | 3 3 | 3 3 | 3 | 3 | | 3 | | | | | 04
10
05 | | | | | | | | | SAVOONGA | | 1965
1966
1967
1968
1969
1973
1974
1975 | | N 170 2
N 2 | 45
34
45
34
45
34
45
34
45
34
45
34
45
34
45 | 3 3 | 3 3 3 | 3 3 3 | 3 : 3 : 3 : 3 : 3 | 3 3
3 3
3 3 | 3 3 | 3
3
3 | 3 3 3 3 | 3 3 3 3 3 3 | 3333333 | 3 3 3 3 3 | | | | | | | | | | | | | SEDCO 706
SEGUAM | SAWR | 1976 | l | N 143 H | | | | | | s e | | اء | _ | | 6 | - 1 | | | | - | | | • | | | | | | | AAF
AAF | 1944
1945 | 52 23 | N 172 2!
N 172 2! | H 62 | | 6 | 6 1 | 6 E | 5 6 | 6 | 5 | 6 | | 5 | | | | | 59
62
59 | 60
59 | | | | | | 25703
25703
25703 | | SELAWIK | e e | 1938
1939 | | N 160 0 | | 3 | 3 | | | | | | | | 3 | 3 | | | İ | | | | | | | | | | SELDOVIA | SAWR
SAWR | | | N 151 42
N 151 42 | | | | 3 : | 3 3 | 3 3 | 3 | 3 | 3 | 3 | 3 | | | | | | | | | | İ | | | | SEMISOPOCHNO
SENTINEL IS | AAF | 1944 | } | N 179 35 | | | П | 6 | 1 | 1 | | H | - { | - [| | | | | | | 53 | | | | | | 45707 | | | CG | 1940
1941 | 58 33 | 134 55 | H 60 | 5 | 5 | | | 5 5 | | | | 5 | 5 | | | | | | | | | | | | | | SENTINEL IS | 000000000000000000000000000000000000000 | 1959
1960
1961
1962
1963
1964
1965 | 58 331
58 331 | 134 55
134 55
134 55
134 55 | 00
00
00
00
00
00
00 | 555555 | 5 5 5 | 5 5
5 5
5 5 | 5 5 5 5 5 5 5 | 5 5 5 | 5
5
5 | 5 5 5 | 5 | 5 | 5 5 5 | 5 5 5 5 5 5 | | | | | | | | | | | | | SEWARD | SAWR
SAWR
SAWR
SAWR | 1955
1956
1957
1958
1961 | | 1 149 25 | H 17
H 17
H 17 | 3 | 3 | 3 3 | 1 | 3 | 3 | 3 | | | 3 | 3 | | | | | | | | | | | | | SEWARD | # # # # # # # # # # # # # # # # # # # | 1931
1932
1933
1935
1936
1937
1938
1939
1940
1941
1942 | 60 071
60 071
60 071
60 071
60 071
60 071
60 071
60 071 | 149 27
149 27
149 27
149 27
149 27 | 1 | 3 | 3 3 3 5 6 | 3 3 | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 3 5 | 3 3 4 | 11
01 | 11
01 | | 11 | | | | | | | 26438
26438
26438
26438
26438
26438
26438
26438
26438
26438
26438 | | SEWARD | 5A
5A
5A
5A | 1942
1943
1944
1945 | 480 08
480 03 | 149 27
149 27
149 27
149 27 | H 116 | 6
6 | 5 6
5 6 | 6 6
5 6 | 6
6 | 6
6 | 5
6 | 6 | 6 | 6 (| Б) і | 6 l | 11
12
12
07 | 06
01 | | 11
12
12
07 | | | | | | | 26438
26438
26438
26438 | | SEWARD | A
A
A | 1945
1946
1947
1948
1948
1950
1951
1952
1953
1954
1955
1956 | 60 07N
60 07N
60 07N
60 07N | 149 27
149 27
149 27
149 27 | 76
76
76
76
76
76
76
76
76
76 | 5666666 | 6 | 6 6 6 6 6 6 6 6 | 9999999 | | 66556666 | 6666666 | 6 | 5 | 5 | 5555555 | 05 | | | 05
12
12
12
12
12
12
12
12
12
12
12 | | | | | | | 26438
26438
26438
26438
26438
26438
26438
26438
26438
26438
26438
26438
26438
26438 | | Al | LASI | KA | | | | NUMBER OF MONTHS IN | | |-----------|--|--|--|--|---|---|--| | | | | | | | DURLY RECORDS BY MONTH 1 = 24 085 PER DAY 1 F M A J J A S O N D S S S S S S S S S | MBAN NUMBER | | | | | | 1 | | DURLY RECORDS BY MONTH 1 = 24 OBS PER DAY 1 F M A M J J A S O N D S S S S S S S S S S S S S S S S S S | HBAN
NUMBER | | NAME | TYPE | YEAR | LAT. | | | | NUMBER 35439 | | SEMARD | | 1958
1959
1961
1962
1963
1965
1965
1966
1969
1971
1972
1974
1975
1976 | 60 07
60 07 | N 148 274
N 274 | 76
76
76
76
76
70
70
70
70
70
70 | 1 | 26438
26438
26438
26438
26438
26438
26438
26438
26438
26438
26438
26438
26438
26438
26438
26438
26438 | | SHEEP MTN | | 1954 | 61 48
61 48
61 48
61 48
61 48
61 48
61 48
61 48
61 48 | 147 41 147 | 2316
2260
2280
2280
2280
2280
2280
2280
228 | 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 | 26439
26439
26439
26439
26439
26439
26439
26439
26439
26439
26439
26439
26439
26439
26439
26439
26439
26439
26439
26439
26439
26439
26439
26439
26439
26439 | | SHEMYA | HBAS
HBAS
HBAS
HBAS
HBAS
HBAS
HBAS | 1956
1957
1958
1959
1960
1962
1963
1964
1965
1966
1967
1969
1970 | 52 4335
52 4335 | N 174 06E
N 06E | 125
125
128
128
128
128
128
128 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 45715
45716
45715
45715
45715
45715
45715
45715
45715
45715
45715
45715
45715
45715
45715
45715
45715
45715
45715 | | SHEMYA | | 1943
1944
1945
1946
1947
1948
1950
1951
1952
1953
1954
1955 | 52 43
52 43
52 43
52 43
52 43
52 43
52 43
52 43
52 43
52 43 | N 174 06E
N 06E | 132
132
132
132
132
132
132
132 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 45708
45708
45708
45708
45708
45708
45708
45708
45708
45708
45708
45708
45708 | | SHEMYA | NS
NS | 1958
1959 | 52 43
52 43 | | | 07 07 08 07 08 | 07 45714
07 45714 | | SHISHAREF | 5A
5A
5A
5A
5A
5A
5A
5A
5A | 1937
1938
1939
1940
1941
1942
1943
1944
1945 | 66 14
66 14
66 14
66 14
66 14
66 14
66 14
66 14 | N 166 074
N 074 | 16
16
15
16
16
16
16
16
16 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 26625
26625
26625
26625
26625
26625
26625
26625
26625
26625 | | Α | • | റ | C | Κ | Λ | |---|---|---|---|----|---| | п | ᆫ | п | J | 11 | п | | H | LHS | кн | | | | | | | | | | | | | | | | NU | | 0F | | | | AR W | | |-----------|--|--|--|---|--|---------------------------|-------------------------------|---|---------------------|-----------------------------|---------------------------|---|---|---|-------------------------------|---|--|--|--|--|-------|-----
--|------|---| | | | | | | | но | URL | Y F | REC | OR | DS | ay | H | DN1 | ГН | , | <u>/</u> ç | / | / _/ | /
&) | | / & | / & | 130 | \s\\\ | | NAME | TYPE | YERR | LAT. | LONG | ELEV. | |) =
 F | | | | | | | | ln. | San | \$ | \\ \tilde{\pi}_{\tilde{\pi}} \tilde^{\tilde{\pi}_{\tilde{\pi}}} \\ \tilde{\pi}_{\tilde{\pi}} \\ \til | | State of the | Ve Je | | TO T | | HBAN
NUMBER | | SHISHAREF | 5A
5A
5A
5A
5A
5A | 1947
1948
1949
1950
1951
1952 | 66 14M
66 14M
66 14M
66 14M | 165 07W
166 07W
166 07W
166 07W | 16
16
16
16
16 | 5555 | 5 | 5 5 5 5 5 5 5 5 5 5 5 | 5 5 | 5555 | 5 5 5 5 5 | 5 | 5 ! | 5 5 | 5 | İ | | | 12
12
12
11 | | | | | | 26625
26625
26625
26625
26625
26625
26625 | | Shungnak | SA
SA
CAA
CAA
CAA
CAA
CAA
CAA | 1941
1942
1943
1944
1945
1946
1947
1948
1949 | 56 54N
66 54N
66 54N
66 54N
66 54N
66 54N
66 54N
66 54N | 157 074
157 024
157 024
157 024
157 024
157 024
157 024
157 024 | 500
500
138
138
138
138
138
138 | 6 6 6 | 668665 | 5 6
5 6
6 6 | 55555 | 5
6
6 | 68666 | 6 6 | 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 6 6 6 | 566666 | 05
07
03
12
12 | | 05
07
04 | 05
07
03
12
12
12
12
12 | | | | | | 26513
26513
26513
26513
26513
26513
26513
26513
26513
26513 | | SISTER IS | ************************* | 1947
1948
1950
1951
1952
1953
1958
1958
1959
1959
1960
1961
1962
1963
1964
1969
1969
1969
1969
1971
1973
1973
1974
1975 | 58 10M
58 10M
58 10M
58 10M
58 10M
58 10M
58 10M
58 10M
58 10M
58 10M | 135 15M
135 15M | 25 25 25 25 25 25 25 25 25 25 25 25 25 2 | 5555555555555555555555555 | 5 9 | 555555555555555555555555555555555555555 | | 655555555555555555555555555 | 5555555555555555555555555 | 5555555555555555555555555555555 | 355555555555555555555555555555555555555 | 955555555555555555555555555555555555555 | 55555555555555555555555555555 | | The state of s | The state of s | | | | | A CONTRACTOR OF THE | |
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341
25341 | | SITKA | SPL
SPL | 1898
1898 | 57 D3N
57 D3N | 135 20H
135 20H | 63
63 | | | | | | | | | | | | | 07
02 | 05
03 | 07
02 | | | | | 25334
25334 | | SITKA | 5991
5991
5991
5991
5991
5991
5991
5991 | 1906
1910
1911
1912
1913
1914
1915
1916
1916
1916
1921
1922
1923
1924
1925 | 57 03N
57 03N
57 03N
57 03N
57 03N
57 03N
57 03N | 135 20W
135 20W | 63
63
63
63
63
63
63
63
63
63
63
63
63
6 | | | | | | | | | | | | | 06 12 12 12 12 12 12 12 12 12 12 12 12 12 | 06 12 12 12 12 12 | | | | | | 25334
25334
25334
25334
25334
25334
25334
25334
25334
25334
25334
25334
25334
25334
25334
25334
25334
25334
25334
25334 | | SITKA | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1930
1931
1933
1934
1935
1936
1937
1938
1940
1941
1942
1944
1945
1946
1949
1949
1949 | 57 03N
57 04N
57 04N
57 04N
57 04N
57 04N
57 04N | 135 20H
135 20H
135 20H
135 20H
135 20H
135 20H
135 20H
135 20H
135 20H
135 21H
135 21H
135 21H
135 21H | 65
31
31
31
31
31
31
31
32
56
66
66
66
66 | 3 3 5 6 1 1 1 1 1 1 | 3 3 3 3 3 3 3 6 6 6 6 1 1 1 1 | 3333435066 | 3 3 3 3 3 4 3 3 3 6 | 3 3 3 3 3 3 6 1 1 | 33333343336 | 3 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 3 3 3 3 3 3 6 1 1 1 | 3 333336 111 | 15
09 | | | 10
04
03
12
12
12
12
12 | | | | | | 25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333 | ALASKA NUMBER OF MONTHS IN YEAR WITH | | | | | | | | | | REC | | | | | | тн | /: | /s / | /
æ / | State of the | TATE CORONS | / 60/50
*/ 18/03/60
*/ 18/03/60 | LONG CONTROL OF THE PARTY TH | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 000 | |----------|---|--|---|--
--|---|---|---|---|---|-----------------|-----------------------------|---------------|---|----------------------------------|-----|------|---|--|-------------|---------------------------------------|--|--|--| | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | | | | a m | | | | | | מ ו | SMO | | September 1 | \$ / <u>\$</u> | | | | | NUMBER | | SITKA |
CAA
CAA
CAA
CAA
CAA
CAA
CAA
CAA
CAA
FAA
F | 1951
1952
1953
1954
1955
1956
1959
1960
1961
1962
1963
1964
1965
1964
1969
1970
1971
1972
1973
1974
1975 | 57 04N 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 66666666666666666666666666666666666666 | 111111111111111111111111111111111111111 | 1 | 111111111111111111111111111111111111111 | | 111111111111111111111111111111111111111 | 1 | 1 1 1 1 1 1 1 1 1 | | 111111111111111111111111111111111111111 | | | | 12
12
12
12
12
12
12
12
12
12
12
12
12
1 | 03
12
12
12
12
05
06
06 | | | | | 25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
25333
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
2533
253 | | SITKA | NS
NS
NS
NS
NS
NS | 1938
1939
1940
1941
1942
1943
1944 | 57 03N 1
57 03N 1
57 03N 1
57 03N 1
57 03N 1 | 35 21W
35 21W
35 21W
35 21W
35 21W
35 21W
35 21W | 98
96
96
96
96
98 | 1 1 1 1 1 | 1 1 1 1 | 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 | 1 1 1 1 1 | 1
1
1
1 | 1 1 1 1 | 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | 25307
25307
25307
25307
25307
25307
25307 | | SITKINAK | CG C | 1960
1961
1962
1963
1964
1965
1966
1967
1969
1970
1971
1972
1973
1974
1975 | 56 33N 1
56 1 | 54 084
54 084
54 084
54 084
54 084
54 084
54 084
554 084
554 084
684 084
6 | 53
53
53
53
53
53
53
53
53
53
53
53 | 600000000000000000000000000000000000000 | 55555555 1155 | 555555555555555555555555555555555555555 | 555555555555555555555555555555555555555 | 555555551155 | 555 51555 | 55555555 5155555 | 555555 5-5555 | 5 9
5 9
5 9 | 55555555555555555 | | | 08
12
12
11
05
03
12
06
08
12
11
10
12 | | | | | | | | SKAGWAY | | 1931
1932
1933
1934
1935
1937
1940
1949
1949
1945
1948
1949
1951
1954
1954
1959
1956
1956
1962
1963
1964
1965
1966
1967
1966
1967 | 59 27 N 1 1 59 2 N N N N N N N N N N N N N N N N | 35 19W
35 19W | 111 11 11 111 111 | ១០១០០០ គណៈគណៈគណៈគណៈគណៈគណៈគណៈគណៈគណៈគណៈគណៈគណៈគណៈគ | ************************ | 4333333 | 5 | 3 3 3 3 3 3 3 5 5 5 5 | 3333333335 5555 | 3336 6 65555555555555555555 | <u> </u> | 3 3 3 | 333335 6555555555555555555555555 | | | 08
04 | | | | | |
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
2535
25335
25335
25335
25335
25335
25335
25335
25335
25335
25335
2535
2535
2535
2535
2535
2535
2535
2535
2535
2535
2535
2535
2535
25 | | A | LAS | KA | | | | | . , | | • | • | _ | _ | • | - | _ | | N | JMBE: | R OF | MON | THS | IN | l YE | AR W | I TH | |--------------|--|--|--|--|--|-------------|---|---|---|---|---|---|---|---|---|--|----------|--|-------------|-------------|---|------------|--|--------
---| | | | | | | | HO | JRL | YF | EC | ORC | os I | Вч | но | NTI | H | / | / | / | /2 | WE ON COMP. | ? / | <u>.</u> / | / _ | / | /§*/ | | | | | | | | | 1 = | 24 | 01 | BS | PE | R D | AY | | | S. S | ?
æ/~ | The state of s | September 1 | | 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / | | / **/********************************* | 1 | WBAN | | NAME | TYPE | YEAR | LAT | L | ELEV. | L | | _ | \sqcup | Ц | _ | 1 5 | 0 | N | D | \ <u>\$</u> | s/& | જેં/ જ | § / ' | * / X | **/ | * 4 | T/\$7. | \$/ \$ | NUMBER | | SKAGWAY | 4 4 4 4 | 1971
1972
1973
1974
1975
1976 | 59 28N | 135 18H
135 18H
135 18H
135 18H | 30 | 55555 | 5 5 5 | 5 5 5 5 5 5 5 5 5 5 5 | 5 | 5 | 5 5 | 5 5 5 5 5 5 5 5 5 5 5 5 | 5
5 | 5555 | 55555 | | | 12 | | | | | | | 25335
25335
25335
25335
25335
25335 | | SKAGHAY | AAF
AAF
AAF | 1943
1944
1945 | 59 27N
58 27N
59 27N | | 21
21
21 | | | 6 6
6 | | | 6 | 5 | 6 | | 6 | | | | 5
5! | | | | | | 25303
25303
25303 | | SKHENTNA | 8 9 9 9 9 | 1939
1940
1941
1942
1943
1944
1945 | 61 57N
61 57N
61 57N
61 57N
61 57N | 151 10H
151 10H | 228
228
228
228
228
228
153 | 454555 | 4 · 5 · 5 | 3 3 4 4 5 5 5 5 5 5 | 4 | 33455 | 3 3 | | 5
5 | 3 4 5 5 | 534555 | 12
11
12
01 | 12
05 | | | | | | | | 26514
26514
26514
26514
26514
26514
26514 | | SKHENTNA | | 1945
1946
1949
1950
1951
1952
1953
1954
1955
1958
1959
1961
1962
1963
1964
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975 | 61 586 61 566 61 566 61 568 61 | 151 12M
151 12M | 153
153
153
153
153
153
153
153
153
153 | 33 333333 | 111111111111111111111111111111111111111 | 1 | 1 | 111111111111111111111111111111111111111 | 1 | 1 | 1 | 1 | 111111111111111111111111111111111111111 | 11 | | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | | | | | | |
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514
26514 | | SLANA | A
A
A | 1974
1975
1976 | 62 43N
62 43N
62 43N | | 2420
2420
2420 | | 5 5 | 5 5 | 5 | 5 | 5 5
5 5 | 5 5 | 5
5
5 | 5 | 5
5 | | | | | | | | | | | | SLEETMUTE | ******* | 1957
1958
1959
1960
1961
1962
1963
1964
1972
1973 | 61 42N
61 42N
61 42N
61 42N | 157 11W
157 11W
157 11W
157 11W
157 11W
157 11W | 285
285
285
285
285
265
285
285
285 | 5 5 5 | 5 5 5 5 5 5 5 5 | 5 5 | 5 | 5 | 5 5
5 5
5 5 | 55555 | 5 5 5 5 | 5
5
5 | 5 5 5 5 | | | 04 | | | | | | | | | SNOWSHOE LAK | | 1966
1967
1968
1969
1970
1971
1972
1973
1974
1975 | 099 099 099 099 099 099 099 099 099 099 | 146 403
146 403
146 403
146 403
146 403
146 403
146 403
146 403 | 2295
2410
2410
2410
2410
2410
2410
2410
2410 | 3 3 3 3 3 3 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 3 3 3 | 3 3 3 3 3 3 3 3 | 3 3 3 3 3 3 3 3 | 3 | 3 3 3 3 3 3 3 3 3 3 | 333333333 | 3 | 3 3 3 3 3 3 3 3 3 | | | 12
12
12
12
12
12
12
12
12 | | | | | | | | | SOLDOTNA | SAWR
SAWR
SAWR
SAWR
SAWR
SAWR
SAWR | 1962
1963
1964
1965
1966
1967
1968 | 60 28N
60 28N
60 28N
60 28N
60 28N
60 28N | 151 02W
151 02W
151 02W
151 02W | 115
115
115
115
115
115 | 4 | 5 4
4 4 | 5 4 4 4 4 | 5 4 4 4 4 | 5 4 4 4 4 | 4 5 5 4 4 4 4 4 4 5 5 | 5
4
4
4
4 | | 4 | | | | | | | | | | | | | SOLOMON | A A A A A | 1931
1932
1933
1934
1935
1936 | 54 35N
54 35N
64 35N
64 35N
64 35N
64 35N | 164 24W
164 24W
164 24W | 15
15
15
15
15
15 | 3 | | 3 3 | 3 3 3 | 3 : | 3 3 3 3 3 3 3 3 3 | 3 3 | 3 3 3 | 3 3 3 | 3 3 3 3 3 | | | | | | | | | | 26629
26629
26629
26629
26629
26629 | | Al | LAS | KA | | | | | | | | | | | | | | , | | | OF | | | | AR WI | | |--------------|--|--|--|--|--|-----------------------|--|---|----------------------|---|---|----------------------------|---|---|----------------------|------|----------------------------------|--|-----------|---------------|--|---|--|--| | | | | | | | | JRLY | | | | | | | NTH | / | | | Son Son | Substance | TA LE COMPANS | #1/2/24
#1/2/23/24 | |
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1.00)
(1 | S /
B WBAN | | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | ٦ | F | А | H | J. | JA | s | 0 | N D | <u> </u> | 5. S | £ 6 | \$ 8 | / 3 | /2 | | \$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | ž/ & | NUMBE | | SOLOMON | | 1937
1938
1939
1940
1941
1942
1943
1944
1945
1946 | 64 35N
64 35N
64 35N
64 35N
64 35N
64 35N
64 35N
64 35N
84 35N | 164 244
164 244
164 244
164 244
164 244
164 244
164 244 | 15
15
15
15
15
15
15 | 354555555 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5 5 5 5 5 | 555555 | 5 5 5 5 5 5 5 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 3555555 | 555555 | 345555555 | 1 | | | | | | | | | 25529
26529
26529
26529
26529
26629
26629
25629
26629
26629 | | SPARREVOHN | 55555555555555555555555555555555555555 | 1951
1952
1953
1954
1955
1956
1957
1958
1959
1961
1963
1964
1966
1967
1969
1970
1971
1973
1973
1975 | | 156 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1729
1729
1729
1729
1729
1729
1729
1729 | 1
6
1
5 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 7 7 7 7 7 1 1 1 1 1 7 1 1 1 1 7 1 | 11117777711111717176 | 1 1 1 1 7 7 7 7 7 7 7 7 7 7 7 1 1 1 1 7 1 7 1 6 1 6 | 5 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 611177777177117117716 | 1 1 1 1 7 7 7 7 7 7 7 7 7 1 1 1 1 1 7 1 1 6 | 6 6 | | | | 05
12
12
12
11
12
12
12
12
11
10
03 | | | 12
10
03
12
12
12
01 | | | 26534
26534
26534
26534
26534
26534
26534
26534
26534
26534
26534
26534
26534
26534
26534
26534
26534
26534
26534
26534
26534
26534
26534
26534 | | SPRUCE CAPE | 00
00 | 1972
1973
1974 | 57 50N | 152 19H
152 19H
152 19H | | 5 | 5 5
5 5 | | 5 | 5 4 | 5 5 | 5 | | 5
5
5 | | | | | | | | | | | | SQUAH HARBOR | A
A | 1931
1932 | | 160 33⊬
160 33⊬ | 200
200 | 3 | 3 3 | | | | 3 3 | 3 | | 3
3
3 | | | | | : | | | | | | | STAMPEDE | SAUR
SAUR
SAUR
SAUR
SAUR | 1941
1842 | 63 44N
63 44N
63 44N
63 44N
63 44N | 150 22W
150 22W | 2500
2500
2500
2500
2500
2500
2500 | 3 3 3 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 3 3 | 3 3 | 3 3
3 3 | 3 3
3 3
3 3
3 3
3 3 | 3 | 3 3 3 | 3 3
3 3
3 3
3 3
3 3 | | | | | | | | | | | | STEVENS VILA | | 1940
1941
1942
1943
1944
1945 | 66 01N
66 01N
66 01N
66 01N
66 01N | 149 05H
149 05H | 350
350
350
350
350
350
350 | 5 | 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5
5
5 | 5 5 5 | 5 5
5
5 | 3 3
5 5
5 | 5 | 5 5 5 | 3 5 5 5 5 5 5 | | | | | | | | | | 26449
26449
26449
26449
26449
26449
26449 | | STONY RIVER | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951 | 61 46N
61 46N
61 46N
61 46N
61 46N | 156 38W
156 38W
156 38W
156 38W
156 38W
156 38W
156 38W
156 38W | 221
221
221
221
221
221
221
221
221
221 | 3 5 5 5 5 5 | 3
3
3
3
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 3 5 5 6 5 5 | 5 5 5 5 | 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5 5 5 5 5 5 5 | 3 5 5 5 | 5 5 5 5 5 | 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 05
05
05
05 | 3 | 02 | 01
05
11
06
03
11 | | | | | | 26527
26527
26527
26527
26527
26527
26527
26527
26527
26527
26527 | | STONY RIVER | 4 4 4 | 1966
1967
1968 | | 196 38W
196 38W
196 38W | 221
221
221 | 3 | 3 3 | | | 3 3 | 3 | | | 3 3 | | | | | 12
06 | | | | | | | STUYAHOK | A 4. 0 | 1936
1939
1940 | 62 10N
62 10N
52 10N | 161 50₩ | 1500
1500
1500 | 3 4 | | | 3 4 | - 1 - | 3 3 | | | 3
5
4 | | | | | | | | | | | | SUMMIT | | 1940
1941
1942
1943
1944
1945
1946
1947
1948 | 200
200
200
200
200
200
200
200
200
200 | 149 08W
149 08W
149 08W | 2405
2405
2407
2407
2407
2407
2407
2407
2407 | 5
1
1
1
1 | 5 5 5 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6
1
1
1
1 | 5 1 1 1 1 1 1 | 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5
1
1
1
1
1 | 5
1
1
1
1
1 | 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 12
12
10 | 3 | 09
09
12
12
12
07 | 11
12
12
12
12
12
12
12
12 | | | | | | 26414
26414
26414
26414
26414
26414
26414
26414
26414 | | AL | AS | KΑ | | |----|----|----|--| |----|----|----|--| | A | LAS | KA | | | | | | | | | | | | | | | | | | | NUI | 1BER | OF | MONT | HS I | N YE | AR W | тн | |--------------|---|--|---|--
---|---|--|---|---|---|--|---|---|---|---|---|---|---|---|----|-----------|---|--------------------------|----------------|--------------------------------------|---|--|---| | | | | | | | | | | | LY | | | | | | | | Н | , | اپ | / | /
/ | | TRIPE POR PIES | . 3 | / & | 1381 | / § / | | NAME | TYPE | YEAR | Le | ат. | LON | o. - | ELEV. | | | - 2
 n l | | | | | | | | lo | SAME | | /~
3 | OF SE | Substitute of the second | | / 43/54/
4.76/64/4/
4.76/64/4/ | # (E.O. O. | 1. 10 mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/m | NUMBER | | SUMMIT | | 1950
1951
1952
1953
1954
1955
1956
1956
1959
1961
1962
1963
1964
1966
1967
1966
1969
1970
1971
1972
1973 | 63
63
63
63
63
63
63
63
63
63
63
63
63
6 | 0.000.000.000.000.000.000.000.000.000. | 149
149
149
149
149
149
149
149
149
149 | 10000000000000000000000000000000000000 | 2407
2407
2407
2407
2410
2410
2410
2410
2410
2410
2410
2410 | 111111111111111111111111111111111111111 | 111111111111111111111111111111111111111 | 1 | 1 | 1 | 111111111111111111111111111111111111111 | 1 | | 1 | 111111111111111111111111111111111111111 | 111111111111111111111111111111111111111 | | | | 122
122
123
123
124
125
126
127
127
127
127
127
127
127
127
127
127 | | | 02
97
10 | 0.7 | |
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414
26414 | | SUMMIT LAKE | #S0
A
A
A | 1976
1957
1968
1969 | 63
63
63 | 08N | 149 (
145)
145) | 32H
32H | 3230
3230
3230 | | 4 4 | | 4 . | | 4 . | | 1 1 | | 4 | 4 | | | | 12 | | | 03 | | | 26414 | | SUNSHINE LAK | CBOP | 1964 | 62 | 10N | 150 | 1 DH | 300 | | | | | | | | | | | | | | | | 02 | | | | | ·
 | | SUSIE 1 | SAHR
SAHR | | 69
69 | | 148 <u>9</u>
148 9 | | 500
500 | | | 6 | 6 6 | 5 6 | 5 | | | | | | | | | ٠ | | | | | | İ | | TACBTNA | A
A
A | 1931
1932
1933 | 53 | ואסם | 156 (
156 (
156 (| 34W | 1410
1410
1410 | 3 | 3 | | | 3 3 | 3 : | 3 3 | 3 | 3 | 3 | 3 | | | | | | | | i
I | | | | TAKU LØDGE | e e | 1940
1941
1942
1943 | 58 :
58 :
58 : | 33N
33N | 133 4
133 4
133 4 | 41W | 175
175
175
175 | 5 | 5 5 4 | 4 | 5 4 | 5 3 | 3 : | 3 3 3 4 4 4 | 4 | 5 | 4444 | 5 | | | | | | | | | | | | TALKEETNA | | 1940
1941
1942
1943
1944
1946
1949
1949
1951
1953
1954
1955
1956
1957
1963
1963
1963
1963
1963
1963
1963
1963 | 622
662
662
662
662
662
662
662
662
662 | | 150 C | 10000000000000000000000000000000000000 | 356
356
356
356
351
351
351
351
351
351
351
351
351
351 | | 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 611111111111111111111111111111111111111 | 6 6
1
1
1
1
1
1
1
1
1
1
1 | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 111111111111111111111111111111111111111 | 111111111111111111111111111111111111111 | 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 122122122122122122122122122122122122122 | | 02 | | 0.4
0.5 | | | | | 265 228 265 265 265 265 265 265 265 265 265 265 | | TANACROSS | A
A
CAA
CAA
CAA
CAA
CAA | 1941
1942
1943
1944
1945
1946
1947
1948 | 63 2
63 2
63 2 | 24N
24N
24N
24N
24N | 143 1
143 1
143 1
143 1 | 1000
1100
1100
1100
1100
1100
1100
110 | 1200
1200
1546
1546
1546
1546
1546
1546 | 5 1 1 | 1 1 1 | 1 | 5 6 6 6 1 1 1 1 1 1 1 | 5 | 5 6 | 1 | 1 | 1 | 5 | 1 | 04 | | | 05
12
04
03
12
12
12 | | | | | | 26440
26440
26440
26440
26440
26440
26440
26440 | | A | LAS | KA | | | | | | | | | | | | | | | | | | พบ | MBE | RI | OF M | IONTH | S II | N YE | AR N | II TH | t | | |-------------|-------------------|--|--|--|--|---|--|-----------|---|---|---
-----------------------|-------------------|--|--|--|---|---------------------------|-------|---|---------------------------|---|--|--|------------|--|---|-------|--|---| | * | | | | | | | | но | | | | | | | | | чтн | ł | /: | /
& / | / | /. | <i>#</i> / | TRIPLE TO SERVICE S | , 3 | / 3 | * (0) 1. (0) 1. (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) | / § | 3/ | | | NAME | TYPE | YEAR | ם ו | т. | LOF | un. I | ELEV. | | | | | 085
(1.) | | | | | n la | n | STORY | | | 40 | THE B | 20 10 10 10 10 10 10 10 10 10 10 10 10 10 | | TO T | | 400 | / HBAN
NUMBER | | | TANACROSS | CAA | 1948 | 63 | 24N | 143 | 19₩ | 1546 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 4 | 1 | 4 | | | 1. | 2 | | / | | / | \leftarrow | 1 2 | 26440 | | | TANACROSS | AAF
AAF
AAF | 1950
1944
1945
1947 | 63
63 | 24N
24N
24N
24N | 143 | 19W
19W | 1546
1554
1554
1554 | | | | | 1 1 | | 1 | 1 | | 1 | 1 | | | 5
6
5 | 7 | 56
60
53 | ; | | | | 1 | 26440
26405
26405
26405 | | | TANAGA IS | NS
NS
NS | 1944
1945
1946 | 51 | 45N
45N
45N | 178
178
178 | 02H | 145
145
145 | 1 | 1 | 1 | | 6 E | | | 1 | | 1
6 | 6 | | | | | | | | | | 1 3 | 25714
25714
25714 | | | TANALIAN PT | **** | 1939
1940
1941
1942
1943
1944
1945
1946
1947
1948 | 60
60
60 | 13N
13N
13N
13N
13N
13N | 154
154
154
154 | 88888888888888888888888888888888888888 | 308
308
308
308
308
308
308
308
308 | 5 5 5 5 5 | 5 5555 | 5 5 5 5 | 3 5 5 5 5 | 3 3 3 5 5 5 5 5 5 5 5 | 3 3 5 5 5 5 5 5 5 | 3355555 | 3
5
5
5
5 | 555 | 5 5 5 5 | 3 5 5 5 5 5 | | | D
1.
1.
1.
1. | 2 2 2 | | | | | | | 26531
26531
26531
26531
26531
26531
26531
26531
26531
26531 | | | TANANA | | | 56555555555555555555555555555555555555 | | 152
152
152
152
152
152
152
152
152
152 | $\begin{array}{c} -1.1 \\ -1$ | 240
240
240
240
240
240
240
240
240
240 | 33666 | 3333333666 1111111111111111111111111111 | 000000000000000000000000000000000000000 | 33333333336666 111111111111111111111111 | | | 33333333333356 1111111111111111111111111 | 4333333333366 11111111111111111111111111 | 00000000000000000000000000000000000000 | 33333356 11111111111111111111116666666666 | 3 3 3 3 3 3 3 3 5 6 1 1 1 | 05 | 04 12 12 12 12 12 12 12 12 12 12 12 12 12 | | 222222222222222222222222222222222222222 | 067 052 112 12 12 12 12 12 12 12 12 12 12 12 1 | | | | | |
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29
265.29 | | | TANANA | AFS
AFS | 1943
1944 | | | 152
152 | | | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | | | 5 | 7 | | | | | | | 26504
26504 | , | | | | | | | | | | | | | | 0 | E (| | | • | , | | | | | | | | | | | | | | | Ω | ıc | 2 | v | А | |---|------|---|---|---| | н | , ,- | | n | н | TYPE YEAR 1951 HBAS HBAS 1956 1957 1956 1961 SAWR SAM 1965 1970 1971 1975 1976 1945 1946 1953 1954 1955 1951 1952 1953 1954 1955 1956 1957 1959 1963 1964 1965 1944 1945 1946 1930 1931 1933 1934 1935 1955 1956 1957 1958 1959 1960 1961 1962 1953 1964 1965 160 160 160 484 LIBOS 1950 SAHR 1960 SAM 1963 1964 SAM SAHE NS. AFS AFS SAH SAME SAHR SAME SAH SAHR SAHR 1961 1962 SAUE SAME SAH SAME 1966 1967 SAUE 1968 1969 SAME AAF SEE CAPE ъ CAA CAA CAA CAA FAA FAA FAA FAA FAA HBAS NAME UMIAT UMIAT UMIAT UMIAT UMIAT UMNAK UMNAK ISLAND UMNAK ISLAND UNALAKLEET RECORDS INDEX ALPHABETIC BY STATION NAME NUMBER OF MONTHS IN YEAR WITH THE MY DOOR HIS. A CONTROL OF THE PROPERTY T (CONDITY) BAROORANS HOURLY RECORDS BY MONTH Strong 1 1 = 24 OBS PER DAY HBAN NUMBER LAT. LONG. | ELEV. | J F M A M J J A S O N D 152 084 152 084 152 084 152 084 69 22N 69 22N 69 22N 337 12 12 06 26508 337 26508 26508 221 5 69 22N 26500 152 084 337 265DA 69 22N 152 08W 54433555 337 337 337 337 337 337 337 26508 3 4 4 4 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 3 3 3 26508 26508 26508 26508 26508 26508 5 26508 68 55W 68 55W 5 5 337 152 086 5 26508 55W 55W 55W 152 084 152 084 152 084 152 084 337 337 337 08H 26508 26508 69 26508 26508 337 1 1 69 22N 152 08H 337 337 09 26506 07 26506 152 08H 152 08H 152 08H 68 22N 340 340 26537 69 22N 08 26537 340 01 26537 53 23N 167 54µ 157 544 130 25621 25621 25621 25621 25621 25621 25621 25621 25621 25621 25621 25621 25621 25621 25621 25621 25621 25621 25621 53 32N 53 32N 53 32N 167 47W 57 25610 167 47H 167 47H 67 67 1 1 1 1 50 25610 25602 160 48W 160 48W 160 48W 63 53N 26627 26627 63 53N 63 53N 63 53N 63 53N 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 26627 160 48H 160 48H 160 48H 26627 26627 63 53N 63 53N 63 53N 63 53N 63 53N 63 53N 26627 26627 160 48H 26627 3 3 3 3 4 3 3 3 6 5 5 5 6 5 5 5 5 7 1 3 3 3 3 3 3 3 3 3 5 3 4 4 4 5 5 5 5 3 5 4 6 5 26627 26627 26627 26627 63 53N 63 53N 63 53N 63 53N 63 53N 08 26627 26627 26627 12 26627 26627 1111111111111116651 160 48W 63 53N 63 53N 63 53N 63 53N 63 53N 12 26627 26527 26627 26627 26627 63 53N 63 53N 63 53N 26627 160 48µ 160 48µ 160 48µ 160 48µ 160 48µ 160 48µ 26627 63 53N 26627 26627 26627 63 53N 63 53N 63 53N 26627 26627 26627 63 53N 160 160 160 160 48L 26627 48H 48H 48H 48H 26627 26627 26627 26627 | AL | ASI | ۲A | | | | | | | | | | | | | | | NUI | IBER | OF 1 | | | YEAR | | |--------------|----------------------|----------------------|----------------------------|-------------------------------|-------------------|-------------|------------|-------------------|-------------|---------|--------|-------------------|-------------|--------|--------|---|----------------|----------------|----------------|--------------|----------|--|-------------------------| | | | | | | | HOU | | | | | | | | NTI | 4 | /: | (
. / | // | | TATALE PARTY | |) (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 | , \$ | | NAME | TYPE ! | YEAR | LAT. | LONG. | ci ev | | | | 0E
ابدا | | | | | i su l | n | N. S. | | | | | | ૢ૿
ૢૢૢૢૢૼ૽ૢૼૢૢૢૢૢૢૢૼ૽ૢૼૢૢૢ૿ | HBAN
NUMBER | | UNALAKLEET | HBAS | 1968 | 63 53N | 160 48H | 21 | 1 | 1 1 | 1 1 | 1 | 1 | 1 : | 1 1 | 1 | 1 | 1 | 737 | / \ | 12 | / - | | | / | 26627 | | | HBAS
HBAS
HBAS | 1968
1970
1971 | 63 53N
63 53N
63 53N | 160 48W
160 48W
160 48W | 21
21
21 | 1 1 1 | | 1 1 | | 3 | 1 3 | 1 1
1 1
1 1 | 11 | 1 | 1 1 1 | | | 12 | | | | | 26627
26627
26627 | | | ₩8AS
WSØ | 1972
1973 | 63 53N
63 53N | 160 48H | 21
21 | 1 1 | 1 1
5 5 | 1 1 | 1 5 | 11 | 1
5 | 1 1
5 5 | 6 | 5 | 6 | | | 12 | | | 09 | | 26627
26627
26627 | | | ₩50
₩50
824 | 1974
1975
1976 | 63 53N
63 53N
63 53N | 160 48W
160 48W
160 48W | 21
21
21 | 6 | 6 E | 5 5 | 1
6
6 | 6 | 6 6 | 6 6
6 6 | 6 | | | | | 11 12 | | | 12 | | 26627
26627 | | UNALAKLEET | AAF
AAF | 1943 | 63 54N
63 54N | 160 47H
160 47H | 22 | | | | 1 | | ال | 1 1 | 1 | 1 | 1 | | | 55
62 | 54
52 | | | | 26608
26608 | | | AAF | 1945 | 63 54N | 160 47W | 22 | î | i | í | i | i | i | i | i | 1 | | | | 62 | 51 | | | | 26608
25608 | | UNALGA IS | NF
NF | 1943
1944
1945 | 53 58N
53 58N
53 58N | 166 10H
166 10H
166 10H | 711
711
711 | 1 1 | 1 3 | | 1 3 | 1 | | 1 1 | | 1 | 1 | 01 | | | | | | | 25608
25608 | | UPPER RUSSIA | SAUR
SAUR | 1857 | 60 21N | 150 06H | 700
700 | 3 | 5 3 | 3 5 | | 5 | 5 5 | 5 5 | 3 | 5 | 3 | | | | | | | | | | | SAHR
SAHR
SAHR | 1959 | | 150 06W
150 06W
150 06W | 700
700
700 | 3 | | 3 3 | | 3 | 3 3 | 3 3 | 3 | | 3 | | | | | | | | | | VALDEZ | s
s | 1909 | 61 07N | 146 16W
146 16W | 27
27 | | | | | | | | | | | | 04
12 | | | | | | 26442
26442 | | | \$
\$ | 1911 | 61 07N
61 07N | 146 164
145 164 | 27
27 | | | | | | | | | | | | 12 | | | | | | 25442
25442
26442 | | | 5
5
5 | 1913
1914
1915 | 61 07N
61 07N
61 07N | | 27
27
27 | | | | | | | | | | | | 12
12
12 | | | | | | 26442
26442 | | | S
S | 1916
1917 | 61 07N
61 07N | 146 16H
146 16H | 27
27
34 | | | | | | | | | | | ĺ | 12
12
12 | 03
12
12 | 12
08 | | | | 26442
26442
26442 | | | 5
5
5 | 1916
1919
1920 | 61 07N
61 07N
61 07N | 146 16H | 34
34 | | | | | | | | | | | | 12
12 | 12 | 12
12 | | ļ | | 26442
26442 | | | \$
\$
\$ | 1921
1922
1923 | 61 07N
61 07N
61 07N | | 34
23
23 | | | | | | | | | | | | 12
12
03 | 12
12
03 | 12
12
03 | | | | 26442
26442
26442 | | VALDEZ | A | 1931 | 61 07N
61 07N | | 12
12 | 3 | 3 | 3 3 | 3 | 3 | | 3 3 | 3 3 | | 3 | | | | | | | | 26442
26442 | | | A
A | 1933
1934
1935 | 61 07N
61 07N
61 07N | 146 15W | 12
12
12 | 3 | 3 3 | 3 3 | 3 | 3 | 3 | 3 3
3 3
3 3 | | 3 | 3 | | | | | | | | 26442
26442
26442 | | | A | 1936
1937 | 61 07N
61 07N | 146 16W
146 16W | 12
12 | 3 | 3 : | 3 3
3 3 | 3 | 3 | 3 | 3 3
3 3 | 3 3 | 3 | 3 | | | | | | | | 26442
26442 | | | A | 1938
1939
1940 | 61 07N
61 07N
61 07N | 146 16W | 12
17
17 | 3 | 3 | 3 3
3 3
3 3 | 3 | 3 | 3 | 3 3
3 3
3 3 | s 3 | 3 | 3 | | | | | | | | 26442
26442
26442 | | | A | 1941
1942 | 61 07N
61 07N | 146 16H | 17
17 | 5 | 5 | 5 5
5 5 | 5 | 5 | 5 | 5 S | 5 5 | 5 | 5 | 02 | | 12 | | | | | 26442
26442
26442 | | | A | 1943
1944
1945 | 61 07N
61 07N
61 07N | 146 16H | 15
18
18 | 5 | 5 | 5 5
5 5 | 5 | 5 | 5 | 5 5
5 5 | 5 5 | 5 | 5 | | | 12
12 | | | | | 26442
26442 | | | A | 1945
1947 | 61 07N
61 07N | 146 16W | 13
13
15 | 5 | 5 | 5 5 | 5 5 | 5 | 5 | 5 5
5 5 | 5 5 | 5 | 5 | | | 04 | | | | | 26442
26442
26442 | | | A | 1948
1949
1950 | 61 07N | 146 15W | 15 | 5 | 5 | 5 5 | 5 | 5 | 5 | 5 5 | 5 5 | 15 | 5 | | | | | | | | 25442
25442 | | | 9 9 | 1951
1952
1953 | 61 07N
61 07N
61 07N | 146 154 | 15
15
15 | | | 5 9
5 9 | | 5 | 5 | 5 5 | | 5 | 5 | | | | | | | | 26442
26442
26442 | | | A | 1954
1955 | 61 07N
61 07N | 146 16H
146 16H | 15
15 | 5
5
5 | 5 | 5 5
5 5 | 5 | 5 5 | 5 | 5 5 | 5 5 | 5 | 5 | | | | | | | | 26442
26442 | | | A | 1956
1957
1958 | 61 07N
61 07N
61 07N | 146 16 | 15
15
15 | 5 | 5 | 5 5
5 5 | 5 5 | 5 | 5 | 5 5 | 5 5 5 5 5 5 | 5 | 5 | | | | | | | | 26442
26442
26442 | | | A | 1959 | 61 07N | 146 16H | 15
15 | 5 | 5 | 5 5 | 5 5 | 5 | 5 | 5 5 | 5 5 | 5 | 5 | | | | | | | | 26442
26442 | | | A | 1961
1952
1963 | 61 07N
61 07N
61 07N | 146
164 | 15
15
15 | 5
5 | 5 | 5 5
5 5
5 5 | | 5 | 5 | | 5 5 | 5 | 5 | | | | | | | | 26442
26442
26442 | | VALDEZ | A | 1964 | 61 07N | 145 16W | 15
75 | 5 | 5 | 5 9 | 5 5 | $ \ $ | | 5 9 | | | | | , | | | | | | 26442
26442 | | | A | 1965
1966 | 61 08N | 146 15W | 75
75 | 5
5 | 5 | 5 5
5 5 | 5 5 | 5 | 5 | 5 5 | 5 5 5 5 5 | 5 | 5 | | | | | | | | 26442
26442
26442 | | | A | 1967
1968
1969 | 61 08N
61 08N | 146 15W | 75
75 | | 5 | 5 9 | 5 5 | 5 | 5 | 5 ! | 5 5 | 5 | 5 | | | | | | | | 26442
26442 | | | 8 8 | 1971
1972
1973 | 61 08N
61 08N | 146 15H | 49 | 5 | 5 | 5 9 | 5 5
5 5 | 5 | 5 | 5 | 5 5
6 6 | 6 | 6 | | | 03
12 | 01
12 | | | | 26442
26442
26442 | | | A | 1974 | 61 081 | 146 21H | 87
87 | 6 | 6
6 | 6 6 | 5 6
5 6 | 5
5 | 5 | 6 I | 6 6
6 6 | 6 | 6
6 | | | 12 | 10 | [| 09
12 | | 26442
26442
26442 | | VENETIE | COOF | | | 146 34 | 620 | | 6 | 6 4 | 5 6 | 6 | 6 | 6 | 6 6 | , 6 | 6 | | | 12 | 07 | | 12 | | 20142 | | | C00F | 1965 | 67 001 | | 620 | 1 | | | | | | | | | | | | | 12
12
07 | 1 | | | | | | 1 | I | Ī | i | Į. | I | 1 1 | 1 | 1 | | 1 1 | ١ | 1 | I | 1 | J | l | 1 | I | 1 | 4 | 1 | l | ALASKA NUMBER OF MONTHS IN YEAR WITH | 116 | _110 | | | | | HOU | RLY | YR | REC | OR | DS | В | 1 Y | 10N | ITH | | , | /
- / | /
/ | ر ان
رود/ | / 🏂 | / . | / . | /. . . | / 8 / | |-----------------|--|--|--|---|--|-------------------------------------|---|---|---|--|----------------------------------|--|-----------------------------------|---|--|---|--|----------------|--|----------------------------------|-------|--|---|--|---| | | | | | | | I | - | 24 | . 0 | 988 | P | ER | DF | Y | | | S. S | | | September 1 | TRIP. | / 4/2/
4/2/4/14
14/4/14/14/14/14/14/14/14/14/14/14/14/14 | LECONOES A | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | * WBAN | | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | J | FM | A | M | J | ŋ | A | S | 0 1 | N [| 2 | /કેં હ | 1 20 | \$ 8 | | 18. | <u> </u> | £ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | £ & | | | HAINWRIGHT | 5 A A A A A A A A A A A A A A A A A A A | 1942
1943
1944
1946
1947
1948
1950
1951
1953
1954
1955
1955
1955
1956
1956
1956
1962 | 70 37N | HAPO 081 | N N N N N N N N N N N N N N N N N N N | 33555555555555555 | ******************* | 5 | 345555555555555555555555555555555555555 | 3455555555555555555 | 34555555555555555555 | 5555555555555555555 | 3 55555555555555555555 | 335555555555555555555555555555555555555 | 335555555555555555 | 333555555555555555555555555555555555555 | 01 03 12 12 12 12 12 12 12 12 12 12 12 12 12 | 02
12
07 | 03
12
10
12
12
12
12
12
12
12
12
12
12
12
12
12 | | | | | | 27503
27503
27503
27503
27503
27503
27503
27503
27503
27503
27503
27503
27503
27503
27503
27503
27503
27503
27503
27503
27503
27503
27503 | | WALES | ###################################### | 1961
1962
1963
1964
1965
1966
1969
1970
1971
1972
1973
1974
1975 | 65 37N | 168 034
168 034 168 034 168 034 168 034 168 034 168 034 168 034 168 034 168 034 168 034 168 034 168 034 168 034 168 034 168 034 168 034 168 034 168 034 168 168 034 168 034 168 168 168 168 168 168 168 168 168 168 | 30
30
30
30
30
30
30
16
18
18
18
18
18
18
18
18
18
18
18
18
18 | 50 61555555555555555555555555555555 | 455 45155555555555555555555555555555555 | 5 6 | 3 3 3 5 7 5 5 5 6 5 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 333 515556533333333333333333333333333333 | оппо пильтеринентеринентериненте | 33 51555533333333333333333333333333333 | оро мнемемененененененененененене | 333 51555533333333333333333333333333333 | 333 516555333333333333333333333333333333 | 9933 51555599799999999999999999999 | 02
10
12
10
12
12
12
12
12
12
12
12
12
12
17
17
18
18
18
18
18
18
18
18
18
18
18
18
18 | | 022
111
022
022
100
122
122
122
122
122 | | | | | | 26618 | | WALES | AAF
AAF
AAF
AAF | 1943
1844
1945
1946 | 65 37N
65 37N | 168 03W
168 03W
168 03W
168 03W | 17
17 | | 1 2 | | | | 1 1 1 | 1 1 | 1 1 | 1 | 1 | 1 | : | | 56
62
62
52 | 54
62
55 | | | | | 26609
26609
26609
26609 | | WEST FORK | C889
C889
C889
C889
C889
C889 | 1969
1970
1971
1972 | 65 28N | 148 40W
148 40W
148 40W
148 40W | | | | | | | | | | | | | | | | 06
12
12
08
12
12 | | | | | | | WEST KAVIK | SAWR
SAWR | | | 147 42W
147 42W | | 6 | | | | | | | | 6 | 6 | 6 | | | | | | | | | | | WEST KUPARUK | SAHR | 1969 | 70 20N | 149 184 | 50 | | | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | | | | | | | | WHITE MOUNTA | A | 1945 | 64 41N | 163 24W | 50 | | | 5 | 5 | 5 | | | | | | | | | | | | | | | 26630 | | <u> HHITTER</u> | A
A
A | 1974
1975
1976 | 60 46N
60 46N
60 46N | | | | 5 5 | | | 5 5 | | 5 | 5
5 | 5
5 | 5 | 5 | | | | | | | | | | | MIDE BAY | | 1963 | | 156 25₽ | 20 | | • | 5 4 | 3 | 3 | 3 | 3 | 3 | 3 | | | | | 05 | | | | | | | | MILD LAKE 2 | C00P
C00P | | 67 33N
67 33N
67 33N
67 33N
67 33N | 151 33H
151 33H | 1180
1180
1160 | | | | | | | | | | | | | | | 02
12
11
08
07 | | | | | | | AL | ASI | ΚA | | | | | | | | | | | | | NUI | | OF M | IONTH | | | | | |--------------|--|--|--|--|--|---|---|---|---|--|---|---|---
--|----------------------------|---|----------------------------------|--------------------|--------------------|--|-----|---| | | | | | | | HOUF | RL.Y | RE | COR | DS | 94 | MON | HT | / | /
& / | A SUPPLIES OF THE | * / | TRIPESTO PARS | 2/8/24
2/4/4 | 4 10 10 10 10 10 10 10 10 10 10 10 10 10 | 3/ | \s\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | | | | | 1 | | 24 | 085 | PE | R D | AY | | Į į | ž /~. | | § / £ | | | \$\\ \in \ | | HBAN | | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | JF | H | A | ΗЈ | J | 9 5 | 0 | ND | <u>/ જે યે</u> | | / & | / * | / * * / | / \$ \$ | 1 2 2 | / 🐔 | NUMBER | | HILD FUKE 5 | C00P
C00P
C00P | 1969
1970
1971
1972 | | 151 33W
151 33W
151 33W | 1180
1180
1190
1190
1190
1190 | | | | | | | | | | | | 05
04
04
04
02
02 | | | | | | | WISEMAN | | 1931
1932
1933
1934
1935
1936
1937
1939
1940
1941
1942
1944
1945
1946
1947
1948
1948
1949
1950
1951 | 67 26N
67 26N
67 26N
67 26N
67 26N
67 26N
67 26N | 150 13W
150 13W | 1290
1290
1290
1290
1290
1290
1290
1290 | 000000000000000000000000000000000000000 | 3 4 3 4 6 4 | 333 33555555566666655 | 3333 33555666666666655 | 3333535556666666665 | 3 3345355555666666666655 | 3 3 3 3 4 5 5 5 5 6 6 6 6 6 6 6 6 6 | 3333343455666666 | 07
12
12
12
12
12
12
12
12
15 | 07
10
12
11
08 | 01
11
12
12
12
12
12
12
12 | | | | | | 26511
26511
26511
26511
26511
26511
26511
26511
26511
26511
26511
26511
26511
26511
26511
26511
26511
26511
26511
26511
26511
26511
26511 | | MOSNESSENSKI | A
A | 1939
1940
1941 | 55 13N | 161 21H
161 21H
161 21H | 25
25
25 | | 3 3 | | 3 3 | | 3 3 | 3 | | 01
12
09 | 01
12
09 | 01
12
09 | | | | | | | | WRANGELL | | 1830
1931
1932
1933
1934
1935
1936
1937
1940
1941
1943
1944
1945
1946
1949
1951
1952
1953
1954
1959
1950
1950
1950
1950
1950
1950
1950 | 56 28N
56 | 132 234
132 | 43
43
43 | ****************************** | \$5555555555555555555555555555555555555 | 000000444666666666666666666666666666666 | ស្រាលស្រាជ។ ជាស្រាលស្រាសស្រាលស្រាលស្រាលស្រាលស្រាលស្រា | ###################################### | 333333444556666666666666666666666666666 | *************************************** | 233365565555555555555555555555555555555 | A THE PARTY OF | 64 | 111
12
12
12
12
04 | | | | | |
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338
25338 | | YAKATAGA | CAA
CAA
CAA
CAA
CAA
CAA | 1943
1944
1946
1946
1947
1948
1950
1951 | 60 051 | 142 30W
142 30W
142 30W
142 30W
142 30W
142 30W
142 30W | 33
33
33
33
33
33 | 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 | 7 7
1 1
1 1
1 1
1 1
1 1
1 1 | 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 15 | : | 10
12
12
12
12
10
12 | | | | | | 26445
26445
26445
26445
26445
26445
26445
26445
26445
26445 | | | | | ΚĽ | COKDS | INDI | : X | Н | L | ГΙ | П I | 7 | ם כ | . 1 | 1 | L | BY | 51 | ни | UNI | NAME | | | | | |----------|--|--|--|---|---|---|---|-----------------------|---|---|-------------|---|---|---|---|----------------|---|---
--|--|----------------------|---|-------|---| | A | LAS | KΑ | | | | | | | | | | | | | | | NU | MBER | OF | MONT | HS I | N YEI | AR WI | TH | | | | | | | | HOL | RL | Y A | REC | ORI | DS | BY | M | TNC | н | , | /. | / | /2 | Tales of the second sec | / _ | / | / | / § / | | | | | | | | 1 | | 24 | 0 | BS | PE | R | DAY | • | | ŝ | | | A STATE OF THE PARTY PAR | | | / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 | | HBAN | | NAME | TYPE | YEAR | LAT. | LONG. | ELEV. | J | F M | 1 A | H | اد | J | A S | 0 | N | ٥ | 1 | \$ \\ \varepsilon \ | \$ \ | / 3 | 12. | | \$\\\$\\\$\\ | ¥/ \$ | NUMBER | | YAKATAGA | | 1952
1953
1954
1955
1956
1957
1958
1969
1961
1964
1965
1969
1970
1971
1973
1974
1975 | 050 050 050 060 060 060 060 060 060 060 | 142 30M
142 30 | 93
33
33
33
33
33
33
33
33
33
33
33
33
3 | 111111111111111111111111111111111111111 | 1 | 5 5 4 4 4 4 4 5 5 4 5 | 111111111111111111111111111111111111111 | 111111111111111111111111111111111111111 | 444455 | 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 111111111111111111111111111111111111111 | 111111111111111111111111111111111111111 | | | 122 122 122 122 122 122 122 122 121 121 | | | , | | | 26445
26445
26445
26445
26445
26445
26445
26445
26445
26445
26445
26445
26445
26445
26445
26445
26445
26445
26445
26445
26445
26445
26445
26445
26445
26445
26445
26445
26445 | | | CAA
CAA
CAA | 1938
1939
1940
1941 | 59 32N
59 32N
59 32N
59 32N | 139 44W
139 44W
139 44W | 90
80
80
80 | 6 | 6 6 | 5 6 | 3 | 3 | 3 | 3 3 | 5 l | 5 | | 01
09 | 01
06 | 09 | | | | : | | 25339
25339
25339
25339 | | YAKUTAT | AAF
AAF | 1941
1942
1943 | 59 31N
59 31N
59 31N | 139 40W | 45
45
45 | | | | | | | | 1 | 1 | 1 | 03
12
01 | 10
04 | 03
12
06 | | | | | | 25339
25339
25339 | | YAKUTAT | | 1949
1950
1951
1952
1953
1954 | 59 31N
58 31N
58 31N
59 31N | 139 40H
139 40H | 31
31
31
31
31
31
31
31
31
31
31
31
31
3 | | 0 | | 1 | 000011111111111111111111111111111111111 | | 1 0 | 1 | 000011111111111111111111111111111111111 | 000001111111111111111111111111111111111 | | 05 | 05 12 12 12 12 12 12 12 12 12 12 12 12 12 | 05
12
12
12
12
12
12
12
10
12
12
10 | | 07
12
12
04 | | |
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
25339
2539
25 | | YAKUTAT | 944
944
944
944
944
944
944
944
944
944 | 1841
1942
1943
1844
1946
1946
1947
1948 | 59 31N
59 31N
59 31N
59 31N
59 31N
59 31N | 139 40H
139 40H
139 40H
139 40H | 31
31
31
31
31
31
31 | 1 1 1 1 1 1 1 1 | , , | 1 1 1 1 1 1 1 | 1
1
1
1
1 | 1 | 1 1 1 1 1 1 | D 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 | 1
1
1
1
1 | 1 1 1 1 1 1 1 1 1 1 1 1 | | | 55
62
62
62
62
62
57 | 54
562
662
662
57 | | 07 12 12 | | | 25302
25302
25302
25302
25302
25302
25302
25302 | | | ALASI | KA | | | | | | | | | | | | | | NL | JMBE | ER | OF M | 10NT | HS] | N YE | AR H | | |------|--|---|--|--|--|------|------|----|-----|----|-----|-----|-----|----------|---|--|------|--|----------|---|------|------|-----------------|---| | | | | | | | HOUR | lL Y | RE | COR | DS | BY | но | NTI | 1 | / | /s , | /, | / | /
2 / | Te la | / & | / & | 13.51 | | | VEDD | l none i | TV85 | . حمد ا | اصوبا | E1 E11 | | | | | | | DAY | 1 1 | _ | N. S. | | | | New York | | | | | HBAN
NUMBER | | YEAR | NAME | TYPE | LAT.
57 03N | | ELEY. | J | n | | 7 | J | HIS | 5 0 | N | <u>"</u> | / % 4 | 07 | - | 9 | 07 | <u> </u> | 7* | 7- | */ * | 25334 | | 1899 | EAGLE | ₩80 | 64 46N | 141 12H | 821 | | | | | | | | | | | 05 | |)5 | | 12 | | | | 26422 | | 1900 | SITKA
EAGLE | 5PL | 57 D3N
64 46N | | 63
621 | | | | | | | | | | | 12 | | 12 | 02 | 12 | | | | 25334
26422 | | 1901 | EAGLE | HBO | 64 46N | | 621 | | | | | | | | | | | 12 | ŀ | 29 | | 12 | | | | 26422 | | 1908 | NGME
SITKA | SPL
SPL | 64 30N
57 03N | | 22
63 | | | | | | | | | | | 12
06 | | 1 | | | | | | 26617
25334 | | 1909 | EAGLE
NOME
SITKA
TANANA
VALDEZ | WB0
SPL
SPL
S
S | 64 46N
64 30N
57 03N
65 10N
61 07N | 165 24W
135 20W
152 06W | 834
22
63
220
27 | | | | | | ļ | | | | | 05
12
12
04 | | | | | | | | 25422
25517
25334
26529
26442 | | 1910 | EAGLE
NOME
SITKA
TANANA
VALDEZ | #80
SPL
SPL
S | 64 46N
64 30N
57 03N
65 10N
61 07N | 165 24W
135 20W
152 06W | 834
22
63
220
27 | | | | | | | | | | | 12
12
12
12 | ! | | | | | | | 26422
26617
25334
26529
26442 | | 1911 | EAGLE
NOME
SITKA
ST PAUL IS
TANANA
VALDEZ | #80
5PL
5PL
5PL
5 | 64 46N
64 30N
57 03N
57 07N
65 10N
61 07N | 165 24W
135 20W
170 16W
152 06W | 834
22
63
20
220
27 | | | | | | | | | | | 12
12
12
04
12 | | | | | | | | 26422
26617
25334
25713
26529
26442 | | 1915 | EAGLE
NOME
SITKA
ST PAUL IS
TANANA
VALDEZ | HBB
SPL
SPL
SPL
S | 64 46N
64 30N
57 03N
57 07N
65 10N
61 07N | 165 24H
135 20H
170 16H
152 06H | 834
22
63
20
220
27 | | | | | | ! | | | | | 12
12
12
08
12 | | | | 06 | | | | 26422
26617
25334
25713
26529
26442 | | 1913 | EAGLE
NOME
SITKA
TANANA
VALDEZ | #80
SPL
SPL
S | 64 46N
64 30N
57 03N
65 10N
61 07N | 165 24W
135 20W
152 06W | 834
22
63
220
27 | | | | | | | | | | | 12
12
12
12 | | | | 12 | | , | | 26422
26617
25334
26529
26442 | | 1914 | EAGLE
NOME
SITKA
TANANA
VALDEZ | SPL
SPL
SPL
S | 54 46N
64 30N
57 03N
65 10N
61 07N | 165 24W
135 20W
152 06W | 634
22
63
220
27 | | | | | | | | | | | 12
12
12
12 | | 3 | | 12 | | | | 25422
26617
25334
25529
26442 | | 1915 | DUTCH HARBOR EAGLE KODIAK NOME ST PAUL IS TANANA VALDEZ | NF
WBO
NF
SPL
SPL
S
S | 53 53N
64 46N
57 46N
64 30N
57 03N
57 07N
65 10N
61 07N | 141 12H
152 22H
165 24H
135 20H
170 16H
152 06H | 47
834
12
22
63
20
220 | | | | | | | | | | | 09
12
12
12
12
12 | | D1 | | 12 | | | - | 25616
25422
25509
26617
25334
25713
26529
26442 | | 1916 | ANCHORAGE DUTCH HARBOR EAGLE KODIAK NOME NOME SITKA ST PAUL IS TANANA | COOP
NF
MBO
NF
SPL
SPL
SPL
S | 53 53N
64 46N
57 46N
64 29N
64 30N
57 03N
57 07N
65 10N | 149 52H
165 32H
141 12H
152 22H
165 24H
165 24H
170 16H
170 16H
152 06H
146 16H | 40
47
834
12
10
22
63
20
220 | | | | | | | | | | | 12
12
12
06
06
12
10 | | 12 | | 06
06 | | | | 25616
26422
25509
26617
26617
25334
25713
26629
26442 | | 1917 | ANCHGRAGE DUTCH HARBGR EAGLE JUNCAU KUDIAK NOME SITKA ST PAUL IS TANANA VALDEZ | COOP
NF
NBO
NF
SPL
SS
SS | 53 53N
64 46N
58 18N
57 46N
64 29M
57 03N
57 07N
65 10N | 148 52W
166 32W
141 12W
134 24W
152 22W
165 24W
135 20W
170 16W
152 06W
146 16W | 40
47
834
80
12
10
63
20
220 | | | | | | | | | | | 12
12
12
12
12
12
12
12 | | 12
05
12
08
06 | 11 | 11 | | | | 25616
26422
25324
25509
26617
25334
25713
26529
26442 | | 1918 | ANCHORAGE DUTCH HARBOR EAGLE JUNEAU KODIAK NOME SITKA ST PAUL IS TANANA VALDEZ | COOP
NF
MBO
MBO
NF
SPL
SS
SS | 53 53N
64 46N
58 18N
57 46N
64 29N
57 03N
57 07N
65 10N | 148 52W
166 32H
141 12H
134 24H
152 22H
165 24H
135 20H
170 16H
152 06H
146 16H | 80
12
10
63
20
220 | | | | | | | | | | | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | | 12
12
12
11
12
06
12 | 12 | 15
15 | | | | 25616
26422
25324
25509
26617
25334
25713
26529
26442 | | | ALAS | KA | | | | | | | | | | | | | | | NL | IMBER | OF | MONT | нѕ | IN Y | EAR | WIT | ГН | |------|---
---|--|--|---|----|-----------|----|-------|-----|----|-----|----|-----|---------|---------------------|--|--|----------------------------|----------------------|----------------------|-----------------|-------|-----|---| | | | | | | | на | BUR | LY | REC | ORI | os | BY | MO | NTH | | / | , | , | /2 | | | | ·/. | •/ | \$ / | | YEAR | NAME | TYP | E LAT. | Lava | l = . = | | | | 4 (| | | | | | | Sound of the second | | | Sample of A | | | / \$
\$ \$ / | | 400 | HBAN | | | NAIL | 1111 | LHI. | LONG. | ELEV. | Ľ | \square | - | + 7 |] | 7 | H 5 | 0 | NE | ,
-{ | / ৬ ও | / 😜 | 8/8 | <u> </u> | <u> </u> | \$ ² / \$ | · ez/ : | * ez/ | */ | / NUMBE | | 1918 | AKIAK
ANCHORAGE
DUTCH HARBOR
EAGLE
JUNEAU
KODIAK
NOME
SITKA
ST PAUL IS
TANANA
VALDEZ | COOR | 53 53N
64 46N
58 18N
57 46N
64 29N
57 03N
57 07N | 149 524
166 324
141 124
134 244
152 224
165 244
135 204
170 164
162 064 | | | | | | | | | | | | | 12
12
12
12
12
12
12
12 | 12
12
12
08
12
08
12
12 | 06
06
12 | 12 | | | | | 25616
26422
25324
25509
26617
25334
25713
26529
26442 | | 1920 | AKIAK AKCHBRAGE BARROW DUTCH HARBOR EAGLE JUNEAU KBDIAK NOME SITKA SITKA SITRANANA VALDEZ | COOF
COOF
HBO
NF
ABO
NF
SCOOP
SCOOP
S | 61 14N
71 18N
53 53N
64 46N
58 18N
57 46N
64 29N | 149 52H
156 46H
166 32H
141 12H
134 24H
152 22H
165 24H
161 00H
135 20H
170 16H
152 06H | 21
40
25
47
834
80
12
10
68
63
60
220 | | | | | | | | | | | | 09
03
12
12
12
12
12
12
12
12
12 | 09
03
12
12
12
12
12
12
12
12
12
12
12
12 | 03
12
12
07
12 | 15, | | | | | 27502
25616
26422
25324
25509
26617
25334
25713
25713
25529
26442 | | 1921 | AKIAK
ANCHORAGE
BARROW
DUTCH HARBOR
EAGLE
JUNEAU
KODIAK
NOME
NOBRVIK
SITKA
SI PAUL IS
TANANA
VALDEZ | COOPPED OF SECOND | 61 14M
71 18M
93 53M
64 46M
58 18M
57 46M
64 29M
66 50M
57 03M
57 07M
65 10M | 156 46µ
166 32µ
141 12µ
134 24µ
152 22µ
165 24µ
161 00µ
135 20µ | 21
40
25
47
834
80
12
10
68
63
60
20
34 | | | | | | | | | | | | 12 12 12 12 12 12 12 12 12 12 | 12 12 12 12 12 12 12 12 12 12 | 12
12
03 | 12
12 | | | | | 27502
25616
26422
25324
25909
26617
25334
25713
26529 | | 1922 | AKIAK ANCHGRAGE BARRBH DUTCH HARBUR EAGLE JUNKENU JUNERU KBDIAK MCKINLEY PRK: NGME NGBRVIK SITKA SI PAUL IS TANANA VALDEZ | 0000
0000
125 000
125 | 60 52N
51 15N
71 18N
53 53N
64 46N
58 18N
58 18N
58 18N | 161 23W
169 51H
156 46W
166 32W
141 12W
134 25W
134 24W
152 22W
165 24W
165 24W
161 00W
135 20W
170 16W
152 06W | 21
40
25
834
203
80
12
1730
10
68
63
500
220 | | | | | | | | | | | | 07
01
12
12
12
08
04
12
01
12
12
12
12
12 | 07
12
12
12
12
08
04
12
12
12
12
12 | 12
08
04
12 | 12
08
04
12 | | | | | 27502
25616
25616
25324
25324
25324
25529
26429
26617
25334
25713
25529
26529
26542 | | 923 | AKIAK ANCHGRAGE ANCHGRAGE BARRBW BETHEL CORDOVA DUTCH HARBOR EAGLE FAIRBANKS JUNEAU KODIAK MCKINLEY PRK NOME NOORVIK SITKA ST PAUL IS TANANA VALDEZ | 5 000
000
000
000
000
000
000
000
000
00 | 61 13N
61 15N
71 18N
750 48N
60 53N
60 53N
60 60 60
760 760
760 760 | 161 23W
149 52W
149 54W
156 45W
161 45W
165 32W
141 12W
141 12W
141 45W
152 22W
165 24W
165 24W
165 26W
165 26W
170 16W
152 06W
152 06W
152 06W | 35
118
40
25
38
44
47
934
500
203
12
1730
10
68
63
60
220
23 | | | | | | | | | | | | 09
10
02
12
04
10
12
12
12
12
12
12
12
12
12
12
12
12
12 | 08
10
12
04
10
12
12
12
12
12
12
12
12
12
12
12
12
12 | 10 12 12 12 03 | 10
02
10 | | | | | 27502
26615
25616
25616
26422
26411
25529
26429
26617
25334
25713
26542 | | | ANCHBRAGE
BARROH
BETHEL
CORDBYA
DUTCH HARBOR
EAGLE
FAIRBANKS
FORT YUKON
JUNEAU
KODIAK
MCKINLEY PRK
NOME
NOBORVIK
SITKA
ST PAUL IS
TANANA | S WB0
WB0
S NF A P P NF 00 P NF 00 P C S OO L S OO S OO L | 61 13N
71 18N
71 18N
60 32N
60 33N
60 35N
60 35N | 149 52W
156 46W
161 45W
145 42W
146 32W
141 12W
147 43W
147 18W
134 25W
152 25W
152 25W
165 24W
161 00W
161 00W
170 16W | 118
25
38
44
47
834
500
12
173
12
68
63
46
220 | | | | | | | | | | | | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | 12 12 12 12 12 12 12 12 12 12 12 | 12 12 | 12 12 | | | | | 27502
26615
26410
25616
25616
26422
26411
25324
25324
25509
26429
26507
25334
25713
26529 | | | ALASI | KA | | | | но | JRL | .Υ | RE | COF | RDS | В | Y M | ON1 | TH | | /, | , | , | | | - | | AR WI | \s\ / | |--------------|--
---|--|--|--|----|-----|----|-------|-----|---------|-----|-----------|-----------------|-----------------------------------|-----|----|---|---|----------------|----------------------------------|---|--|-------|---| | VEAR | NOME | TVDE | l unt l | LONG | ELEV. | | | | | 089 | | | | | ln. | / | | | | Samuel Samuel | I'M I'M COMMINS | / 3/3/3/
3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3 | | | MBAN
NUMBER | | YEAR
1925 | ANCHERAGE
BARROW
BETHEL
CORDOVA
DUTCH HARBOR
EAGLE
FAIRBANKS
FORT YUKON
JUNEAU
KODIAK
NOME
NOME | TY CHARLES FA SA | 61 13N
71 18N
60 32N
60 35N
64 46N
64 50N
66 57 46N
66 50N
67 03N | 149 52W
156 46W
181 45W
145 42W
145 42W
141 12W
141 12W
147 43W
145 18W
145 28W
152 22W
165 24W
161 00W | 118
25
38
44
47
834
500
410
203
12 | 7 | | | H F | | | H | 5.1 |) N | | / 3 | | 05
12
12
12
12
12
12
12
12
12
12
12
12 | 05
12
12
12
12
12
12
12
12
12
12
12 | 05
08
12 | 12 | | | | 27502
26615
26410
25616
26422
26411
26413
25524
25509
26617 | | 1926 | ST PAUL IS TAMANA BARROW BETHEL CORDOVA DUTCH HARBOR EAGLE FAIRBANKS FORT YUKON JUNEAU KODIAK NOME SITKA ST PAUL IS TANANA | S SUSTABLES DA | 57 D7N | 152 06W
156 46W
151 45W
145 42W
166 32W
141 12W
147 43W
145 18W
134 25W
152 22W
155 24W
135 20W | 46
220
25
38
44
47
834
500
410
203
12
12
63
46
220 | | | | | | | | | | | | | 12
12
12
12
12
12
12
12
12
12
12
12
12
1 | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | 12 12 12 | 07
12
12 | | And the second s | | 25713
26529
27502
26615
26410
25616
26422
26411
26413
25324
25509
26617
25334
25713
26529 | | 1927 | BARROW BETHEL CORDOVA DUTCH HARBOR EAGLE FAIRBANKS FORT YUKON JUNEAU KODIAK NOME ST PAUL IS TANANA | ###################################### | 71 18N
60 48N
60 32N
53 53N
64 46N
64 50N
66 35N
58 18N
57 46N
64 29N
57 07N | 156 46H
161 45H
145 42H
166 32H
141 12H
147 43H
145 18H
134 25H
152 22H
165 24H | 25
38
44
47
834
500
410
203
12
12
46
220 | | | | | | | | | | | | | 12
12
12
12
12
12
12
12
12
12
12 | 12
12
12
12
12
12
12
12
12 | 15 15 15 | 12 | | | | 27502
26615
25410
25616
26426
26411
26413
25324
25509
26617
25713
26528 | | 1926 | BARROW BETHEL CORDOVA DUTCH HARBOR EAGLE FORT YUKON JUNEAU KODIAK NOME NOME ST PAUL IS TANANA | UBB
S
NF
A A B
NF
A A B
NF
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S | 60 48N
60 32N
53 53N
64 46N
66 35N
58 18N | 165 24W
170 16W | 25
38
44
47
834
410
203
12
33
12
92 | | | | | | | | | | | | | 12
12
12
12
12
12
12
12
06
06
12 | 12
12
12
12
12
12
12
12
12
12
12
12
12
1 | 12
06
06 | 12
12
06
06 | | | | 27502
26615
26410
25616
26422
26413
25324
25509
25617
25617
25713
26928 | | 1929 | ANCHBRAGE BARRBM BETHEL CORROVA CORROVA DUTCH HARBOR EAGLE FAIRBANKS FORT YUKON JUNEAU KETCHIKAN KODIAK NOME ST PAUL IS TANANA |
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866
11866 | 71 19N
60 48N
60 32N
60 31N
53 53N
64 46N
64 50N
56 35N
58 18N
55 20N
64 28N
57 07N | 149 52H
156 46H
161 45H
145 36H
166 32H
141 12H
147 43H
134 25H
131 39H
152 22H
170 16H
152 06H | 25
38
44
25
47
834
454
410
203
16
12
33 | | | | | | | | | | | | | 06
12
05
07
12
03
12
03
12
12
03
12
12 | 12
12
05
07
12
04
12
03
12
08
12 | 12 | 12
12
05
07
04
12 | | 03 | | 27502
26615
26410
26410
25616
26422
26411
25411
25324
25325
25509
26617
25713
26528 | | 1930 | ANCHURRAGE BARROH BETHEL CORDOVA CRAIG CROOKED CREK DUTCH HARBOR EAGLE FAIRBANKS FURT YUKON GOLOVIN HAINES JUNEAU KETCHIKAN KODIAK KOTZEBUE NEMANA | 3000
3000
3000
3000
3000
3000
3000
300 | 71 18M
60 48M
60 31M
59 29M
61 52M
63 53M
64 60M
66 35M
64 33M
59 14M
64 58M
58 18M
55 20M
57 46M
66 52M | 149 52H
156 45H
161 45H
145 36H
133 08H
158 15H
156 32H
141 12H
147 43H
145 18H
165 01H
135 27H
135 49H
131 39H
131 39H
131 39H
152 22H
162 38H | 25
38
25
13
150
47
454
410
20
25
275
203
16
16
12 | | 3 | 3 | | | 3 3 3 3 | 3 3 | 3 5 3 3 3 | 3 3 3 3 3 3 3 3 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | | 12 12 12 12 12 12 12 12 12 12 | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | 12 | 12 | | 12 | | 27602
26615
26410
25317
26518
25618
25412
26411
26413
26628
25323
25324
25325
25325
25508
26616
26435 | | | | | RE | CORDS | IND | ΞX | Я | IR: | RA | N | GE | D | Ε | 3 Y | | Y 1 | EHK | | | | | | | | | |------|------------------------------|------------|------------------|--------------------|---------------------|----|-----|------|--------|--|------|----------|------|---------|------|-------|---|----------|----------|--|--|--------|---|---------------------------------------|--------------------| | | ALAS | KA | | | | | | | | | | | | | | | | NUM | IBER | | | | N YE | AR W | I TH | | | | | | | | но | URL | _Y | RE | COI | RDS | S 6 | 3Y | HO | NTI | н | / | / | / , | / ~ | I A I P. | / | / | / | /8/ | | | | | | | | | 1 . | . , | 24 | OR! | S F | PFF | . u | ΔY | | | 12 mg/ | | */ | The state of s | \$ / | | | (((((((((((((((((((| \s\s\ | | YEAR | NAME | TYPE | 1 | 1 | l = 1 = 11 | | | | | | 1 | | | | ابدا | _ | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | £~3 | * | ³ /\$ | 5 3 | ું/્રે | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | SE HBAN | | | | 1111 | LAT. | LUNG. | ELEV. | ٦ | | | ין ויי | טוי | ٦ | <u> </u> | 5 | ٥ | ^ | ט
 | \ 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | €. e). | / % | | <u> </u> | 7 * 4 | E/ ** ' | * * | NUMBE | | 1930 | NOME
NOME | ₩80
5 | 54 29N
64 29N | | 12
33 | 1 | | | | ı | | | | | | | 1 1 | 05
07 | 05
07 | 05
07 | 05
06 | | | | 26817
26617 | | | SAVOONGA | A | 63 41N | 170 26W | 35 | l | | - | 1 | | | | | | | 3 | | "i | ا′" | 07 | Ue | | | | 1 | | | SITKA
ST PAUL IS | A
SA | 57 D3N
57 D7N | | 55
19 | | | | | ł | ł | 3 | 3 | 3 | 3 | 3 | ! ! | 12 | 12 | | | | l | | 25333
25713 | | | TANANA
UNALAKLEET | SA
A | 65 10N | 152 D6W | 220 | | П | - | | | | | 4 | 4 | | | | 12 | 12 | 12 | | | | | 26529 | | | WRANGELL | Ä | 63 53N
56 28N | | 30
18 | | | İ | 1 | | | 3 | 3 | 3 | | 3 | | | | | | | l | | 26627
25338 | | 1931 | ANCHORAGE | HBG | 61 13N | 149 52H | 118 | | | | | | | ł | | | | | | 12 | | | 12 | | | | | | | BARROW | ₩B9 | 71 18N | 156 46H | 25 | | | 1 | | | | | 1 | $ \ $ | | | | 12 | 12 | 12 | 12 | | | | 27502 | | | BETHEL | H80 | 50 48N
65 48N | | 38
700 | li | | 1 | 1. | 3 3 | , s | 3 3 | | 3 | 3 | 2 | | 12 | 12 | | | | 1 | | 26615
26446 | | | CORDOVA | 5 | 60 31N | 145 36W | 25 | | 3 | 3 | 3 3 | 3 3 | s 3 | 3 | 3 | 3 | 3 | |] : | 12 | 12 | | 12 | | | | 26410 | | | CRAIG
CROOKED CREK | A | 55 29N
61 52N | | 13
150 | 3 | 3 | 3 | 3 : | 3 3 | 3 | 3 | | | 3 | | 1 1 | - | l | | | | | | 25317
26518 | | | DUTCH HARBOR | NF | 53 53N | 166 32W | 47 | li | 1 | | | | | 1 | 1 | lŀ | 1 | | | 12 | 12 | | | |] | | 25616 | | | EAGLE
FAIRBANKS | A
HBO | 64 46N
64 50N | | 837
454 | 3 | | | 3 : | | | | | 3 | -1 | 5 | | 12 | 12 | | 12 | | 12 | | 26422
26411 | | | FLAT
FORT YUKON | A | 62 27N | 158 DOM | 303 | | | - 1 | - 1 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | | 1 | | | ••• | | | | 26520 | | | GOLOVIN | A | | 145 18W
163 D1W | 410 | 3 | | 3 | | 3 3 | 3 | | 3 | 3 | | 3 | ' | 12 | 12 | | | | | | 26413
26628 | | | HAINES
HOT SPRINGS | A | 59 14N | 135 27W | 15
275 | 3 | | 3 | 3 :
| 3 3 | 3 | 3 | 3 | | - 1 | - 1 | | - | - 1 | | | | | | 25323 | | | IL IAMNA | FAA | | 154 55H | 152 | 1 | 1 | 1 | 1 : | 1 1 | 1 | 1 | 1 | 1 | | 3 | | | 12 | • | | | | 1 | 25506 | | | JUNEAU | HB0 | 58 18N
58 18N | 134 25H | 203 | П | 3 | _ | 3 : | | | 1 | 1 | | 3 | | | 01 | 01 | 01 | 01 | | | | 25324 | | | KALTAG | A | 64 20N | | 93 | | | 1 | ٦. | 3 3 | | 3 | | | | 3 | ' | 11 | 11 | 11 | 11 | | - | | 25324 | | | KANAKANAK
KETCHIKAN | A
5A | 59 DIN
55 21N | | 85
16 | 3 | | _ | 3 : | .]. | | 3 | 3 | | | 3 | | | | | | | | | 25.005 | | | KODIAK | NF | 57 46N | 152 22W | 12 | | ٦ | 1 | " | ֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡ | 7 | ٦' | ٦ | 3 | 3 | ٦, | | 12 | 12 | | | | • | ļ | 25325
25508 | | | KODIAK
KOTZEBUE | SA
SA | 57 48N
66 52N | | 152
11 | 3 | 3 | 7 | 3 : | 3 3 | | 3 | 3 | | 3 | | 1 | 10 | 10 | | 06 | | } | | 25509
26616 | | | LIVENGOOD | A | 65 35N | 148 29H | 550 | | 5 | 3 | 3 3 | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | | | | | | 26428 | | | MCGRATH
NENANA | A | 62 58N
64 33N | | 333
353 | 3 | | | 3 3 | | 3 | 3 | 3 | | | 3 3 | | | | | | | | | 26510
26435 | | | NOME
NULATO | 188
18 | 64 29N | 165 24H | 12 | | | | | 1 | ı | 1 | П | | - 1 | - | 1 | 12 | 12 | 12 | 12 | | | | 26617 | | | RUSY | A | 64 43N
64 44N | | 128
175 | | | 3 | | 3 3
3 3 | 3 | 3 | | | -1 | 3 | | | | |] | | | | | | | SAVBONGA
SEWARD | A | 63 41N
60 07N | | 35
66 | | 3 | 3 | 3 3 | | | 3 | 3 | | | 3 | | | | - [| | | | | | | | SITKA | Ä | | 135 20H | 31 | | 3 | 3 | 3 3 | 3 3
3 3 | | 3 | | | | 3 | | | | | | | | | 26438
25333 | | | SKAGHAY
SOLOMON | A | 59 27N | 135 19W | 11
15 | 3 | 3 | , | 3 3 | , , | | 3 | 3 | 3 | 3 | 3 | 1 | | | | | | | | 25335 | | | SQUAM HARBOR | A | 55 15N | 160 33H | 500 | | 3 | | | 3 3 | | 3 | | 3 | | 3 | | | | | | | | | 26629 | | - 1 | ST PAUL IS
TACOTNA | SA
A | 57 07N | 170 16H
156 04H | 19
1 4 10 | | | - | | | l | | | | Ì | 3 | 1 | 12 | 12 | | | | | | 25713 | | İ | TANANA | SA | 65 10N | 152 06H | 220 | 3 | 3 | 3 | 3 3 | 3 3 | | 3 | | 3 | | 3 | 1 | 12 | 12 | 12 | ı | | | l | 26529 | | | UNALAKLEET
VALDEZ | A | 63 53N
61 07N | 160 48H
146 16H | 30
12 | | 3 | 3 | 3 3 | 3 3 | 3 | 3 | | 3 | | 3 3 |] | | | | | | | | 25527
26442 | | | MISEMAN | А | 67 26N | 150 13W | 1290 | | 3 | 3 | 3 3 | | 3 | 3 | 3 | 3 | | 3 | İ | | - 1 | | | | | | 26511 | | | WRANGELL | A | 96 56M | 132 23H | 18 | 3 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 | 3 | 1 | ŀ | | | | | | | | | 25338 | | 1932 | ANCHORACE | H86 | 61 13N | | 118 | | | 1 | | 1 | | | H | | | - | | 12 | | l | 12 | | | | | | Ī | BARROW
BETHEL | 68W
88W | | 156 46H
161 45H | 25
38 | | | 1 | | l | | | Ш | - | | зİ | | 12 | 11 | 11 | 12 | | | | 27502
26615 | | | CIRCLE
CORDOVA | A
S | 65 48N | 144 D4W | 700 | | 3 | | 3 3 | 3 3 | | 3 | | | | 3 | | | 1 | | | | | | 26 44 5 | | | CRAIG | А | 55 29N | 133 D9W | 25
13 | | 3 | - 1: | 3 3 | 3 3 | 3 | 3 | 3 | 3 | - 1 | 3 | , , | 12 | 12 | J | 12 | | | | 26410
25317 | | | CROOKED CREK
DUTCH HARBOR | A
NF | 61 52N | 158 15H | 150
47 | 3 | 3 | 3 : | 3 3 | 3 3 | 3 | 3 | 3 | | 3 | 3 | . | . | ا ہے | 1 | | | | | 26518 | | | EAGLE | A | 64 46N | 141 12W | 837 | | 3 | | | 3 3 | | | | | 3 | | | 12 | 12 | | | | | | 25616
26422 | | | FAIRBANKS
FLAT | HB0 | | 147 43W | 454
303 | 3 | | | 4 4 | | | | | | 3 | 4 | 1 | 12 | 12 | ŀ | 12 | | 12 | | 26411 | | | FORT YUKON | А | 66 35N | 145 18W | 410 | 3 | 3 | 3 : | 3) 3 | s 3 | 13 | 3 | l si | 3 | 3 | 3 | 1 | 12 | 12 | ĺ | Ì | | | | 26520
26413 | | i | GOLOVIN | A | 64 33N | 163 D1H | 20 | 3 | 31 | 31: | 3l 3 | SI 3 | 13 | 13 | ıзi | 31 | 31 | 3 | | - 1 | - 1 | | 1 | | | 1 | 26620 | | | EAGLE FAIRBANKS FLAT FORT YUKON GOLOVIN HAINES HOT SPRINGS | A
HB0
A
A
A | 84 46N
64 50N
62 27N
66 35N
64 33N
59 14N
64 59N | 147 43H
158 DOH
145 18H
163 D1H
135 27H | 837
454
303
410
20 | 3 | 3 3 3 3 3 3 | 3 3 | 3 | 3 3
5 5
3 3
3 3 | 3 3 | 5
3
3 | 5 :
3 :
3 :
3 : | 3 3 3 3 3 3 3 | | 12 | 12
12
12 | | 12 | | 12 | | 26422
26411
26520
26413
26628
25323 | |------|--|--|--|---|--|-----------|-------------------------|-------------|---|---------------------------------|-------|-------------|--------------------------|---------------------------------|---|----------------------|----------------|----------|----------|---|----|---|--| | | KANAKANAK
JUNEAU
JUNEAU
IL IAMNA | FRA
HBG
HBG
A | 59 45N
58 18N
58 18N
64 20N
59 01N | 154 55H
134 25H
134 24H
158 45H
158 31H | 275
152
203
132
93
85 | | 3 3 | 3 | 3 | 1 1
3 3
3 3 | 3 | 3 | 3 3 3 3 3 3 | 3 3 3 3 3 3 3 | | D1
11 | 12
01
11 | 01
11 | D1
11 | | | | 25506
25324
25324 | | | KETCHIKAN
KODIAK
KODIAK
KOTZEBUE
LIVENGOOD
MCGRATH
NENANA | 5A
NF
SA
SA
A
A | 55 21N
57 46N
57 48N
66 52N
65 35N
62 58N
64 33N | | 16
12
152
11
550
333
353 | 3 | 3 3 3 3 3 3 3 | 3 3 | 3 3 3 | 3 3 3 3 3 3 3 | 3 | 3 3 | 3 : 3 : 3 | 3 3 3 3 3 3 3 3 3 | | 12
02
10 | 10 | | 06 | | | | 25325
25509
25509
26616
26426
26510
26435 | | : | NOME
NULATO
RUBY
SAVOONGA
SEWARD
SITKA | HB9
A
A
A
A | 64 29N
64 43N
64 44N
63 41N
60 07N
57 03N | 165 244
158 044
155 264
170 264
148 274
135 204 | 12
128
175
35
66
31 | 3 | 3 3 3 3 3 3 3 | 3 3 3 | 3 3 3 | 3
3
3
3
3
3
3 | 3333 | 3 3 3 3 | 3 3 3 3 3 3 3 3 | 3 3
3 3
3 3
3 3
3 3 | | 12 | 12 | 12 | 12 | | | | 26617
26438
25333 | | | SKAGWAY SGLOMON SGUAW HARBOR ST PAUL IS TAGOTNA TANANA | A
A
5A
A | 59 27N
64 35N
55 15N
57 07N
63 00N | 135 19W
164 24W
160 33W
170 16W
156 04W | 11
15
200
19
1410 | | 3 3 | 3 | 3 | 3 3 3 | 3 | 3 | 3 : | 3 3 3 3 | | 12 | 12 | | | : | | | 25335
26629
25713 | | | UNALAKLEET
VALDEZ
WISEMAN
WRANGELL | 5A
A
A
A | 65 10N
63 53N
61 07N
67 26N
56 26N | 152 06H
160 48H
146 16H
150 13H
132 23H | 220
30
12
1290
18 | | 3 3 3 3 3 3 | 3 | 3 | 3 3
3 3
3 3
3 3 | 3 | 3 | 3 3 3 | 3 3 3 3 3 3 3 | | 12 | 12 | 12 | | | | | 26529
26627
26442
26511
25338 | | 1932 | ANCHORAGE
BARROW
BETHEL
CIRCLE
CORDOVA
CRAIG
CROOKED CREK
DUTCH HARBOR | 180
180
180
180
180
180
180
180
180
180 | 65 48N
60 31N
55 29N
61 52N
53 53N | 161 45W | 118
25
36
700
25
13
150 | 3 | 3 3
3 3 | 3 | 3 3 3 3 | 3 3 | 3 | 3 | 3 3 | 3 3 3 3 3 | | 12
11
12
12 | 11
12
12 | 11 | 12 | | | | 27502
26615
26446
26410
25317
26518
25616 | | | EAGLE
FAIRBANKS
FLAT
FORT YUKON
GOLOVIN
HAINES
HOT SPRINGS | 4 H A A A A | 64 46N
64 50N
62 27N
65 35N
64 33N
59 14N
64 59N | 141 12W
147 43W
158 00W
145 18W
163 01W
135 27W
150 40W | 837
454
303
410
20
15
275 | 3 3 | 3 3 3 3 3 3 3 | 3 3 3 3 | 3 3 3 3 3 | 3
3
3
3 | 3 3 3 | 4 3 3 3 3 | 3 3 3 | 3 3 3 3 3 3 | | 12 | 12 | | 12 | | 12 | | 26422
26411
26520
26413
26628
25323 | | | KALTAG
KANAKANAK
KETCHIKAN
KEDIAK | #80
A
A
SA
SA | 59 01N
55 21N
57 48N | 134 24W
158 45W
158 31W
131 39W
152 24W | 132
93
85
16
152 | 3 | 3 3 3 | 3 | 3 3 | | 3 | 3 | 3 3
3 3 | 3 3 | | 12 | 12 | 12 | 12 | | | | 25324
25325
25509 | | | KOTZEBUE LIVENGOOD MCGRATH NENANA NOME NULATO PETERSBURG RUBY | S A A A A A A | 66 52N
69 35N
62 58N
64 33N
64 29N
64 43N
66 44N | 162 38W
148 29W
155 37W
149 05W
165 24W
158 04W
132 57W
155 26W | 11
550
333
353
12
128
50 | 3 3 3 | 3 3 3 3 3 3 3 3 3 3 3 3 | 3 3 3 | | 3 3 | 3 3 | 3 3 3 | 3 3 3 3 3 3 | | | 12 | 12 | 12 | 12 | | | | 26516
26428
26510
26435
26617 | | | SAYGUNGA
SEHARD
SITKA
SKAGHAY
SOLOMON
SOLOH HARBOR
ST PAUL IS
TROOTHA
TANANA
UNALAKLEET
VALDEZ | ***** | 63 41N
60 07N
57 03N
59 27N
64 35N
55 15N
57 07N
63 00N
63 53N
61 07N | 170 26W
148 27W
135 20W
135 19W
164 24W
170 16W
170 16W
158 04W
152 06W
160 48W
146 16W | 35
55
31
11
15
200
19
1410
220
30 | 3 3 3 3 3 | 3 3 3 3 3 3 3 3 3 3 3 | 3 3 3 3 3 3 | 3 | 3 3 3 3 3 3 | 3 3 3 | 3 3 3 | 3 | 3 3 | | 12 | 12 | 12 | | | | | 26438
25333
25335
26629
25713
26529
26627
26442 | | · | ' | į i | · · | ı | | | ı | [] | ı | 3 | 370 | 0 | , | 1 1 | l | , | , | 1 | 1 | 1 | ļ | ı | | | | ALASI | ΚA | | | | | | | | | | | | | | | NU | MBER | 0F N | IONTH | IS IN | | | | |------
--|--|--|--|---|---------------|--------------|-------------|------------------|---|---|---------------------------------|----------------|---------------------------|-------------------|---|--|--|-------|----------------------|-------|--|-----------|---| | | | | | | | HOL | RL | Y (| REC | OR | DS | вч | Н | ONT | Ή | , | /s / | / _/ | * / | Te Ja Ja | | To long to the second s | · &/ | 3 | | , | , | | _ 4 | 1 | 1 | | | | | | | ER | | | l- | Z. | | | Sept. | | | | | HBAN
NUMBER | | 1932 | NAME
WISEMAN | TYPE | LAT.
67 26N | 150 13H | 1290 | \dashv | 4 | + | 3 3 | +- | ٠ | ╌┼ | 4 | 3 3 | ┺ | <u>/ " </u> | /** | 7 | | | | ^`` | <u></u> { | 26511 | | 1932 | WRANGELL | Ä | 56 28N | 132 23W | 18 | | | | 3 3 | | | 3 | | | | | | | | • • • | | | ١ | 25338 | | 1933 | ANCHORAGE BARROW BETHEL CIRCLE CORDOVA CORDOVA CROCKED CORDOVA | 7334 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 61 128 | 147 43W
158 00W
145 18W
163 01W
135 27W | 118
25
36
700
25
70
13
150
26
47
484
303
410
20
20
275 | 3 | 35 5 54555 5 | 3 3 3 3 3 3 | 33 33 34 33 33 3 | 33 33 33 33 33 33 33 33 33 | 3 3 3 3 3 3 3 3 3 3 3 3 | 3 4 3 3 3 3 | 3 3331 34333 3 | 3 3 3 3 3 1 3 4 3 3 3 3 3 | 3 3 4 3 3 3 3 | | 12
12
05
07
12
12
12 | 12
12
05
07
12
12
12 | 12 | 12
12
05
07 | | 12 | | 27502
26615
26446
28410
26410
25317
28518
25611
25616
25421
26421
26420
28413
26520
28423
26528
25323 | | l | JUNEAU
KALTAG | A
A | 58 18N
64 20N
59 01N | 158 45H | 132
93
85 | 3 | 3 | | 3 : | 3 2
3 3
3 3 | 3 | 3 | 3 | 3 3
3 3
3 3 | 3 | | 12 | 12 | 12 | 12 | | | | 2552 . | | | KANAKANAK
KETCHIKAN
KODIAK
KOTZEBUE
LIVENGOOD
MCGRATH
NENANA | 5A
5A
5A
A
A | 55 21M
57 48M
66 52M
65 35M
62 58M
64 33M | 131 39H
152 24H
162 38H
148
29H
155 37H
149 05H | 16
152
11
550
333
353 | 3 3 3 | 3 | 3 | 3 3 | | 3 3 | 3 | 3 | 3 3 3 3 3 3 3 | 3 3
3 3
3 3 | | 12 | 12 | | 12 | | | | 25325
25509
26616
26428
26510
26435
26617 | | | NOME
PETERSBURG | HB.03 | 56 49N | 165 24H
132 57H
155 26H | 12
50
175 | 3 | 3 | | 3 | 3 3 | 3 | | | | | | . 12 | 12 | 12 | " | | | | 25329 | | · | RUBY SAYBONGA SEHARD SITKA SKAGHAY SOLOMON ST PAUL IS ST PAUL IS TACOTNA TANANA UNALAKLEET VALDEZ HISEMAN WRANGELL | # A A A A A A A A A A A A A A A A A A A | 65 10N
63 53N
61 07N
67 26N | 170 26W
149 27W
135 20W
135 19W
164 24W
170 16W
170 16W
156 04W | 175
66
31
11
15
19
19
1410
220
30
1290 | 3 3 3 3 3 3 3 | 3 3 3 3 | 3 3 3 3 3 | 3 3 3 3 3 3 3 | 3 | 3 | 3 3 3 | 3 3 3 3 3 3 3 | 3 3 3 3 3 3 3 3 | 3 3 3 3 3 3 3 3 | | 12 | 12 | 11 | | | | | 26438
25333
25335
26629
25712
25713
26529
26627
28442
26611
25338 | | 1934 | ANCHORAGE
BARROW
BETHEL
CIRCLE
CORDOVA
CRAIG | HBB
HBB
HBB
A
S | 51 13N | 149 52W
158 46W
161 45W
144 04W
145 42W | 118
25
38
700
70
13 | 3 | 3 | 3 | 3 3 3 | 3 3 | 3 3 3 | 3 3 | 3 3 3 | 3 3 3 | 3 3 3 | | 12 | 12 | 12 | 12 | | | | 27502
26615
26446
26410
25317 | | | CROOKED CREK
DUTCH HERBOR | A
NF | 61 52N
53 53N | 166 324 | 47 | İ | 3 | lt | 3 | ļ | | 3 | 3 | 3 | 3 3 | | 12 | 12 | | | | | | 26518
25616
25611 | | | DUTCH HARBOR
EAGLE
FAIRBANKS
FLAT
FORT YUKON
GOLOVIN | NS
A
HBO
A
A | 62 27N
66 35N | 141 12H
147 43H
158 00H | 303
410 | 3 4 3 | 0400 | 0400 | 3 4 3 3 | 3 | 3 : | 3 3 | 4 3 3 3 | 3 | 3 3 3 | | 01 | 12 | | 12 | | 12 | | 26422
26411
26520
26413
26528 | | | HOT SPRINGS
JUNEAU | A
HB0 | 64 591
58 181 | 150 40W | 275
132 | | 1 | | 3 | 3 | 3 : | | 3 | 3 | 3 3 | | 12 | 12 | 12 | 12 | | | | 25324 | | | KALTAG
KANAGA BAY
KANAKANAK | NS
A | 51 431 | | 50 | | 3 | | | 1 | 3 3 | 1 | 3 | 3 | 3 : | l l | | | | - | | | | 25711 | | | KETCHIKAN
KODIAK
KOTZEBUE
LIVENGOOD
MCGRATH
NENANA
NOME | 5A
5A
5A
A
A | 55 21M
57 48M
66 52M
65 35M
62 58M
64 33M | 131 39H
152 24H
162 38H
148 29H | 16
152
11
550
333 | 2 2 2 2 2 | 3 3 | 3 3 | 3 3 3 3 | 3 3 3 3 | 3 3 3 3 3 | 3 3 3 3 3 3 | 3 3 | 3 3 | 3 3 | | 12 | 12 | | 12 | | | | 25325
25509
26616
26428
26510
26435
26617 | | | SAVOBNGA
SITKA
SKAGHAY
SBLOMON
ST PAUL IS
TANANA
UMALAKLEET
VALDEZ
HISEMAN
HRANGELL | A A A A A A A A A A A A A A A A A A A | 57 031
59 271
64 351
57 071
57 071
65 101
63 531
61 071
67 261 | | 31
11
15
19
19
220
1 30
1 1290 | | 3 3 3 3 | 3 3 3 | 3 3 3 3 3 | 3 3 3 3 3 | 3 3 3 3 3 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 3 3 3 3 3 | 3 3 3 3 | 3 : 3 : 3 : 3 : 3 | 3 | 12 | 12 | | | | | | 25333
25335
26629
25712
25713
28529
26627
26442
26511
25338 | | 1935 | ANCHORAGE | ₩B0 | 61 13 | N 148 524 | 1 116 | , , | 5 5 | 5 | ΙI | 1 | | 5 5 | 5 5 | 5 | 5 | 1 | 1 | 2 12 | , | 12 | , | | | 26516 | | | ANIAK
BARROH
BETHEL
BIG DELTA
CHICKEN | HB0
HB0
A | 71 18
50 48
54 08 | N 158 324
N 156 464
N 161 454
N 145 444
N 141 564 | 1 36
1 36 | 5 | 3 | 3 | 3 | 3 | 3 | 3 3 | | 3 | - 1 | 1 | 1: | | | 1 | 2 | | | 27502
26615
26415 | | | CIRCLE HOT S | A | 65 48 | N 144 041
N 144 361 | 700 |) : | 3 3 | 3 | 3 | 3 | 3 | 3 3 | 3 3 | ıll | 3 | 3 | | | | | | | | 26446
26419 | | AL | AS | SK | F | |------|----|----|---| | IOME | | | _ | | | ALAS | KA | | | | | | | | | | | | | | | | | NU | MBER | 0F | MONT | HS I | N YE | AR W | I TH | |------|---|--|--|--|--|---|---------------|---------------|---------------------------------|-----------------------|--------------------------|-----------------|-----------------------|-----------|---------------------|-----------|-----------|---------|----------------------|------------------------|--|------|------|--------------|------|---| | | | | | | | | но | UR | LY | RE | CO | RD | S E | ЭΥ | но | NT | н | / | , | / | / 2 | | | | | | | | • | | | | | | | | | | 08 | | | | | | | S. Mos. | | diameter of the second | Sample of the same | | | | | # HBAN | | YEAR | NAME | TYPE | LAT | • | LONG. | ELEV. | J | F | ۳ | A | Ħ . | ٠ ٠ | A | s | 0 | N | D | 15.6 | 18 | \$ \$ | / 3 | 18 | ¥/\$ | <i>¥</i> /\$ | | NUMBER | | 1935 | CORDOVA CROBASED CREK DUTCH HARBOR EAGLE FAIRBANKS FLAT FORT YUKON GAMBELL GOLOVIN HOT SPRINGS | S A NF A BB A S A S A S | 53 5
64 4
64 5
62 2
66 3
63 5
64 3 | 2N 19
3N 19
6N 19
0N 19
7N 19
5N 19
1N 19 | 71 36W
53 01W | 150
47
837
484
303
410
30 | 3 | 3 | 3 | 3 | 3 | 3 3 3 | 3 3 3 3 3 3 3 3 3 3 3 | 3 3 3 3 | 343333 | 30040000 | 3 3 3 3 | | 12
12
12 | 12 | | 12 | | 12 | | 26410
26518
25616
26422
26411
26520
26413
26703
26628 | | | JUNEAU
KALTAG
KANAKANAK | A
HB0
A | 54 5
58 1
64 2
59 0 | 9N 13 | 34 24W
58 45W | 275
132
93
85 | 3 3 | 3 | 3 | 3 | 3 3 3 3 3 3 3 | 3 3 | 3 | 3 | 3 | | 3 | | 12 | 12 | 12 | 12 | | | | 25324 | | | KETCHIKAN
KODIAK
KOTZEBUE
LIVENGOOD
MCGRATH
NAKNEK | SA
SA
SA
A | 55 2
57 4
66 5:
65 3:
52 5:
58 4: | IN 13
3N 15
2N 16
5N 14
3N 15 | 88 284
62 284
52 284
52 384 | 16
152
11
550
333 | 3 | 3 | 3 | 3 | 3 | 3 3 3 3 3 3 3 3 | 3 3 3 | 3 3 | 3 3 3 | 3 | 3 3 | | 12
12 | 12
12 | | Ů8 | | | | 25325
25509
26616
26428
26510 | | | NENANA
NOME
NULATO
PORTAGE
RADIOVILLE
RAPIDS
RICHARDSON | A A A A | | N 15
SN 15
LN 14
SN 13
SN 14 | 5 24W
8 04W
8 59W
6 09W
15 51W | 353
12
153
35
15
2128 | 3 | 3 | 3 | 3 | | 3 3 | 3 | 3 | 3 3 3 3 | 3 3 3 3 3 | 3 3 3 3 3 | | 12 | 12 | 12 | 12 | | | | 26435
26617
26437
25332 | | | RILBY
SAVBONGA
SEMARD
SITKA
SKAGHAY
SBLOMON
ST PAUL IS
TANANA
UNALAKLEET
VALDEZ
HISEMAN
HRANGELL | *************************************** | 64 44
63 44
60 05
57 05
59 25
64 39
57 05
63 55
65 10
63 55
67 28
56 28 | IN 15
IN 17
IN 13
IN 13
IN 13
IN 15
IN 15
IN 14
IN 15
IN 15 | 5 26W
70 26W
9 27W
5 20W
5 19W
4 24W
0 16W
2 06W
6 16W | 680
175
35
66
31
11
15
19
220
30
12
1280 | 3 | 3 | 3 3 3 | 3 : | 3 3
3 3
3 3
3 3 | 3 3 3 3 3 3 | 3333334 | 3 3 3 3 3 | 3 3 3 3 3 3 3 | 3 3 3 3 3 | 3 3 3 3 | | 12 | 12 | | | | | | 26438
25333
25335
26629
25713
26529
26627
26442
26511
25338 | | 1936 | ALATMA ANCHORAGE ANIAK ATKA BARROH BETHEL BIG DELTA CHICKEN | A BBB HBB HBB HBB HBB HBB HBB HBB HBB HB | 66 34
61 13
61 35
52 12
71 16
60 48
64 08 | N 14
N 15
N 17
N 15
N 16
N 14 | 9 32W
4 20W
6 46W
1 45W
5 44W
1 56W | 600
118
100
11
25
38
995
2000 | 3 3 3 | 3 | 3 3 3 3 3 | 3 3 3 | 3 3 3 3 3 3 | 3 3 3 | 3 3 3 | 3 3 3 | 3 3 3 | 3 3 | 3 3 | | 12
05
12
12 | 12
04
12
12 | 12 | 12 | | | |
26516
25715
27502
26615
26415 | | | CIRCLE CIRCLE HOT S CORDOVA COUNCIL CRAIG CROOKED CREK | A A A | 65 46
65 29
60 32
64 53
55 29
61 52 | N 14
N 14
N 16
N 13 | 4 35H
5 42H
3 41H
3 09H | 700
935
70
95
13 | 3 | 3 | 3 : | 3 3 | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 3 3 | | 12 | 12 | | 12 | | | | 26446
26419
26410
25317 | | | DEERING DUTCH HARBOR EAGLE FAIRBANKS FLAT FORT YUKON GAMBELL GGLOVIN HOT SPRINGS | | 66 04
53 53
64 46
64 50
62 27
65 35
63 51
64 33
64 59 | M 16:
N 16:
N 14:
N 14:
N 15:
N 14:
N 17:
N 16: | 2 45W
6 32W
1 12W
7 43W
8 00W
5 18W
1 36W
3 01W | 15
47
837
484
303
410
30
20
275 | 3 3 3 3 3 3 3 | 3 3 3 3 3 3 | 33333333 | 3 3 3 3 3 3 3 3 3 3 3 | 3 3 3 3 3 3 3 3 3 | 3 3 3 3 | 3 3 3 3 | 3 | 3 3 3 | 3 3 | 3 3 3 3 3 | | 12 | 12 | | 12 | | 12 | | 25518
25616
26422
26411
26520
26413
26703
26628 | | | JUNEAU
KALTAG
KANAKANAK
KETCHIKAN | A | 58 18
64 20
59 01
55 21 | N 156 | 3 45H
3 31H | 132
93
85 | 3 | 3 : | 3 3 3 | 3 3 | 3 3 3 | 3 | 3 | 3 3 | 3 !
3 : | 3 | 3 | | 12 | 12 | 12 | 12 | | | | 25324 | | | KODIAK
KOTZEBUE
LIVENGOOD
MCGRATH
NAKNEK | 5A
5A
A
A | 57 48
66 52
65 35
62 58
58 42 | N 152
N 154
N 146
N 155
N 155 | 2 24H
2 38H
3 29H
5 37H
7 02H | 152
11
550
333
86 | 3 3 3 | 3 3 3 3 3 3 | 3 3
3 3
3 3 | 3 3 3 3 3 3 3 | 3 | 3 3 3 | 3 3 3 3 | 3 3 3 | 3 : 3 : 3 : 3 | 3 3 3 | 3 3 3 3 | | 12 | 12 | | | | | | 25325
25509
26616
26428
26510 | | | NENANA
NOME
NULATO
PETERSBURG | HBB
A | 64 33
64 29
64 43
56 49 | 1 165
1 156 | 3 24H | 353
12
210
50 | | 3 3 | 3 3 3 | | | | 3 | 3 | 3 3 | 3 : | 3 3 | | 12 | 12 | 12 | 12 | | | | 26435
26517 | | | PORTAGE RADIOVILLE RAPIDS RICHARDSON RUBY SEWARD | A A A A A A A | 60 51
57 36
63 32
64 17
64 44
60 07 | 146
136
146
146
159 | 5 59W
5 09W
5 51W
5 21W
5 26W | 35
15
2128
880
175
66 | 3 | 3 3
3 3 | | 3 | 3 | 3 | 3 3 | 3 | 3 5 3 5 3 5 3 | | 3 3 3 | | | | | | | | | 25329
26437
25332 | | | SITKA
SKAGWAY
SOLOMON
ST PAUL IS
TANANA
UNALAKLEET
VALDEZ
WISEMAN
WRANGELL
YAKUTAT | A A A A A | 57 03:
59 27:
64 35:
57 07:
65 10:
63 53:
61 07:
67 26:
56 28:
59 32: | 135
164
170
152
160
146
150 | 204
2194
2164
2164
2064
2064
3164
3164
3134
2234 | 31
15
19
220
30
12
1290 | 3 3 | 3 3 3 3 3 3 3 | 4 3
3 3
3 3
3 3
4 3 | | 3
3
3
3
4 | 3 3 3 5 5 | 3 1 3 3 5 5 3 | 3 : | 3 3 3 3 3 3 3 4 4 4 | 3 : | 3 | | 12 | 12 | | | | | | 26438
25333
25335
26529
25713
26529
26527
26442
26511
25338
25338 | | I | 1 | ı | | 1 | | 1 | | İ | | | | İ | ١ | | 1 | | | | | | ļ | | | | - 1 | | | | ALAS | KA | | | | | | | | | | | | | | NU | MBER | OF I | 10NT | IS IN | ł YEA | R HI | тн | |------|--|---|--|--|--|--------|---------------|---------------------------------|-------------|-------------------------|---|---------------------|--------------|---|--|----------------------|----------------------|-------------|--------|-------|-------|----------|---| | | | | | | | но | URL | Y F | EC | ORD | s I | BY: | HO | NTH | , | /. / | / , | ر چ / | Te tel | / ~/ | / _/ | / | / § / | | | | | | | | | 1 = | 24 | 0 | BS | PEI | R D | RY | | ŝ | ₹ /
*/~ | | | | | \$ \S | | HBAN | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | J | F | н А | н | . د | J A | s | 0 | N D | S. S | \$ 120 | | September 1 | 126 | | | | NUMBER | | 1937 | ALATNA
ANCHORAGE
ANIAK
ANNEK CREEK
ATKA
BARROW
BETHEL
BIG DELTA | 6 166
C66P
A A 166
166 | 51 13N
61 35N | 159 32W
134 06W
174 20W
156 46W
161 45W | 500
118
100
24
11
25
38 | 3 3 | 3 3 | 3 3 | 5
3
3 | 3 | 3 : | | 3 | 3 3
5 5
3 3
3 3 | | 12
07
12
12 | 12
07
12
12 | 12 | 12 | | | | 26516
25311
25715
27502
26615
26415 | | | CHICKEN CIRCLE CORDOVA COUNCIL CRAIG DEERING | A A A A | 64 04N
65 46N
60 32N
64 53N
55 29N
66 04N | 141 56W
144 04W
145 42W
163 41W
133 08W | 2000
700
700
70
95
13 | 3 3 | 3 | 3 3
3 3
3 3 | 3 | 3 | 3 3 | 3 3 3 4 3 3 3 | 3 4 3 | 3 3
3 3
3 3
4 4
3 3 | | 12 | 12 | | 12 | | | | 26446
26410
25317 | | | DUTCH HARBOR
EAGLE
ELIM
FAIRBANKS
FLAT
FORT YUKON
GGLOVIN | NF
A
HBO
A
A
A | 53 53N
64 46N
64 40N
64 50N
62 27N
66 35N
64 33N | 166 32W
141 12W
162 06W
147 43W
158 00W
145 18W
163 01W | 47
837
30
484
303
410
20 | 3 3 3 | 3 3 3 | | 3 3 3 | 3 3 3 | 3 3 3 3 3 3 | 3 3 3 3 3 | 3 3 3 3 3 3 | 3 3
3 3
3 3
3 3
3 3
3 3 | | 12 | 12 | | 12 | | 12 | | 25616
26422
26411
26520
26413
25628 | | | HOT SPRINGS IGLOO JUNEAU KALTAG KANAKANAK KETCHIKAN KODIAK | A
HB0
A
A
SA
SA | 64 59N
65 09N
58 18N
64 20N
59 01N
55 21N
57 48N | 165 04W
134 24W
156 45W
156 31W
131 39W | 275
4
132
93
85
16
152 | 3 | 3 | 3 3 | 3 5 6 3 3 3 | 3
5
3
3 | 3
5 5
3 3 | 3 3 | 5 3 3 | 5 5
3 3
3 3
3 3 | | 12 | 12
12
12 | 12 | 12 | | | | 25324
25325
25509 | | | KGTZEBUE
LIVENGGGD
MCGRATH
NAKNEK
NENANA
NGME
NULATG | 5A
A
A
A
A
HBO | 66 52N
65 35N
62 58N
58 42N
64 33N
64 29N
64 43N | 148 29W
155 37W
157 02W
149 05W | 11
550
333
86
353
12
210 | 3 | 3 | | 1 | 3 | 3 3 | 3 3 3 3 3 3 3 | 3 3 | 3 3
3 3
3 3
3 3
3 3 | | 12 | 12 | 12 | 12 | | ļ | | 26616
26426
26510
26435
26617 | | | GHOGAMUTE PETERSBURG PILGRIM SPRG PORTAGE RADIOVILLE RAPIDS RICHARDSON | | 61 38N
56 48N
65 05N
60 51N
57 36N
63 32N
64 17N | 161 54W
132 57₩ | 45
50
50
35
15
2128 | 3 | 3 | 3 3
3 3
3 3
3 3
5 5 | 3 3 3 | 3 3 3 | 3 3
3 3
3 3 | 3 3 | 3 3 3 3 | 3 3 3 3 3 3 3 3 3 3 | | | | | | | | | 25329
26437
25332 | | | RUBY SEHARD SHISHAREF SITKA SKAGWAY SOLBMON ST PAUL IS TANANA TELLER TIN CITY UNALAKLET VALDEZ WISEMAN | | 64 44N
60 07N
66 14N
57 03N
64 35N
67 07N
65 10N
65 16N
65 34N
61 07N
67 26N
56 28N | 155 26µ
149 27µ
166 07µ
135 20µ
135 19µ
164 24µ
170 16µ
152 06µ
166 21µ
167 55µ
160 48µ | 175
66
16
31
11
15
220
10
259
30
12
1290 | 000000 | 3 3 3 3 3 3 3 | 3 3 3 3 3 3 3 3 3 | 3343333 | 3 3 3 3 3 3 3 3 3 3 3 3 | 3 | 3 3 3 3 3 3 3 3 5 5 | 3 3333333333 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | 12 | 12 | | | | | | 26438
26625
25333
26629
25713
26529
26626
26627
26442
26511
25338 | | 1938 | ALATNA
ANCHORAGE
ANNEX CREEK
ATKA
BARROH
BETHEL
BIG DELTA
BROAD PASS
CANDLE
CAPE SPENCER
CHICKEN
CIRCLE | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 56 34M
61 13M
58 19M
52 12M
52 12M
60 48M
64 08M
64 08M
55 56M
56 12M
56 48M | 152 44µ
149 52µ
134 D6µ
174 20µ
156 46µ
161 45µ
145 44µ
148 D2µ
161 55µ
136 38µ
141 56µ
144 04µ | 600
118
24
11
25
38
995
2127
10
68
2000
700 | 3 3 3 | 3 3 3 3 3 | 3 3 3 3 3 3 3 3 3 3 3 | 3 5 3 3 | 3 3 3 3 | 3 3 3 3 3 3 3 3 3 3 3 | 3 3 3 3 3 3 | 3533 3333 33 | 3 3 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | 12
12
12 | 12
12
12 | 12 | 11 | | | | 25311
25715
27502
26615
26415
26619
25316 | | | CIRCLE HØT S COBAL CREEK COBPER CTR COBRODIVA COUNCIL CRAIG CROSKED CREK DEERING DUTCH HARBOR EAGLE | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 65 16N
61 58N
60 32N
64 53N
55 29N
61 52N
66 04N | 145 19W
145 42H
163 41W
133 09W
158 15W
162 45W
166 32W | 935
1050
1044
70
95
13
150
15
47
837 | 3 | | 3 3 3 | 3000 | 3 3 3 3 3 3 | 3 3
3 3
3 3
3 3 | 3 3 3 3 3 3 | 3 3 3 3 3 3 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | 15 | 12 | | 12 | | | | 26419
26410
25317
26516
25616
26422 | | | EGAVIK ELIM FAIRBANKS FLAT FORT YUKON GAMBELL GOLOVIN HAINES HERLY | . A A B A A A A A A A A A A A A A A A A | 64 02N
64 40N
64 50N
62 27N
66 35N
63 51N
64 13N | 160 55H
162 06H
147 43H
158 00H
145 18H | 15
30
484
303
410
30
20
15 | 3 3 3 | 3 3 3 3 | 3 3
3 3
3 3 | 33333 | 3 3 3 3 3 | 3 3
3 3
3 3
3 3 | 3 3 3 3 3 | 3 3 3 3 3 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | 12 | 12 | | 12 | | 12 | | 26411
26520
26413
26703
26628
25323
26447 | | * | HOT SPRINGS
JUNEAU
KALTAG | н
нво
н | 64 59N
58 18N | 150 40W
134 24W
158 45W | 275
132
93 | 1 | 3 | 3 3
3 3
3 3 | 5 | 5 ! | 3 3 3 | 5 | 3 | 3 3
6 6
3 3 | | 12 | 12 | 12 | 12 | | | | 25324 | | | ALASI | KA | | | | | | | | | | | | | NUI | 1BER | OF I | 10NT | IS IN | YEA | R HI | тн | |------|------------------------------|------------|--------------------------|--------------------|--------------|----
------------|-----|------------|-------|-------|-------|-----|----------|-----|-------------|--|--|-------|------------|--|----------------| | | | | | | | но | URL | RE | COR | DS I | BY M | DNTH | | / | ′ / | / / | / s. / | / * | / _ , | / . , | / / | /\$/ | | | | | | | | | 1 = | 24 | OBS | PEI | R DA | Y | | 1 | • / | | | | | | | B NBAN | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | L | F H | A P | H J | J A | s c | N D | / | 3 7 00 V | | \$ \ | Service of the servic | Selection of the select | | Talling Co | 1. C.COMO(2) C. | NUMBER | | 1938 | KANAKANAK | A | 59 01N | | | | 3 3 | 3 | 3 3 | | | 3 3 3 | 1 | 1 | | | <i></i> | | | | | | | | KASILOF
KETCHIKAN | A
5A | 50 19N
55 21N | 131 39W | 60
15 | 3 | | | 3 3 | 3 3 | 3 5 ! | 3 3 3 | | | 12 | 12 | | 12 | | | | 25325 | | | KODIAK
KOTZEĐUE | SA
SA | 57 48N
88 52N | 162 38H | 152
11 | 3 | 3 3 | 3 | 3 3 | 5 3 | 3 3 9 | 3 3 3 | - [| İ | 12 | 12 | | | | | | 25509
26616 | | | LIVENGOOD
MCGRATH | A | 65 35N
62 58N | | 550
333 | | 3 | 1 1 | 3 3 | | | 3 3 3 | | ı | | | | | | | | 26428
26510 | | | NAKNEK
NENAHA | A | 58 42N
64 33N | | 86
353 | | | 3 | 3 3 | 3 : | | 3 3 3 | | | | | | | | | | 26435 | | | NOME
NULATO | HB31
A | 64 29N
64 43N | | 12
210 | | 4 4 | 4 | 4 4 | 4 3 | | 3 4 5 | | | 12 | 12 | 12 | 12 | | | | 26617 | | | OHOGAMUTE
PETERSBURG | A | 61 38N
56 49N | | 45
50 | 3 | 3 3 | 3 | 3 3
3 3 | | 11 | 3 3 3 | | | | | | | | | • | 25329 | | | PILGRIM SPRG
PILGT POINT | A | 66 05N
57 37N | 164 58H | 50
50 | | | | 3 3 | | | 3 3 3 | | | | | | | | | | 25514 | | | PORTAGE
RADIOVILLE | A | 60 51N
57 36N | 148 59H | 35
15 | | 3 3 | 3 | 3 3 | | | 3 3 3 | 1 | - 1 | | i | | | | | | 26437
26332 | | | RAPIDS
RICHARDSON | A
A | 63 32N
64 17N | 145 51H | 2128 | 3 | 3 3 | 3 | 3 3 | 3 3 | 3 3 ! | 5 5 5 | 1 | | | | | | | | | | | 1 | RUBY
SELAHIK | A | 64 44N
66 34N | | 175 | 3 | | | 3 3 | | | 3 3 3 | 1 | | 12 | | | | | | | | | | SEHARD
SHISHAREF | A
SA | 60 07N | 149 27H | 66 | } | | | | ۱. | | 3 3 3 | 1 | | | | | | | | | 26438 | | | SITKA | A | 57 03N | 135 20H | 16
31 | 3 | | | 3 3 | | 3 3 3 | 3 3 3 | 1 | 1 | Ì | İ | | | | | | 26625
25333 | | | SITKA
SKAGHAY | NS
A | 59 27N | 135 19H | 98 | 3 | | | 3 3 | | 3 3 : | 3 3 3 | 1 | - | | [| | | | | | 25307
25335 | | | SOLOMON
ST PAUL IS | 8
58 | 64 35N
57 07N | 170 16W | 15
19 | 3 | [] 3 | 3 | 5 5
3 3 | 3 3 | 3 3 3 | 3 3 3 | 1 | | 12 | 12 | | | | | | 26629
25713 | | | STAMPEDE
STUYAHBK | SAUR
A | 62 10N | 161 50W | 2500
1500 | 3 | 1 | | 3 3 | 3 3 | 3 3 : | 3 3 3 | 1 | | | | | | | | | | | | TANANA
TELLER | SA
A | 65 10N
65 16N | 166 21W | 220 | 3 | 3 3 | 3 | 3
3 3 | 3 3 | 3 3 : | 3 3 3 | | | l | 06 | | | | - | | 26529
28626 | | | TIN CITY | A | 65 34N
63 53N | 150 48H | 269
30 | 3 | | 3 | 3 3 | | 3 : | 3 3 3 | | | | | | | | | | 26627 | | | VALDEZ
HISEMAN | A | 61 D7N
67 26N | | 12
1290 | 5 | 5 4 | 5 | | 5 5 | 5 5 9 | 3 3 3 | | | | | | | | | | 26442
26511 | | | WRANGELL
YAKUTAT | CAA | 56 28N
59 32N | | 16 | | 3 4 | 4 | 3 3 | | 4 5 9 | 5 5 | | | İ | | | | | | | 25338
25339 | | 1939 | ALATNA | A | 66 34N | | 600 | | | 3 | 3 3 | 3 3 | 3 3 : | 3 3 | | - 1 | | | | | | | | | | | ANCHBRAGE
AN IAK | C08P | | 159 32H | 100 | | 5 5 | | 5 5 | | | 3 5 | | 07 | 12 | 12 | 12 | 12 | | | | 26516 | | | ANNEX CREEK
ATKA | A | 58 19N
52 12N | | 24
11 | 3 | 3 2 | | 3 3 | | | 3 3 3 | | 04 | 10 | 10 | | | | | | 25311
25715 | | | BARRON
BETHEL | HB0
HB0 | 71 18N
60 48 N | | 25
38 | 3 | 3 3 | | 5 4 | 4 : | 3 3 : | 3 3 | | 05 | 12 | 12 | 12 | 12 | | | | 27502
26615 | | | BIG DELTA
BROAD PASS | A | 64 DBN
63 22N | | 995
2127 | 3 | | | 3 3
3 3 | | | 3 3 3 | | | | | | | | | | 26415 |
 | CAMPLE DECISION | A
CG | 85 58N
56 00N | | 10
50 | | 3 3 | 3 | 3 3 | 3 3 | | 3 3 3 | | | ŀ | ł | | | | | | 26619
25315 | | | CAPE HINCHIN
CAPE SPENCER | CG | 60 14N
58 12N | | 185
88 | 3 | 3 5 | 5 | 5 5 | | | 5 5 5 | | | ŀ | | | | | | | 26417
25316 | | | CAPE ST ELIA
CHICKEN | CG
A | 59 48N | | 58
2000 | 3 | 3 3 | 3 | 3 3 | 3 3 | 3 3 3 | 3 3 3 | | | ł | ł | | | | , | | 25401 | | | CHITINA
CIRCLE | A | 61 32N
65 48N | 144 27H
144 04H | 572
700 | 3 | 3 3 | 3 | 3 3 | | | 3 3 3 | | - | | | | | | | | 26446 | | | CIRCLE HOT S
COAL CREEK | A | 65 29N
65 16N | 144 36W
143 16W | 935
1050 | 3 | 3 3 | 3 | 3 3 | 3 | - | , | | | [| | | | | | | 26419 | | | COPPER CTR
CORDOVA | A
S | 61 58N
60 32N | | 1044
70 | 3 | | 3 3 | 3 3 | 3 3 | 3 3 3 | 3 3 3 | | 06 | 12 | 12 | | 12 | | | | 26410 | | | COUNCIL
CRAIG | A
A | 64 53N
55 29N | | 95
13 | | | 3 | 3 3 | 3 3 | 3 3 : | 3 3 3 | 1 | | - | | | | | | | 25317 | | | CROOKED CREK
DEERING | A | 61 52N
66 04N | 158 15W
162 45W | 125
15 | 3 | | 3 | 3 3 | 3 3 | 3 3 3 | 3 3 3 | 1 | | | | | | | | | 26518 | | | DUTCH HARBOR
DUTCH HARBOR | NS
NF | 53 53N
53 53N | | 26
47 | | 3 2 | 3 | 3 3 | 1 1 | 1 1 : | 1 1 1 | 1 | 07 | 12 | 12 | | | | | | 25611
25616 | | | EAGLE
ELDRED ROCK | A
CG | 54 46N
58 58N | | 837
54 | | 3 3 | 3 | 3 3 | | 3 3 : | 3 3 3 | 1 | 1 | | | | | | | | 26422
25318 | | | EL IM
FA IRBANKS | A
⊬B0 | 64 40N
64 50N | | 30
484 | | 3 3
5 5 | 5 | 3 3
5 5 | 5 9 | 11 | 5 5 5 | | | 12 | 12 | | 12 | | 12 | | 26411 | | Ì | FIVE FINGER
FLAT | CG
SA | 57 16N
62 27N | | 303 | | 3 3 | | 3 3 5 | 3 3 | | 3 3 3 | | | İ | 07 | | | | | | 25319
26520 | | | FORT YUKON
GAMBELL | A
SA | 66 35N
63 51N | | 410
30 | | 3 3 | | | | 3 3 3 | 3 3 3 | | | | | | | | | | 26413
26703 | | | GOLGVIN
GOOD PASTER | A | 54 33N
64 20N | 163 D1H | 20
2500 | | 3 3 | 3 | 3 3 | 3 : | 3 3 : | 3 3 3 | 1 | - } | | | | | | | | 26628 | | | GRAVINA
GUSTAVUS | A | 55 11N
58 25N | 131 49H | 40
20 | | | | 5 5 | | | 5 5 5 | | | | 0.1 | | | | | | 25322 | | | HAINES
HEALY | A | 59 14N
63 51N | 135 27H | 15 | 3 | | 3 | | 3 3 | 3 3 : | 3 3 3 | | | | | | | | | | 25323
26447 | | | HOMER
HOT SPRINGS | ; A A | 59 38N
64 59N | 151 3DH | 55
275 | 1 | 3 3 | 3 | 3 3 | 3 3 | 3 3 3 | 3 3 3 | | - 1 | | | | | | | | 25507 | | | HUGHES
IL IAMNA | A | 55 04N | 154 14H | 545
68 | | 3 | 11 | 3 3 | | 1 1: | 3 3 3 | | | | | | | | | | 26522
25506 | | | INDEPENDENCE | A
HBG | 61 47N
58 18N | 149 18H | | | 6 6 | 11 | 1 | | | 5 6 6 | | 06 | 12 | 12 | 12 | 12 | | | | 25324 | | | KALSKAG
KALTAG | A | 61 27N | 160 49W
158 45W | 90 | | { 2 | 3 | 5 5 | 5 5 | 5 5 9 | 5 5 5 | | | | | | | | | | | | | KANAKANAK
KANATAK | A | 59 01N | 158 31H
156 02H | 85 | 3 | | 3 | | | | 3 3 3 | | | 04 | | | | | | | | | | KASILOF
KENAI | A
A | | 151 17⊬ | 60 | 3 | 3 3 | 3 | 3 | | : | 3 3 3 | | | - 1 | | | | | | | 26523 | | į | | l -' | | | ", | 1 | 11. | 17 | -1 | 1 | 1 | " " | 1 | - | | ı | | | | | | 20753 | ALAS | KΩ | *** | CONDO | וטאו | ^ | 7 71 | VIVE | | | | ט | • | ' ' | _ = ==== | 41231 | 4858 | or 1 | 404171 | ie ti | |
* * 4 | |------|-----------------------------------|----------------|----------------------------|-------------------------------|--------------------|------|-------------------|------------|-------|-------------------|-----|-------------------|------------|-----|----------|-------|------|--|-------------------------|-------|------------|-------------------------| | | | | | | | | | | | | | | | | , | , | / | UF 1 | | | N YEI
/ | - | | | | | | | | | | 24 | | | | | | | Į. | / پ | * | | | 2 E | | S HBAN | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | ا د | FH | A I | n . | J J | A | s | אןכ | D | | | | A STATE OF THE STA | Supposition of the same | | | HBAN
NUMBER | | 1939 | KETCHIKAN
KING ISLAND | SA
A | 55 21N
64 56N | | 15
100 | 3 | 3 3 | 3 | 3 | 3 3 | 4 | 3 | 3 3 | | 06 | 12 | 12 | | 12 | | | 25325 | | | KUKHAN
KODIAK | A
SA | 59 24N
57 48N | 135 54₩ | 91
152 | 3 | 3 3 | 3 | 3 | 3 3 | 4 | 3 | 4 | 4 | 06 | 12 | 12 | | | | | 25509 | | | KOGG IUNG
KOTZEBUE | A
5A | 59 02N
66 52N | | 50
11 | H | 4 5 | Н | - | 3 5 | 13 | 3 | 3 3
3 4 | 3 | | | | | | | ł | 28616 | | | FINENGOOD | A | 61 47N | 148 29H
148 25H | 550
3300 | 3 | 3 3 | | 3 | 3 3 | 3 | | 3 3
3 3 | | | | | | | | | 26428 | | | MCGRATH
NAKNEK | A | 58 42N | 155 37₩
157 D2₩ | 333
86 | 1 | 3 4 | 3 | 3 | 4 4
3 3 | 3 | 3 | 4 3
3 3 | | 10 | 10 | 10 | | | | | 26510 | | | NENANA
NO GRUB
NOME | A
A
MB0 | 64 33N | 145 58H | 353
1300 | H | 3 3 | 3 | 3 | 3 3 | 3 | 3 | 3 3 | | | | | | | | | 26435 | | | NONDAL TON
NUL ATO | A
A | 59 59N | 165 24W
154 50W
158 04W | 12
300
210 | | 5 5
3
3 3 | 3 | 3 | 5 5
3 3 | | | 1 | 3 | 05 | 12 | 12 | 12 | 12 | | | 26617 | | | OPHIR
PAXSON | A | 63 10N
63 03N | 156 33W | 400
2687 | ١ٵ |] | | 1 | 4 5 | H | | 3 4 | 3 | | | 09 | | | | | | | | PETERSBURG
PIGOT | A | 56 49N
60 47N | 132 57W
148 20W | 50
280 | 3 | 3 3 | 3 | | 3 3 | | 3 1 | 3 3 | 3 | | | | | | | | 25328 | | | PILGRIM SPRG
PILOT POINT | A | 65 05N
57 37N | 164 58µ
157 34µ | 50
50 | | 3 3 | | | 3 3 | 3 | 3 | 3 3 | | | | | | | | | 25514 | | | PLATINUM
PORTAGE | A | 59 01N
60 51N | | 15
35 | | | 1 | 3 | 3 3 | 3 | 3 | 3 3 | | | | | | | | | 25613
26437 | | | RADIOVILLE
RAPIDS | A | 57 36N
63 32N | 145 51H | 15
2128 | 5 | 3 3
5 6 | 5 | 5 9 | 3 3
5 5 | 5 | 5 | 3 3
5 5 | 5 | | | | | | | | 25332 | | | RICHARDSON
RUBY
SELAWIK | A
A | 64 17N | 146 21W | 175 | 3 | 5 5
3 3 | | | 3 3
5 5 | | | | 3 | 10 | 12 | 08 | | | | | | | | SEMARD
SHISHAREF | A
SA | 66 34N
60 07N
66 14N | 148 27W | 20
66
16 | 3 | 3
3 3
3 3 | | | 3 3 | | | | 3 | . | | | | | | | 26438 | | | SITKA
SITKA | A
NS | 57 03N
57 03N | 135 20W | 31 | 3 | 3 3 | 3 : | 3 : | 3 4
3 3
1 1 | 3 | 3 : | 3 3
3 3 | 3 | | | | | | | | 26825
25333
25307 | | | SKAGHAY
SKHENTNA | A | 59 27N
61 57N | 135 19H
151 10H | 11
228 | | 3 3 | 3 1 | 3 : | 3 3 | 3 | 3 : | 3 3 | 3 | İ | | | | | | | 25335
26514 | | | SOLOMBN
ST PAUL IS | A
SA | 64 35N
57 07N | 164 24W
170 16W | 15
19 | 3 | 5 5
3 3 | 5 ! | 5 9 | 5 5 | 5 | 5 5 | 5 5 | | 06 | 12 | 12 | | | | | 26629
25713 | | | STAMPEDE
STUYANOK | SAHR | 62 10N | 161 50H | 2500
1500 | | 3 3 | 3 : | 3 : | 3 3 | 5 | 3 :
5 : | 3 3
5 5 | 3 4 | | j | | | | | | | | | TANALIAN PT
TANANA
TELLER | A
5A | 60 13N | 154 22W
152 06W | 308
234 | | 3 3 | 3 : | 3 : | 3 3 | 3 | 3 : | 3 3 | 3 | ł | 10 | 11 | | İ | | | 26531
26529 | | - | UNALAKLEET
VALDEZ | 9 9 | 65 16N
63 53N
61 07N | 166 21H
160 48H
146 16H | 10
30
17 | 3 | 3 3
3 3
3 3 | 3 : | 3 3 | 3 3
3 3
3 3 | 3 | 3 : | 3 3 | 3 [| | | | | | | | 26626
26527 | | | HALES
HISEMAN | A | | 168 03H | 1580
30 | 3 | 3 3 | 3 : | 3 | 3 3 | | 3 : | | 3 | | | | | | | | 26442
26616
26511 | | | HOSNESSENSKI
HRANGELL | A | 55 13N
56 28N | 151 21H
132 23H | 25
18 | | 5 3 | | 4 . | 1 1 | 1 1 | | 3 3 | | 01 | 01 | 01 | İ | Ì | | | 25338 | | | YAKUTAT | CAA | | 139 44W | 80 | | | : | | 3 3 | 3 | 3 | | | İ | - 1 | | | ŀ | | | 25339 | | 1940 | ALATHA
ANCHORAGE
ANIAK | A
HB0
SA | 66 34N
61 13N | 152 44H
149 52H | 118 | 3 | 3 3
5 5
3 3 | 5] : | 5 5 | 5 5 | 5 | 5 5 | 5 5 | 5 | 12 | 12 | 12 | 12 | 04 | | | | | l | ANNEX CREEK | A
A | 51 35N
58 19N
52 10N | 159 32H
134 D6H
174 12H | 100
24
36 | 3 | 3 3 3 3 3 3 | 3 : | 3 3 | 3 3 | 3 | 3 3 3 3 3 | 3 3 | 3 | 12 | 12 | 12 | l | | | | 26516
25311
25715 | | | BARROH
BEAVER FALLS | нво
А | 71 18N
| 156 46H
131 28H | 25
35 | | | | 1 | 3 3 | | 3 3 | 3 | 3 | 12 | 12 | 12 | 12 | 12 | | | 27502
25313 | | | BETHEL
BIG DELTA | ₩BØ
A | 64 08N | 161 45W
145 44W | 22
995 | 3 | 3 3 | 3 3 | 3 3 | 3 3 | 3 | 3 3 | 5 3 | 5 | 12 | 12 | 10 | | | | | 26615
26415 | | - | BROAD PASS
CANDLE | | 65 56N | 149 02W | 2127
10 | | | 3 3 | 3 3 | 3 3 | 3 | 3 3 | 3 3 | 3 | l | ľ | ŀ | | | | | 26619 | | İ | CAPE DECISIO
CAPE HINCHIN | A
CG
CG | 56 00N | 141 08H | 3500 | | 3 3 | 3 : | | 기기 | H | 3 3 | 5 5 | 5 | 02 | 02 | | į | İ | | | 25315 | | İ | CAPE SARICHE | CG | 54 36N | 146 39H
164 56H
135 38H | 185
175
88 | - 1: | 3 3
3 3
3 3 | 3 3 3 | | 3 3 | 3 | 3 3 3 5 4 | 3 | 3 5 | 1 | 1 | | | | | | 26417
25622
25316 | | i | CAPE ST ELIA | CG
A | 59 48N | 144 36W
144 47W | 58
750 | | 3 3 | 3 3 | 3 | 히히 | 3 | 3 3 | 3 | 3 | 1 | | | | | | | 25401
26418 | | į | CHICKEN
CHITINA | A | 61 32N | 141 56W
144 27W | 2000
572 | 3 | 3 3 | 3 3 | 3 3 | | | 3 3 | | | ŀ | | | | | | ŀ | | | } | CIRCLE HOT S
COAL CREEK | A | 65 29N | 144 04W
144 36W
143 16W | 700
935 | 3 | 3 3 | ı | 3 | | 3 | 3 3 | 3 | 3 | İ | | | | | | | 25445
25419 | | | COPPER CTR
CORDOVA | A
S | 61 58N | 143 16W
145 19W
145 42W | 1050
1044
70 | 3 : | | 3 3 | | | 3 | 3 3
3 5
6 6 | 3 | 5 | 12 | 12 | 12 | | | | ĺ | 25415 | | | COUNCIL
CRAIG | A | 54 53N | 163 41W
133 09W | 95
13 | 4 | 4 4 | 4 4 | 1 4 | 위취 | 4 | 4 4 3 | 1 4 | 4 | 04 | 04 | 04 | | | | ŀ | 26410
25317 | | | CROOKED CREK
DEERING | A | 66 D4N | 158 15W
162 45W | 125
15 | 3 | | 3 2
5 5 | 5 | 5]3 | 3 | 3 3
5 5 | 3 | 3 | | | | | | | | 26518 | | | DUTCH HARBOR
DUTCH HARBOR | NF
NS | 53 53N | 166 32H | 47
26 | 3 : | 3 3 | 3 3 | 3 | 3 3 | 3 | 3 3 | 3 | 3 | 12 | 12 | 12 | | | | | 25616
25611 | | | EAGLE
ELDRED ROCK
FAIRBANKS | A
CG
MB0 | 58 58N | 141 12H
135 13H | 637
54 | | 3 3 | 3 3 | 3 3 | 3 3 | 3 | 3 4 | 네히 | 5 | | | | | | į | | 26422
25318 | | | FIVE FINGER | CG
SA | 57 16N | 147 43H
133 37H
156 00H | 484
30
303 | 3 : | 3 3 | 5 5 | 1 3 | 1 4 | 4 | 4 4 | 5 | 5 | | 12 | 12 | | 15 | | 12 | 25411
25319 | | | FORT YUKON
GAMBELL | A
SA | 66 35N | 145 18H
171 36H | 41D
30 | 3 : | 3 3 | | | 3 | | | 3 | | 90 | 09 | 09 | | | | | 26520
26413
26703 | | | GOLOVIN
GOOD PASTER | A | 64 33N | 163 01H
144 05H | 2500
2500 | 3 : | 4 4 | 4 4
3 3 | | | | 3 3 | | 3 | | | | | | | | 26628 | | | GRAVINA
GUARD ISLAND | A
CG | 55 27N | | 40
20 | ; | | | 3 | 3 3 | 3 | 3 3 | 3 | 3 | | | 02 | | | | | 25320 | | ŀ | GUSTAVUS | Α | 58 25N | 135 45M | 50 | 3 : | 3 3 | 3 3 | 3 | ' ³ | اد | 3 3 | 3 | 3 | 1 | | | | 1 | İ | | 25322 | ALAS | KΑ | | | | | | | | | | | | | NU | MBER | OF I | MONT | HS I | N YE | AR WI | тн | |--------------|-------------------------------------|----------------|----------------------------|-------------------------------|---------------------|-------------------|---------|-------------------|------------|-------------------|-----|-----------------|-------|-------|---------|----------------|--|------------------|------|---|-------|----------------------------| | | | | | | | HOU | RLY | RË | COR | DS. | BY | MON | TH | , | /s / | / _/ | / 🟂 / | Ve In Commission | / 8 | / 3 | 138 | | | VEND | l nome | 1 700 | -1 | Lione | 1 - | | | | | PEI | | | .1_ | Z S | | | The state of s | | | / 60 mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/m | | WBAN | | YEAR
1940 | HAINES | A | 59 14N | | | ₩ | \bot | Н | 1 J
3 3 | ⊢ | - | 0 | N D | / 5 4 | -/ ** • | * * | <u> </u> | <u> </u> | e/** | £/ & a | F | | | 20 10 | HAINES
HAYCBCK | CAA | 59 13N
65 12N | 135 26W | 257 | | 3 | H | 3 3 | Н | 1 1 | | 6 6 | 03 | | | | | | | | 25323
25323 | | | HEALY
HEALY | A | 63 51N | 148 58W | 1350 | | 3 3 | 3 : | 3 3 | | | | 3 3 | | | | | | | | | 25 44 7 | | | HOLY CROSS
HOMER | A | 62 10N
59 38N | | | 3 : | 11 | | 3 3 | | 3 3 | 3 | | | | | | | | | | 26521
25507 | | | HOT SPRINGS
HUGHES | A | 64 59N | 154 14W | 545 | 3 : | 3 3 | : | 3 3 | 3 3 | 3 3 | | 3 3 | | | | | | | | | 26522 | | | HYDABURG
ILJAMNA
INDEPENDENCE | A | 55 12N
59 44N | 154 49W | 25
68 | 5 9 | 3 3 | | 3 3 | | 5 5 | 5 | 4 5 | | | | | | | | | 25505 | | | JACK HADE | A
A
MB0 | 61 47N
64 07N
58 18N | 141 35W | 3600
1800
132 | 3 5 6 | 6 | | 3 3 | | 3 3 | | 3 3 | 12 | 12 | 12 | 12 | 12 | | ĺ | | 25324 | | | KALSKAG
KALTAG | A | 61 27N
64 20N | 160 49W | 90 | 5 6 | 5 5 | | 5 5 | 5 5 | 5 3 | | 5 5 | 1.5 | " | 16 | 12 | 12 | | | | 29324 | | | KANAKANAK
KANATAK | e
A | 59 01N
57 34N | | 85
23 | | | | | 3 3 | | | 3 3 | 10 | 09 | 10 | | | | | | | | | KASILOF
KENAI | A | 60 19N | 151 15W | 60
65 | 3 3 | ı ا | - | | 3 3 |] [| | 3 3 | | | | | | | | | 26523 | | | KETCHIKAN
KIMSHAN | A MBG | 55 21N
57 41N | 136 06H | 15
13 | 4 4 | 1 1 | 4 | 1 | | 4 4 | | 4 4 | 12 | 12 | 12
06 | | | | | | 25325 | | | KUKWAN
KLUKWAN
KING ISLAND | A
A
SA | 54 56N
59 24N
57 48N | 135 54W | 100
91
152 | 3 3 | 4 | 3 3 | 4 | | | | 4 | | ., | | | | | | | 25500 | | | KOTZEBUE
LADD | SA
AAB | 66 52N
64 51N | 162 38W | 11
464 | 3 4 | | 4 5 | | | | | 3 3 | 12 | . 12 | 12
06
51 | | | | | | 25509
26616
26403 | | | LITTLE PORT
LIVENGOOD | A | 56 23N
65 35N | 134 39W | 14
550 | 3 3 | 3 | 3 3 | 3 3 | 3 3 | 3 | | 3 3 | | | ٠. | | | | | | 25327
25428 | | | LUCKY SHOT
MARSHALL | A | | 149 25W
161 43W | 3300
87 | 3 3
5 9 | 3 | 3 3
5 5 | 3 | 5 5 | 11 | - 1 | 5 5 | | | | | | | | | 22 .22 | | | MARY ISLAND
MCGRATH | CG
A | 62 58N | 131 11H
155 37H | 39
333 | 3 3 | 3 | 3 3 | 히의 | 3 3 | 1 | : | 4 4 3 | 15 | 12 | 01
12 | | | | | | 26510 | | | NAKNEK
NENANA
NGME | A
A
MBG | 58 42N
64 33N
64 28N | 149 05W | 86
353 | 3 3 | 3 | 3 3 | 3 3 | 3 3 | 3 | 3 3 | 3 3 | | | | | | | | | 26435 | | | NOME
NULATO | AAF
A | 64 31N
64 43N | 165 26W | 12
43
210 | 5 6
6 6
3 3 | 6 | 3 3 | | 3 3 | ΙÌ | - 1 | 3 3 | 12 | 12 | 12 | 12 | 12 | | | | 26617
2660 4 | | | NUNIVAK
OPHIR | A | 60 23N
63 10N | 165 12W | 37
400 | 3 3 | 11 | 3 3 | 1 1 | 1 | 3 3 | Į | 3 3 | 02 | 02 | 05 | | | | | | 26622 | | | PAXSON
PETERSBURG | A
CAA | 63 03N
56 49N | 145 27W | 2697
111 | 4 3 | 4 1 | 3 3 | 4 | | 3 | 3 | 6 | 04 | 04 | 04 | | | | | | 25329 | | | PIGGT
PILGRIM SPRG | A | | 164 58W | 260
50 | 3 3 | 3 | 3 2 | 3 | 3 3 | 3 | | 3 3 | | | | | | | | | | | | PILOT POINT
PLATINUM
PORTAGE | A | 57 37N
59 01N | 161 47W | 50
15 | 3 3 | 3 | 3 3 | | 3 3 | | - | 3 | | | | | | | | | 25514
25613 | | | RADIOVILLE
RAPIDS | A | 60 51N
57 36N
63 32N | | 35
15
2128 | 3 3 | 3 | 3 3
3 3
5 5 | 1 3 | 3 3
3 3
5 5 | 3 | 3 3 | 3 3 | 03 | 03 | | | ļ | | | | 26437
25332 | | | RICHARDSON
RUBY | A
CAA | 64 17N
64 44N | 146 21W
155 26W | 880
705 | 5 5 | 5 | 4 4 | 1 3 | 3 3 | 5 | 5 3 | 4 | 12 | 12 | 03
02 | | | | . | | | | | SENTINEL IS
SEWARD | CG
A | 58 33N
60 07N | 134 55H
149 27H | 60
66 | 3 3 | 3 | 3 3 | 3 | 3 3 | 3 | 3 4 | 5 4 | | | - | | Ì | | | | 26438 | | | SHISHAREF
SITKA | SA
A | 66 14N
57 03N | | 16
31 | 3 3 | 3 | 3 3 | 3 | 3 3 | 3 | 4 3 | 3 3 | | | | | | | | | 26625
25333 | | | SITKA
SKAGWAY
SKWENTNA | NS
A
A | 57 03N
59 27N
61 57N | 135 21W
135 19W
151 10W | 98 | 1 1
3 3
4 3 | 3 | 1 1 3 3 | ıl al | 3 3 | 3 | 1 1 2 3 | 3 | İ | ŀ | | | | | | | 25307
25335 | | | SOLOMON
ST PAUL IS | A
SA | 64 35N
57 07N | 164 24H | 228
15
19 | 4 5 | 5 | 3 3
5 5 | 5 | 3 3
5 5
3 3 | 5 | 5 5 | 5 3 | 12 | 12 | 12 | | | | | | 26514
26629 | | | STAMPEDE
STEVENS VILA | | 63 44N | 150 22W |
2500
350 | | 3 | 3 3 | 3 | 3 3 3 | 3 | 3 3 | 3 | 12 | 1. | 12 | | | | | | 25713
26449 | | | STONY RIVER
STUYAHOK | SA
A | 61 46N
62 1DN | 156 38W
161 50W | 221
1500 | 4 5 | | 3 3 | 3 | 3 3 | 3 | | 3 | | | | | | | Ì | | 26527 | | | SUMMIT
TAKU LBOGE | CAA
A | 58 33N | | 2405
175 | | $ \ $ | 5 | 3 | 6 6
3 3 | 3 | 3 4 | 4 | | | | | | | | İ | 26414 | | | TALKEETNA
TANALIAN PT
TANANA | CAA
A
SA | 60 13N | 150 06W
154 22W
152 06W | 356
308
234 | | | 3 3 | 3 | 7 6
3 3
3 3 | 11 | 1 | 1 1 | 12 | 02 | | | | | | | 26526
26531 | | | TAYLOR
TELLER | A | 65 40N | 164 47H | 250
10 | 3 | 3 | 3 3
3 3 | 1 | 3 3 | 4 | 3 3 | 3 | | 12 | 11 | | İ | | | | 26529
26626 | | | TENAKEE
TETLIN | A | 57 47N | 135 12W
142 32H | 19 | 3 | | 3 3 | | 3 3 | 3 | 3 3 | 3 | | | | | | | | ļ | 25336 | | | TREE POINT
TYONEK | CG
A | | 151 11W | 36
50 | 1 | 11 | 3 3 | 3 | 4 4 | 3 | 5 5
3 3 | 5 | | | 03 | | | | | | 25337 | | | UNALAKLEET
VALDEZ | A | 61 07N | 160 48W
146 16W | 30
17 | 3 3 | 3 | 5 4
3 3 | 3 | 3 3 | 3 | 5 5
3 3 | 3 | | ŀ | | | | | | | 26627
26442 | | | WALES
WISEMAN
WOSNESSENSKI | A
A | 67 26N | 168 03H | 1290 | | 5 | 5 5 | 5 | 3 3
5 5 | 5 | 3 3 | 5 | | | | | | | | ļ | 26518
26511 | | | WRANGELL
YAKUTAT | A
CAA | 56 28N | 161 21H
132 23H
139 44H | 25
18
90 | 3 3
5 5 | | 3 3 | 4 | 3 3
4 4
7 5 | 4 | 4 4 | 5 | 01 | 12 | 01 | | İ | | | | 25338 | | 1941 | AKULURAK | A | [| 164 25W | 33 | | | | | | | ٦, | | 09 | 06 | 07 | | | | | | 25339 | | | ALATNA
ANCHBRAGE | A
HB0 | 55 34N
81 13N | 152 44W
149 52W | 600
118 | 3 3
6 6 | 6 | 6 1 | 11 | 5 5
1 1 | 1 | 1 1 | 1 1 | 12 | 12 | 12 | 15 | 12 | | | | | | | ANGOON
ANIAK
ANNETTE | A
5A | 61 35N | 134 35W | 100 | | 3 | | 3 | 4 4 | 1 | | 4 | | | 08 | | Ì | | | | 25310
26516 | | | ANNETTE IS
ANNEX CREEK | AAF
A | 55 02N
55 02N
58 19N | 131 34H
131 35H
134 06H | 110
114
24 | 5 5 | H | 5 5
3 | | 5 5
6 6
3 3 | 6 | 5
1 6
3 3 | | 01 | | | | 58 | | | | 25308
25301 | | | ATKA | A | | 174 12H | 35 | 3 3 | 3 | 3 3 | 3 | 3 3 | 3 | 3 3 | | 12 | 12 | 09 | | | | l | | 25311
25715 | | | • | | | · | • | | • | | • | • | • | • | | ' | | , | • | ' | ' | , | ' | | | | ALASI | KA | | | | | | | | | | | | | | 100 | 18ER | 0F N | 10NTH | IS IN | N YEF | ar wi | | |------|------------------------------|---------------|----------------------------|--------------------|-----------------|-----|------------|--------|------------|-----|-----|------------|-----|-----|---------------------------------------|----------|---------------------------------------|--|---|-----------|----------|----------|-------------------------| | | | | | | | HOU | RL.Y | RE | COR | 05 | ΒY | HO | NT | 4 | /. | (/ | <i>'</i> . / | Service of the servic | TA J. P. S. | /
&/ | / */ | /
28/ | 8 | | | | | | | | 1 | = 3 | 24 | OBS | PE | R | DAY | • | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | § / £ | | \$ 100 mg | | | * WBAN | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | JF | H | A I | ۱J | 4 1 | A S | 8 0 | N | D / | /5° & | ** | * * * * * * * * * * * * * * * * * * * | / 🏝 | 1.00 | J 🕏 🤞 | C/\$ 6 | <u> </u> | NUMBER | | 1941 | ATTU
BARRGW | 5
HB0 | 52 50N
71 18N | | 12
25 | 5 | 5 5 | 5 | 5 5 | 5 | | 3 3 | 3 | 3 5 | 04
09 | 04
12 | 04
12 | 12 | 12 | | | | 45712
27502 | | | BEAVER FALLS
BETHEL | A
148-0 | 55 23N
60 40N | 131 282 | 35
22 | | 3 3 | 3 | 3 3
6 6 | 3 | 6 | 1 | 6 | | 10 | 12 | 12 | | | | | | 25313
26615 | | | BIG DELTA
BIGRKA IS | A
CAA | 64 08N | 145 44W | 995
215 | 3 : | 3 3
3 6 | 3 | 3 3
6 8 | 3 | 3 | | 3 | 3 | 11 | 02 | 09 | | | | | | 26415 | | | BROAD PASS
CANDLE | A | | 149 024 | 2127
10 | 3 : | 3 3 | 3 | 3 3 | 3 | 3 | 3 3 | 3 | | | | | | | | | | 26619 | | | CAPE DECISIO | CG | 56 00N
60 14N | 134 08W
146 39H | 50
185 | 5 | 5 5 | 5 | 5 5
5 5 | 5 | 5 | 5 5 | 5 | 5 | 11 | 11 | | | | | | | 25315
26417 | | | CAPE SARICHE | CG | 54 36N
58 12N | 164 56W
136 38W | 175
88 | 3 | 3 3 | 3 | 3 3 | 3 | 3 | 3 3 | H | 5 | j | - | } | | ļ | | | | 2562 2
25316 | | | CAPE ST ELIA
CENTRAL | CG
A | 58 48N
65 35N | 144 36H
144 47H | 58
750 | 5 | 5 5 | 5 | 5 5
3 3 | 5 | 5 | 5 5 | 5 | 5 | | 1 | | | | | | | 25401
26418 | | | CHITINA
CIRCLE | A | 61 32N
65 48N | 144 27H
144 04H | 572
700 | 3 | 3 3 | 3 | 3 3 | 13 | | 3 3 | 3 | 3 | | | | | | | | | 26446 | | | CIRCLE HOT S
COAL CREEK | A | 65 29N
65 16N | 144 35H
143 15H | 935
1050 | | 3 | 3 | 3 | 11 | 1 | 3 3 | Н | | | | | | | | | | 26419 | | | COPPER CTR
CORDOVA | A | 61 58N
60 32N | 145 19H
145 42H | 1044
70 | 3 3 | 3 3 | | 3 | | | 3 3 | 3 | | 11 | 08
12 | 08
12 | | | | | | 26410 | | | COUNCIL
CRAIG | A | 54 53N
55 29N | 163 41W
133 09W | 95
13 | 5 | 5 5 | 5 | 5 5
5 5 | 5 | | 5 5 | 5 | 5 | 12 | 12 | 12 | | - 1 | | | | 25317 | | | CROOKED CREK | A | 61 52N
62 37N | 158 15W
150 02W | 125
556 | | | | 3 3 | | 3 | | 3 | | | | | | | | | | 26518 | | | DEERING
DILLINGHAM | A
SAWR | 66 D4N | 162 45H
158 27H | 15
38 | | 3 | 3 | 3 3 | 3 | | 3 3 | | | 04 | - | 04 | | | | | | 25513 | | | DUTCH HARBOR
DUTCH HARBOR | NS
NF | 53 53N
53 53N | 166 32H | 26
47 | 1 6 | | | 1 1
6 6 | | 1 | 1 1
6 6 | 1 | 1 | 12 | 12 | 15 | | | | | | 25611
25616 | | | EAGLE
ELDRED ROCK | A
CG | 64 46N
58 58N | 141 12H
135 13H | 806
54 | 5 9 | 5 5 | 5 | 5 5
5 5 | 5 | 5 | 5 5
5 5 | 5 | 5 | | | 10 | | | | | | 26422
25318 | | | ELMENDORF
FAIRBANKS | AAF
WB0 | 51 15N
64 50N | 149 48H
147 43H | 192
484 | 7 | 1 | 1 | 1 1
7 7 | 1 | 1 | 1 1
7 7 | 1 | 1 | 05 | 12 | 60
12 | 60 | 12 | | 59
12 | | 26401
26411 | | | FAREWELL
FIVE FINGER | CAA
CG |
62 32N
57 15N | 153 54W
133 37H | 1503
30 | 5 ! | | | 5 5 | | | 5 5 | | 4 | - | | 01 | | | | ! | | 26518
25319 | | | FLAT
FORT YUKON | SA
A | 62 27N
66 35N | 158 00H
145 18H | 303
410 | 5 6 | 5 6 | 6 | 6 6 | 6 | 6 | 6 6 | 6 | | 1 | l | 12 | | _ | | | | 26520
26413 | | | GALENA
GAMBELL | AFS
SA | 64 43N
63 51N | 156 54W
171 36W | 135
30 | 3 : | 3 | 3 | | 3 | 3 | 3 | 3 | 3 | 12 | 12 | 12 | | | | | | 26501
26703 | | | GOLOVIN
GOOD PASTER | A | 64 33N
64 20N | 163 01H
144 05H | 12
2500 | 3 3 | 5 5 | | 5 5 | 5 | 5 | 5 5
3 3 | | | 07 | | 07 | | Ì | | | | 26628 | | | GRUBSTAKE
GUARD ISLAND | A
CG | 64 D2N
55 27N | 148 12H
131 53H | 1500
20 | 5 9 | 5 5 | 5 | 5 5 | | | 3 3
5 5 | | - | | | 11 | | | | | | 25320 | | | GUSTAVUS
HAINES | A
CAA | 58 25N
59 13N | 135 42H
135 26H | 20 °
25 7 | 3 3 | 6 | 3 | 3 3 | 3 | | 3 3
6 6 | 3 | 3 | 12 | | 01 | | | | | | 25322
25323 | | | HAYCOCK
HEALY | A | 65 12N
63 51N | 161 09W
148 58W | 200
1350 | 3 3 | 3 6 | | 3 3
5 5 | | 3 | 6 4 | | 3 4 | ŀ | | | | | | | | 26447 | | | HOLY CROSS
HOMER | A | 62 10N
59 36N | 159 45W
151 30W | 150
55 | 3 : | 3 3 | | 3 3 | 5 | 5 | 3 3
5 5 | | 5 | 08 | | 08 | | | | | | 26521
25507 | | | HOGNAH
HOT SPRINGS | A | 58 07N
64 59N | 135 27W
150 40W | 49
275 | 3 : | | 3 | 5 5
3 3 | 3 | 3 | 5 5
3 3 | 3 | 3 | - | | 09 | | | | | | | | | HUGHES
IL IAMNA | A | 66 04N
59 44N | 154 14H
154 49H | 545
66 | 5 9 | 6 6 | 6 | 6 6 | 6 | 6 | 5 5
6 6 | 6 | 5 | 10 | 10 | 12
86 | | | | | | 26522
25506 | | | JUNEAU
JACK WADE | A
H88 | 58 18N | 141 35H
134 24H | 1800 | 6 8 | 3 3 | 1 | 3 3 | 1 | 1 | 5 S | 1 | | 12 | 12 | 12 | 12 | 12 | | | | 25324 | | | KALSKAG
KALTAG | A | 61 27N
64 20N | 150 49W
158 45W | 90
93 | | | 5 | | | | 5 5
5 5 | | | | | | | | | | | | | | KANAKANAK | SA
A | 59 01N
59 01N | 158 31H
158 31H | 99
85 | 4. | 4 | 4 | 4 | 4 | | | | | 05 | 05 | 05 | | | | | | | | | KANATAK
KASILOF | A | 57 34N
60 19N | | 23
60 | 3 : | 3 | 3 | 3 3 | 3 | 3 | 3 3 | 3 | 3 | 10 | 09 | 80 | | | | | | | | | KENAI
KETCHIKAN | HBG | 55 21N | | 85
15 | 5 5 | | 5 | | 5 | | | | | 15 | 12 | 12 | | | | | | 26523
25325 | | | KIMSHAN
KLUKWAN
KODIAK | A
A
NAF | 57 41N
59 24N
57 44N | 135 54H | 13
91 | | | | 4 4 | 5 | 7 | 4 | | | | | 12 | | | | | | 25504 | | | KODIAK
KODIAK | SA | 57 44N
57 48N
57 46N | 152 30H | 112 | 4 : | 3 | 4 | 4 | | _ | 6 6 | إرا | 1 | 06
06 | 06
06 | 06
06 | | ŀ | | | | 25501
25509
25509 | | | KOTZEBUE
KOYUK | SA
A | 66 52N
64 57N | | 106
12
10 | 5 5 | | 5 | | 5 | 5 | 5 5 | 5 | | 05 | 05 | 80 | | | | | | 26616 | | | LADD
LITTLE PORT | AAB
A | 54 51N
56 23N | 147 35H | 464
14 | | 6 6 | | 1 1 | 1 | 1 | 1 1 3 3 | 1 | | | | 62 | 58 | | | | | 26403
25327 | | | LIVENGOOD
MARSHALL | A | 65 35N
61 51N | | 550
87 | 3 : | 3 3 | 3 | 3 3 | 3 | 3 | 3 3 | 3 | 3 | | | | | | | | | 26428 | | 1 | MARY ISLAND
MCGRATH | CG | 55 06N
62 58N | 131 11₩
155 37₩ | 39 | 5 9 | | 5 | 5 5 | | 5 | 5 5 | 5 | | 12 | 12 | 09 | | | • | | | 26510 | | | MCKINLEY PRK
MINCHUMINA | A
CAA | 63 43N
63 53N | 148 58H | 2092
701 |]` | | | ٦ | ľ | | 4 5 | | | | | | | : | | | | 26429
26512 | | | MOSES POINT
NAKNEK | CAA | 64 42N
58 40N | 162 03H | 16
67 | | | - | 5 5 | 5 | 6 | 6 6 | 6 | 6 | 01 | 1 | 08 | | | | | | 26620 | | | NAKNEK
NENANA | A | 58 42N
64 33N | | 86
353 | | 5 6 | | 6
3 3 | 5 | 6 | 6 6
3 3 | 6 | ۱. | 08 | 09 | e0 | | | | | | 26435 | | | NGME
NGME | HBG
ARF | 64 29N
64 31N | 165 24W | 12
43 | | 5 6 | | | | | 1 1 | | | 12 | 12 | 12 | 12 | 12 | | | | 26617
26604 | | .] | NULATO
NUNIVAK | A | 64 43N
60 23N | 158 044 | 210
37 | 5 6 | 5 5 | 5 | 5 5 | 6 | 6 | 6 6 | 1 | 6 | 11 | 12 | 12
05 | } | | | | | 26622 | | | OPHIR
PAXSON | A | 63 10N
63 D3N | 156 33W | 400
2697 | | 3 3 | | 3 | 3 | 3): | 3 3 | 3 | 3 | i | | | | ļ | | | | | | | PETERSBURG
PILGRIM SPRG | CAA
A | 56 49N
65 05N | 132 57H | 111
50 | 5 9 | 5 5 | 6
5 | 6 6
5 5 | 6 | 6 | 6 6 | 6 | | 12 | 12 | Ì | | | | | | 25329 | | | PILOT POINT
PLATINUM | A | 57 37N
59 01N | | 50
15 | 3 3 | 3 | 3 | 3 3
3 3 | 3 | 3 | 3 3 | 3 | 3 | | | 01
05 | | | | | | 25514
25613 | | | POINT HOPE | A | 68 20N | 166 48W | 14 | | | 1 | | | 4 | 4 | 4 | 4 | 05 | 05 | 05 | | | | | | 26623 | ıΩ | C | K | c | |---|----|---|----|---| | _ | _ | | r. | - | | | ALAS | KA | | | | | | | | | | | | | | NU | IMBER | OF | MONT | HS | IN YE | EAR I | NITH | |------|--|--|--|---|--|-------------------|---------------------------------|--------------------------|---|---|---|--|--|-----------------------|----------------|----------------------|---------------------------------------|-------------|----------|---|----------|---|---| | | | | | | | но | URL | Y RI | EĊO | RDS | 81 | r Mo | NT | 1 | , | / | / | / 20 | _ | | | | | | WE55 | 1 | | | | | | 1 = | | | | | | | | Š | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | September 1 | | () () () () () () () () () () | | 1. (a. (a. (a. (a. (a. (a. (a. (a. (a. (a | HBAN
NUMBE | | YEAR | NAME
POINT LAY | TYPE | <u> </u> | ↓ | | - | F | A | Ħ. | 1/2 | ₩ | -↓. | ₩ | -4 | / or 4 | Q \$. | 3/8 | / * | , (é. | | | \$ \ \ | NUMBE | | 1841 | PORTAGE PUNTILLA RADIGVILLE RAPIDS RICHARDSON RUBY SAND POINT SENTINEL IS SEWARD | 5A
A
A
A
CAA
CG
SA | | 148 594
152 454
136 094
145 514
146 214
155 264
160 304
134 554 | 1837
15
2128
880
705
32
60 | 3 3 5 4 6 5 | 6 6
6 6 | 3 5 5 5 5 | 3 6 6 6 | 5 4
6 6 | 3 5 3 6 4 6 5 | | 36364645 | 3 6 3 6 4 5 | 12
08
04 | 12
12
04 | 08
04
12
03 | | | | | | 26624
26437
26526
25332
25617 | | | SHISHAREF
SHUNGNAK
SITKA
SITKA
SKAGWAY
SKWENTNA
SOLOMON
ST PAUL IS
STAMPEDE | SA
A
NS
A
A
A
SA
SA | 66 14N
66 54N
57 03N
57 03N
59 27N
61 57N
64 35N
57 07N
63 44N | 166 07W
157 07W
135 20W
135 21W
135 19W
151 10W
164 24W
170 16W
150 22W | 62
16
500
25
98
11
228
15
19 | 6 | 5 4 5 4 | 5 6 1 3 4 5 4 3 | 6 1 3 4 5 4 3 | 5 6 1 3 4 5 4 5 4 | 5 8 1 3 4 5 4 | 1 1
3 3
4 4
5 5 | 5 6 1 3 4 5 4 | 4
6
1
3
4 | 11
05
05 | 11
05
05
05 | 11
05
05
10
12 | | | | | | 26436
26625
26513
25333
25337
25335
26514
26628
25713 | | | STEVENS VILA
STØNY RIVER
SUMMIT
TAKU LØDGE
TALKEETNA
TANACRØSS
TANALIAN PT
TANANA | B
SA
CAA
CAA
A
CAA | 63 24N
60 13N | 156 38W
149 08W
133 41W
150 06W | 350
221
2405
175
356
1200
308 | 3
6
5
5 | 5 5
6 6
5 6 | 5 3 6 5 6 6 3 | 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 5 | 5 5 6 5 6 5 | 5 5
3 3
6 6
4 5
5 6
6 6 | 5 6 6 6 | 5 5 5 5 5 | 12 | 09 | 11
12
05 | | | | | | 26449
26527
26414
26528
26440
26531 | | | TAYLOR TELLER TENAKEE TETLIN TREE POINT TYONEK | A A CG | 65 40N
65 16N
57 47N
63 10N
54 48N
61 02N | | 234
250
10
19
1800
35 | 3 3 | 3 3
3 4
3 3
5 5 | 3 5 4 5 | 3 3
5 5
5 5 | 3 5 4 5 | 3 :
5 !
5 ! | 3 3 | 5 4 5 3 | 3 5 | | 12 | 01
05
12
03 | | | | <u></u> | | 26529
26626
25336
25337 | | | UNALAKLEET VALDEZ WALES WISEMAN WOSNESSENSKI WRANGELL YAKUTAT | A A A A A CA | 63 53N
61 07N
65 37N
67 26N
55 13N
56 28N
59 32N | 146 16H
168 03H
150 13H | 20
17
30
1290
25
43 | 5 5 3 5 | 4 4
5 3
6 3
6 3
5 5 | 4 5 3 6 3 5 | 6 5
5 5
3 3
6 6
3 3 | 3 | 5 5 5 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5 6 5 5 6 6 | 5 6 6 | 5 | 02
07
08 | 07
09 | 08
01
09
11 | | | | | 100 | 25627
26442
26618
26511
25338 | | 1942 | YAKUTAT
YAKUTAT
ADAK | AAF
AAF
NS | 59 31N
59 31N | 139 40H | 45
31 | | 6 6 | | 1 1 | 1 | 0 0 | 1 | 1 1 | | 09 | 06 | 09
03
55 | 54 | | | | | 25339
25339
25302 | | | AKULURAK
ALATNA
ALITAK
ALITAK
ANCHORAGE | A
A
NF
A | 62 30M
66 34N
56 55N | 164 25H
152 44H
154 15H
154 10H | 33
600
30
24 | | 5 5 | 3 : | 5 5
3 3
1 1 | 3 | 3 3 | 5 | 3 € | | 12
01
09 | 01
06 | 11
01
09 | | | | | | 25704
25512
25512 | | | ANGOON ANIAK ANNETTE ANNETTE IS ANNEX CRIEK ATKA | A
CAA
A
AAF
A | 57 30N
61 36N
55 02N
55 02N
58 19N | 134 354
159 324
131 344
131 354
134 064
174 134 | 14
100
110
114
24
26 | 4 | 5 5 | 5 9 | 5 5
4 4
1 1 | 5 | 5 5
4 5
1 1 | 5 | 1 1 5 5 5 5 5 5 1 1 3 3 1 | | 12 | 03 | 12
12
06 | 04 | 12
53 | | | | 25310
26516
25308
25301
25311 | | | ATKA
ATTU
BARROW
BEAVER FALLS
BETHEL
BETHEL | 5
HB0
A
HB0
HBAS | 52 50N
71 18N
55 23N
60 48N
60 47N | 131 28H
151 45H
151 43H | 36
12
25 | 3 :
5 :
6 : | 3 3 | 5 5 | 5 5 | 5 | 6 | | 5 5 | | 06
03
03 |
06
03
12
08 | 08
03
12
08 | 12 | 12 | | | | 25710
25715
45712
27502
25313
26615
26615 | | | BIG DELTA BIGRKA IS CANDLE CANYON IS CAPE CAPE DECISIO | CAA
A
A
AAF | 55 51N | 167 54H | 1274
215
10
85
131
50 | 3 3 | 3 3
1 1
3 3 | 3 3 | 1 | 5 | 6 6
3 3
5 | 5
3
5 | 1 1
5 5
3 3
5 5
1 1
4 4 | | 12 | 10 | 10
12
12
58 | 54 | | | | | 26415
26619
25602 | | - 1 | CAPE SPENCER CAPE ST ELIA CENTRAL CHITINA CIRCLE COPPER CTR | CG
CG
A
A | 58 12N
59 48N
65 35N
61 32N
65 48N | 136 38W
144 36W
144 47W
144 27W
144 04W | 86
56
750
561
700 | 3 3 | 3 3 | 5 5 5 3 3 3 5 5 5 | 5 5 3 3 5 | 5 3 3 5 | 5 5
5 3
3 3 | 5
3
3 | 5 5 5 | | 09 | 05 | 09 | | | | | | 25315
25316
25401
26418
26446 | | | CORDOVA
CORDOVA
CORDOVA
COUNCIL
CRAIG | S
AF
AAF
A | 64 53N | 145 42H | 45
45
95 | | 5 5 | | 6
5 | 5 | | 1 5 | 1 1 | | 07 | 09 | 09
05
07 | 51 | | | | | 25410
26410
26402 | | | CROOKED CREK
CURRY
DAVIS
DEERING | A
AAF | 61 52N
62 37N
51 53N | 150 02₩
176 39₩ | 556
217 | 5 5 | 5 | 3 3
5 5 | 5 | 5 9 | 5 5 | 5 | 3 3
5 5
1 1 | Ĺ | | | | | | | | | 25317
26518
25701 | | | DILLINGHAM
DILLINGHAM
DUTCH HARBOR
DUTCH HARBOR
EAGLE
ELMENDORF | SAUR
NF
NS | 56 04N
59 03N
53 53N
53 53N
54 46N
51 15N | 156 27W
166 32H
166 32W
141 12W | 38
30
25
805 | 4 4 4 1 1 5 5 | | 4 4
4 4
1 1
5 5 | 4 1 5 | 1 1
5 5 | 4 5
1 1
5 5 | 5 | 3 3
5 5
1 1
5 5
1 1 | | 03 | | 03 | | ļ | | | | 25513
25616
25611
26422 | | | FAIRBANKS
FAIRBANKS
FAREWELL
FIVE FINGER
FLAT | ₩80 (
САА (
СБ | 54 50N
54 50N
52 32N
57 16N | 147 43W | 464
464
1503
30 | 1 1 | 1 | | 1 | | 1 6 | 6 | 1 1 5 6 | | 07
05 | 07
05 | 52
07
05
12
05 | 56 | 07
05 | | 07
05 | : | 26401
26411
26411
26519
26519
26520 | | | ALASI | KA | | | | | | | | | | | | | | NU | MBER | 0F 1 | 10NT | 1S I | YEA | R HI | ТН | |------|--|-----------------|----------------------------|-------------------------------|------------------|-------------------|-----|--------|-------------------|-------|-----|-----|------------|-----|----------|----------|--|-------------|----------|---|---------|------|---------------------------------| | | | | | | | HOU | RLY | RE | COI | ROS | В | Y 1 | ON' | ТН | | /. | / . / | / 2 / | TA JA JA | / */ | / */ | /.e/ | 8 | | | i | | | | | | | 24 | | | | | | | | | THE STATE OF S | September 1 | | 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | HBAN | | YEAR | NAME | TYPE | | | | JF | M. | A | M J | 1 | P | - | + | 4 | | | | / × | /× • | /** | */ ** * | / 🔻 | | | 1942 | FORT MORROW
FORT YUKON | AAF | 56 57N
66 35N | 145 18W | 94
410 | | 5 5 | 5 | | | | 1 | 1 | 1 | 04 | 04 | | | | | | | 25504
26413 | | | GALENA
GAMBELL
GOLOVIN | AFS
SA | 64 43N
63 51N
64 33N | 171 36W | 135
30
12 | 5 9 | 1 | H | 5 | | | 1 | | 1 1 | 12 | | 12 | | | | | | 26501
26703
26628 | | | GOOD PASTER
GUARD ISLAND | A | 64 20N | | 2500
20 | 3 | | | 4 | | | 5 | | 5 | 12 | | 02 | | | | | ļ | 25320 | | | GULKANA
GUSTAVUS | CAA | 62 D9N
58 25N | 145 27W | 1579
20 | 3 ; | | 3 | | | | | | 3 3 | | | 02 | | | | | | 26425
25322 | | | HAINES
HAYCBCK | CAA | 58 13N | 135 25H
161 09H | 257
200 | 6 8 | 5 6 | | | 5 | | | | ī | 12 | | 12 | | | | } | | 25323 | | | HEALY
HOLY CROSS | A | 63 51N
62 10N | 148 58W | 1350
150 | 5 5 | 6 | | | | | 5 | 5 6
3 3 | 5 5 | | | | | | | | | 26 44 7
26521 | | | HOMER
HOONAH | A | 59 38N
58 07N | 151 30W | 55
49 | 5 5 | 5 5 | 5 | 6 E | 6 | | | | 5 | 12 | 15 | 12 | | | | | ŀ | 25507 | | | HOT SPRINGS
HUGHES | A | 64 59N
66 04N | | 275
545 | | 5 5 | | | | | | 3 3 | 5 5 | | | 12 | | | | 1 | 1 | 26522 | | | IL IAMNA
HYDER | A | 59 44N | | 68
68 | 6 6 | 6 | | 5 5
6 | 5 | П | 1 | 5 5 | | 06 | 05 | 06
06 | | | | | - 1 | 25506 | | | ILIRMNA
JACK WADE | CAA | 64 07N | 154 55H
141 35H | 152
1800 | 3 : | | | | 4 | 5 | 5 | | 5 | 05
07 | 04 | 05
06 | | | | | - 1 | 25506 | | | JUNEAU
KALSKAG
KALTAG | HB0
A | 61 27N | 134 24W
160 49H | 132
90 | 5 9 | 5 | 5 | 5 5 | 5 5 | 5 | 5 | 5 5 | 5 | 12 | 12 | 12 | 12 | 12 | | | İ | 25324 | | | KANAGA BAY | NS
CAA | 51 46N | 158 454
177 154
151 154 | 93
50
91 | 5 5
1 5
6 6 | ı i | | 5 E | 5 | 11 | 5 | 1 | 5 | | 1 | 12 | | | | . | | 25711
26523 | | | KETCHIKAN
KIMSHAN | HBG
A | 55 21N | 131 39H
136 06H | 15
13 | 5 9 | | 5 | 5 5 | | 5 | 5 | 5 6 | 5 | 12 | 12 | 12 | | | | | | 25325 | | | KISKA ISLAND
KIVALINA | NAAF
A | 51 59N | 177 33E
164 42W | 71
10 | | | | | | | | | 3 | 02 | | 02 | | | | ľ | | 45710 | | | KLUKWAN
KODIAK | A
NAF | 58 24N | 135 54H
152 30H | 91
112 | 1 1 | 1 | | 1 | 1 | 1 | 1 | | 1 | | | 03
03 | | | | | l | 25501 | | | KODIAK
KOTZEBUE | NF
SA | 66 52N | | 39
12 | 1 1
5 5 | 5 5 | 5 | 1 1
5 6 | 6 6 | 9 1 | | 1 1
5 5 | 5 5 | 12 | 12 | . 12 | | | | | ļ | 25509
26616 | | | KBYUK
LADD | A
AAB | 64 57N
64 51N | 147 35H | 10
464 | 5 5 | | 1 | 1 1 | 1 1 | Н | | | 1 | | 12 | 62 | 62 | | | | | 26403 | | | LINCOLN ROCK
LITTLE PORT
LIVENGOOD | CG
A | 56 03N | 134 39H | 25
14 | 3 : | | 3 | | | | 5 | 5 5 | 5 | | | 06 | | | | | | 25326
25327 | | | MARSHALL
MATANUSKA | A | 61 51N | 148 28H
161 43H
149 14H | 550
67
166 | 3 3 | | 3 | 3 3 | | إ | 1 | 3 1 | | | | 09 | | | | | | 26428
26448 | | | MCGRATH
MCKINLEY PRK | HBAS
A | 82 58N | 155 37H
148 58H | 341 | | 6 5 | 6 | | 6 | 11 | 1 | 1 3 | 1 5 | 03 | 12 | 15 | | | | | | 26510
26429 | | | MIDDLETON IS
MINCHUMINA | CAA | 59 28N
63 53N | 146 19H | 45
701 | | 4 | Н | | | Н | 1 | € | 6 | 02 | ĺ | 05 | | | | | | 25402
26512 | | | MOSES POINT
NAKNEK | CAA
AAF | 64 42N
58 41N | 162 03₩
156 39₩ | 21
49 | | 6 | 5 | 5 5 | 5 5 | | 7 | | 1 1 | | | 12 | 52 | | | | | 26620
25503 | | | NAKNEK
NENANA | AAF
A | 58 40N
64 33N | 149 05W | 49
353 | 5 9 | 5 5 | 5 | 5 5 | | | | | 5 | 12 | Oe | 02 | | | | | | 26435 | | | NIKOLSKI
NIKOLSKI | AAF
A
WBB | 52 55N
52 57N
64 29N | 158 52W | 315
24 | <u>.</u> . | 4 | | ١. | . | Н | - 1 | 5 5 | | 01 | ١., | 59
01 | ا ا | | | | | 25605 | | | NOME
NOME
NORTHWAY | AAF
AF | | 165 26W | 12
43
1713 | 5 5 | | 6 | 1 1
6 6
5 7 | 3 3 | | 1 | 1 3 | | 12
04 | | 06 | 12 | 12 | | l | Ì | 26617
2660 4
26412 | | | NULATO
NUNIVAK | A | | 158 D4W | 210 | 6 6 | 6 | | 6 6 | | | | | 6 | 06 | 12 | 12 | | | | | | 26622 | | | OPHIR
PAXSON | A | 63 10N
63 03N | 156 33₩ | 400
2697 | 5 6 | 5 5 | 3 | 3 3 | 3 | 3 | 3 | 3 3 | 3 3 | 50 | | | | | | | ł | LUULL | | | PETERSBURG
PILOT POINT | CAA
A | 56 49N
57 37N | 132 57W
157 34W | 111
50 | | 6 | 6 | 6 6 | | 1 | 3 | 1 1
3 3 | 3 3 | 12 | 06 | 10 | | | | l | | 25329
25514 | | | PLATINUM
PLATINUM | A | 59 DIN | 161 47H
161 47H | 21
15 | 3 : | | | | 5 | 5 | 5 | 1 | 7 | 01 | 01 | 08 | | | | | | 2560 4
25613 | | | POINT HOPE
POINT LAY | SA | 69 45N | 166 48H | 14 | 3 3 | 3 3 | | | | | - 1 | | 3 | 12
06 | 12
06 | 12
06 | | | | | | 26623
26624 | | | PORT HEIDEN
PORTAGE
PUNTILLA | AAF
A | 56 57N
60 51N | | 84
35
1837 | 5 5 | 5 5 | | | | 6 | 6 | | 6 6 | | | 54 | 54 | | | 1 | | 25504
26437
26526 | | | RADIOVILLE
RAPIDS | A | 57 36N | 136 09H
145 51H | 15
2128 | 3 : | 3 3 | | 3 3 | 3 3 | 3 | 3 | 3 3 | 3 | 12 | 08 | 12 | | | | | | 29332 | | | REINDEER PAS
RICHARDSON | AAF
A | 53 31N | 167 55H
146 21W | 74
680 | 5 5 | | 5 | | | 5 | |
6 E | 6 | | | 03 | | | | | } | 25606 | | | RUBY
SAND PBINT | CAA
S | | 155 26H
160 30W | 705
32 | 6 6 | 6 | 6 | 6 E | 5 1 | | | | | 06 | 06
06 | 08 | | | | | | 25617 | | | SEWARD
SEWARD | SA
SA | 50 D7N | 149 27H
149 27H | 116
62 | 5 | 5 | | İ | | Η | | - | 5 | 11
01 | 06 | 11
01 | | | | | | 26438
26438 | | | SHISHAREF
SHUNGNAK | SA
SA | 66 54N | 166 07H
157 07H | 16
500 | | | 5 | 5 5 | 5 | 5 | 5 | 5 5 | 5 | 12
07 | 07
07 | 12 | | | | | | 26625
26513 | | | SITKA
SITKA | NS | 57 D3N | | 25
98 | 5 5 | 1 | 1 | 1 1 | | | 1 | | 1 | | | 04 | | | | | | 25333
25307 | | | SKAGHAY
SKWENTNA
SOLOMON | A | 59 27N
61 57N
64 35N | | 11
226
15 | 9 9 | | 5 | | 5 5 | 5 | 5 | | 5 5 | 12 | 05 | 12 | | | | | | 25335
26514
26629 | | | ST MATTHEW | ASC
AAF | 60 29N | 172 42W | 97
97 | | | | 13 |] | | - } | 1 | 1 | 03 | | 53 | | | | | | 26701 | | | ST PAUL IS
STAMPEDE | 5A | 57 D7N | 17D 16W
150 22W | 18
2500 | 1 3 | | 3 | 3 3 | 3 3 | 3 | ı | | 3 | | | 05 | | | | | | 25713 | | | STEVENS VILA
STONY RIVER | A
SA | 66 01N | 149 D5W
156 38W | 350
221 | 3 3 | 5 3 | 5 | 5 5 | • | 5 | 5 | 5 | 5 | | | | | | | | | 26449
26527 | | | SUMMIT
TAKU LODGE | CAA
A | 63 20N
56 33N | 149 08H
133 41H | 2405
175 | 6 6
5 9 | 5 4 | 6 | 6 E | 4 | 14 | 1 4 | 4 4 | 1 4 | 12 | 09 | 12 | | | | | | 26414 | | | TALKEETNA
TANACRUSS | CAA | | 150 06W
143 19H | 356
1200 | 6 6
6 6 | | 6
6 | | | | 6 | | 6 | 12 | 12 | 12
12 | | | | | | 26528
26440 | | | ! | I | i ' | 1 | | 1 1 | 1 | 1 | 1 | 1 | 1 1 | ļ | f | 1 | l | 1 | ī | ı ! | i | | . 1 | 1 | | | Α | 1 | n | S | ĸ | ന | |---|-----|---|----|----|---| | н | 1 1 | н | J. | ſ١ | н | NUMBER OF MONTHS IN YEAR WITH | | пспо | ΝП | | | | | | | | | | | | | NUI | | | | | | 4K MI | I H | |------|------------------------------|-------------|------------------|--------------------|-------------|-----|------------|------|------------|-----------|-------|------------|---------|--|-----------------|--|---------------|--|---------------|--------------|----------|----------------| | | | | | | | HOL | JRL Y | RI | ECOF | 105 | BY I | MON | TH | / | /
c. / | / / | September 1 | Selection of the select | / a./ | KUN (COMOCA) | | \s^ / | | | | | | | | 1 | = | 24 | 085 | S PE | R D | ΑY | | /å | ?/ | <i>\$</i> /. | \$ / . | \$ /4 | (5/. | \$ 6 | \$\$/. | WBAN | | YEAR | NAME | TYPE | LAT. | LONG. | FLEV | ы | e le | ا ما | нГа | Lila | اءاد | a lu | ıln | S. S | \$/ <i>\$</i> ; | TO SERVICE SER |) / £ | 154 | ?/ <i>₹</i> 3 | S/\$. | | NUMBER | | | | 1111 | | | LLLV. | ╌ | 4 | 1-4 | - | ₩. | 11 | ٦, | Έ, | | | Ζ, | Δ, | | / * ` | | <u> </u> | | | 1942 | TANALIAN PT | A
CAA | 60 13N
65 10N | | 308
234 | | 5 5
6 6 | 5 | 5 5 | 5 | 5 5 | 6 | S 8 | 04 | 08 | | | 1 | | | | 26531
26529 | | 1 | TELLER | A | 65 16N | 186 21H | 10 | 3 | 3 4 | 4 | 3 3 | 3 3 | 3 3 | 3 : | 3 3 | | | 05 | | | | | | 26626 | | | TENAKEE
TETLIN | 4 | 57 47N | 135 12W
142 32W | 19
1600 | 5 | | 5 | | 5 | 5 5 | 5 5 | 5 5 | | | 12 | | 1 | | | | 25335 | | | THORMBROUGH | AAF | 55 12N | 162 43H | 89 | 1 1 | | 6 | 6 : | 1 | | | | | | 57 | | 1 | | | | 25603 | |] | TREE POINT | CG
A | 54 48N
61 02N | | 36
50 | 3 | 3 3 | | | 11 | 7 4 | 4 | 4 | | | 09 | | | | | | 25337 | | 1 | UNALAKLEET
VALDEZ | A | 63 53N | 160 48W | 20 | 6 | 6 6 | 6 | 6 5 | 5 | | | 5 5 | | | 11 | | | | | | 26627 | | 1 | WAINWRIGHT | A
SA | 70 37N | | 17
29 | 5 | 5 5 | 5 | | 11 | 11 | | 3 3 | 01 | 02 | 12 | | | | | i | 26442
27503 | | | WALES
Wiseman | A | 65 37N | 168 D3W | 30
1290 | 3 | 3 3 | | 3 3
6 6 | 3 6 | | 3 : | | 12 | 10 | 11
11 | | ł | İ | | | 26618
26511 | | - 1 | HRANGELL | A | 56 28N | 132 23H | 43 | 5 | 5 5 | 5 | 5 5 | 5 | 5 5 | 5 5 | | - 1 | | 12 | | | | | | 25338 | | | YAKUTAT
YAKUTAT | AAF
AAF | 59 31N
59 31N | | 45
31 | 1 | ١, | IJ | , , | . 1 | , , | ٦, | . [, [| 12 | 10 | 12
62 | 56 | | | | | 25339
25302 | | | | | | 1 | | | ı | П | | 11 | 11 | ı | | | | | | | ĺ | | | | | 1943 | ADAK
ADAK | NS
NS | 51 53N
51 52N | | 15
15 | 1 | 1 1 | 1 | 1 1 | 1 | 1 1 | 1 1 | 1 1 | | | | | | | | | 25704
25704 | | | AKULURAK | A | 62 30N | 164 25W | 33 | 1 | 1 | | | . | _ | _l_ | . . | 06 | | 05 | | | | | | | | | ALATNA
ALEXAI PT | A
AFS | | 152 44H
173 19E | 600
27 | 5 | 5 5 | 5 | | | 5 5 | | | | | 57 | 52 | ļ | | | | 45701 | | | ALITAK
AMAK ISLAND | NF
AF | 56 55N
55 24N | 154 15W
163 D8W | 30 | | | | | 6 | | 5 6 | 6 | j | 06 | ı | | ŀ | | | | 25512
25609 | | | AMCHITKA IS | AAF | 51 24N | 179 18E | 15
251 | | | 1 | 1 3 | 1 1 | | 5 | 1 2 | 1 | | 55 | 53 | | | | | 45702 | | | ANCHORAGE
ANCHORAGE | WBAS
WB0 | 61 13N
61 13N | 149 50H
149 52H | 141
118 | | 1 1 | 1 | 1 1 | 1 | 1 1 | 1 1 | 1 1 | 11 | 11 | 11
01 | | 11
01 | | | | 26409 | | | ANGOON | A | 57 30N | 134 35W | 14 | | 5 5 | | 5 5 | | | | 5 5 | 02 | - 1 | 12 | | | | | | 25310 | | | ANIAK
ANNETTE | ÇAA
A | 61 35N
55 D2N | 159 32H | 100 | 5 | 5 5 | 7 | 1 1 | 1 | 1 1 | 1 1 | 1 1 | 12
02 | 08 | 12 | | | | | | 26516
25308 | | | ANNETTE IS | AAF | 55 02N | 131 35₩ | 114 | | 1 1 | | 1 1 | | | | 1 1 | | | 62 | 62 | | 07 | ! | | 25301 | | | ANNEX CREEK
ATKA | A
NS | 58 19N
52 14N | 134 06H
174 13H | 24
26 | 3 | | | | | | 3 3 | | | | | | | | | | 25311
25710 | | | ATTU | NS. | 52 50N | 173 11E | 91 | ! | - | | | | 1 1 | 1 1 | 1 1 1 | | | | | | | | | 46709 | | | BARROW
BETHEL | MB0
MBAS | 71 18N
60 47N | | 24
15 | 5 | | | 1 1 | | 1 1 | 1 1 | | | 12 | 12 | 12 | 03 | | | | 27502
26615 | | - 1 | BIG DELTA
BIGRKA IS | CAA | 64 00N
56 51N | 145 44H | 1274 | 1 | | | | | 1 1 | 1 1 | | 12 | 06 | 12 | i | | | | | 25415 | | | BIRD CAPE | AAF | 51 39N | |
215
1006 | ١٩ | 6 6 | 5 | | | | 6 6 |] [| | 12 | 12 | | - 1 | | | | 45705 | | l | BRUIN BAY
BULDIR IS | CAA
AAF | 59 22N
52 22N | 153 59W
175 58E | 51
49 | | | | | $ \cdot $ | 7 1 | 1 1
6 6 | 1 1 5 6 | 04 | - 1 | 04
53 | 53 | | | | | 45706 | | | CANDLE | A | 65 56N | 161 55H | 10 | 4 | | | 4 4 | | | 4 4 | 4 4 | l | | 12 | | ĺ | | | | 26619 | | | CANYON IS
CAPE | A
AAF | 58 33N
53 23N | 133 40W | 85
131 | 5 | | 5 | | | 5 5 | 5 5 | | ĺ | | 62 | 62 | | | | | 25602 | | ŀ | CAPE DECISIO | CG | 56 DON | 134 DBW | 50 | 4 | | 4 | | | | 1 1 | 1 1 | 12 | | 12 | | ł | | |] | 25315 | | ŀ | CAPE HINCHIN
CAPE SPENCER | CG | 58 12N | 146 39H
136 38H | 185
88 | 5 | 5 5 | 5 | 5 5 | 5 | 5 5 | 1 1 | | 12 | | 12 | | | | | } | 26417
25316 | | - 1 | CAPE ST ELIA
CATON ISLAND | CG
NS | 58 48N
54 25N | | 58
140 | 5 | 5 5 | 5 | 5 9 | | | 5 5 | 5 5 | 1 | | į | | | | | }] | 25401
25612 | | l | CATON ISLAND | NF | 54 25N | | 130 | | 1 | П | | | 1 1 | 6 7 | 7 7 | | - 1 | | | | | | | 25615 | | | CHIRIKOF
CHIRIKOF IS | NS
NF | 55 55N
55 54N | | 143
75 | | | 1 | 1 1 | 1 | 1 | 1 1 | 1 1 5 7 | | | - | | | | | | 25505
25511 | | l | CHITINA | A | 61 32N | 144 27W | 581 | 3 | 3 3 | 3 | 3 3 | | | 3 3 | 3 3 | | İ | ĺ | | ۱ ا | | | | 53311 | | l | CHUGINADAK
CIRCLE | AAF
A | 52 50N
65 48N | | 80
700 | 5 | 5 5 | 5 | 5 5 | | | 6 6
5 5 | 5 6 | İ | | 56 | | | | | | 25601
26446 | | | CORDOVA | AAF | 60 29N | 145 30W | 45 | | 1 1 | | 1 1 | 1 1 . | 1 1 | 1 3 | | | | 62 | 62 | | 07 | | | 26402 | | ł | CORDOVA
CRAIG | AF
A | 60 30N
55 29N | | 45
13 | 5 | 5 5 | 5 | 5 5 | 1 5 | 1 1 | 5 5 | 5 5 | 12 | 12 | 12 | | | | | | 26410
25317 | | ł | CROOKED CREK | A | 61 52N
62 37N | | 125
556 | 3 | 3 3 5 | 3 | 3 3 | 3 3 | 3 3 | 3 3 | 3 3 | | | ĺ | | | İ | | | 26518 | | 1 | DAVIS | AAF | 51 53N | 176 39W | 217 | 1 | 1 1 | 1 1 | 1 1 | 1 . | | | | | 1 | 62 | | | D1 | | | 25701 | | - 1 | DEERING
DUTCH HARBOR | A
NF | 66 04N
53 53N | 162 45H | 15
30 | 5 | 5 5 | 5 | 5 5 | 5 | 5 5 | 5 6 | 5 5 | | ĺ | - | | | | | | 25616 | | | DUTCH HARBOR | NS | 53 53N | 166 32H | 26 | 1 | 1 1 | 1 | 1 1 | | 1 1 | | | | | [| 1 | | | | 1 | 25611 | | | EAGLE
ELDRED ROCK | A
CG | 64 46N
58 58N | | 606
54 | 5 | 5 5 | Н | | | | 1 1 | | l | | 02 | | 1 | | | | 26422
25316 | | - | ELMENDORF | AAF | | 149 48W | 192 | | | | | 1 | 1 1 | 1 1 | 1 1 | ĺ | - 1 | 12 | 51 | | 10 | | | 25401 | | | EXCURSION IN FAIRBANKS | A
MBAS | | 135 26W | 25
442 | | 4 4 | 1 | 4 4
6 E | | 1 1 | 4 4 | 4 5 | 08 | 08 | 08 | ņe | Q8 | | | | 25411 | | | FAIRBANKS
FAREWELL | CAA | | 147.36W
153 54W | 464
1503 | اءا | 5 5 | اءا | , , | 1,1 | 1 1 | 1 , | $\ .\ $ | 04 | 04 | 04
12 | | 04 | | 04 | | 26411
26519 | | | FIVE FINGER | CG | 57 16N | 133 37₩ | 30 | Ιİ | - | H | | lΙ | 4 | 1 1 | 1 1 | | | 03 | 1 | | | | | 25319 | | | FLAT
FOREST IS | SA
CG | | 158 DOW
133 32W | 303
1210 | 6 | 6 6 | 6 | 6 6 | 6 | 6 6 | 6 6 | 6 | 02 | | 12 | | | | | | 26520 | | | FORT MORROW | AAF | 56 57N | 158 37H | 94 | 1 | 1 1 | 1 | 1 1 | | | 1 2 | | 12 | 01 | İ | ł | - 1 | | | | 25504 | | | FORT YUKON
GALENA | CAA
AFS | 66 35N | 145 18W | 425
135 | 1 | 1 1 | 1 | 1 1 | | 5 6 | 1 1 | | | 04 | 06
62 | 55 | 1 | | | | 26413
26501 | | | GAMBELL | HBAS
A | | 171 36W
163 01W | 32 | 1 | 1 1 | 1 | 1 1 | 1 | 1 1 | 3 2 | 1 1 | 12 | 12 | 12 | 1 | l | 1 | | | 26703 | | | GOLOVIN
GOOD PASTER | A | 64 20N | 144 05W | 12
2500 | 5 | 7 | | 7 | 6 | " " | 1 | 1 1 | 12 | | 12 | 1 | 1 | | | | 26628 | | - | GUARD ISLAND
GULKANA | CG | 55 27N
62 09N | 131 53W
145 27W | 20
1579 | 1 | ,[, | ۱, ا | , , | 1 | ا. إ. | 1 1 | | ĺ | İ | 04
12 | | 1 | 1 | | | 25320
26425 | | | GUSTAVUS | A | 58 25N | 135 42H | 20 | 3 | 3 3 | 3 | 3 3 | 3 : | 3 3 | 3 3 | 3 3 | ŀ | | - 1 | 1 | Ì | | | | 25322 | | | HAINES
HEALY | CAA | | 135 26H
148 58H | 257
1350 | 1 6 | | | 1 1
6 6 | 6 6 | 1 1 | | | 12 | ĺ | 12 | | ł | Ì | | | 25323
26447 | | - 1 | HOLTZ BAY | AAF | 52 55N | 173 10E | 45 | 1 | - | 1 | ı | П. | 1 1 | 1 | 1 1 | ł | | 53 | 53 | Ì | 1 | | | 45704 | | | HOLY CROSS
HOMER | CAA | | 159 45W | 150
73 | 3 | | | 3 3 | | | 3 3 | | 12 | 12 | 12 | } | l | | | | 26521
25507 | | ŀ | HOT SPRINGS | A | 64 59N
66 04N | 150 40W | 275
545 | | 3 3 | 3 | 3 3 | 3 : | 3 3 | 3 3 | 3 3 3 | | | Į | 1 | - | 1 | | | | | } | HUGHES
ILIAMNA | CAA | 59 45N | 154 55₩ | 152 | | 6 6 | | | 1 . | 1 1 | 5 5 | 1 1 | 12 | 12 | 12 | | 1 | 1 | | | 26522
25506 | | | JUNEAU | WBAS | 58 22N | 134 35W | 22 | | | | | 1 | 1 1 | 1 1 | 1 1 | 06 | | 06 | 06 | 06 | | | | 25309 | • | | | • | | | | ALASK | (A | | | | | | | | | | | | | | NUM | BER | OF M | ONTH | 5 IN | YEAR | | | |------|--------------------------------------|-----------------|----------------------------|-------------------------------|-----------------|-------|-----|-------------------|------------|-------------------|------|------------|-------------------|------------|--|----------|----------------|----------------|---------------------|---------------------------------------|--|----|-------------------------| | | | | | | | нои | RLY | r RE | ECOF | RDS | BY | МС | NTH | ŧ | /. | . / | ./ | THE GAL | 4 / | · */ | / 2/3 | */ | 8 | | | | | | | | 1 | . = | 24 | 083 | S PI | ER | DAY | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | \$ /4. | \$\\ \$ | ૾ૢૼ
૾ૢ | | HBAN | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | J I | F | A | m J | | A S | s o | N | 0 / | S. S | | / & / | / . | TAIL TO BEEN TO SEE | 2 Q Q Q Q Q Q Q Q Q | (10 mg/10 mg | | | | 1943 | JUNEAU
KALSKAG | ₩80
A | 58 18N
61 27N | 134 24W
150 49W | 132
90 | | 1 1 | 1 1 | | | | | | | 06 | 06 | 06 | 06 | 06 | İ | | | 25324 | | | KALTAG
KALTAG | AAF
A | 64 1BN
64 20N | | 158
93 | 1 | 5 5 | | | 1 | | 1 1
5 5 | | | | 01 | 62 | | | | | | 26502 | | Ì | KENAI
KETCHIKAN | CAA
HBB | 60 34N
55 21N | 151 15W
131 39W | 91
15 | 1 | 1 3 | ı 1 | | 1 1 | | 1 1 | | | 12 | 01
12 | 12 | | Ì | | | | 26523
25325 | | | KIMSHAN
KISKA ISLAND | A
NAAF | 57 41N
51 58N | 136 DEW
177 32E | 13
71 | 4 | 4 | 1 | 4 | 4 4 | 4 | | 1 | 1 | | | 08 | | | | | | 45710
4570 3 | | | KISKA ISLAND
KIVALINA | AAF
A | 51 58N
67 45N | | 288
10 | | 3 9 | | | 3 3 | 3 | 3 | 3 | 3 | 04 | | 12 | 54 | İ | | | | 25501 | | | KBDIAK
KBDIAK | NAF
NF | 57 44N
57 45N | 152 31W | 112
39 | 1 | - 1 | 1 1 | | 1 1 | 1 | 1 1 | 1 1 | | | 12 | 56 | 54 | ļ | | | | 25509
26503 | | | KOKRINES
KOTZEBUE | AAF
WBAS | | 162 38H | 185
20 | 6 | 6 | 6 | | 1
6 6
1 1 | | 7 1 | | | 12 | 12 | 12 | | | | | | 26616 | | | KOYUK | A
AAF
AAB | 64 57N
64 52N
64 51N | 161 D6W | 65
41
454 | | i | 1 1 | 1 | 1 1 | 1 | 1 1 | | 1 1 | | 12 | 54
62 | 62 | | 11 | | | 26602
26403 | | | LADO
LINCOLN ROCK | CG | 56 03N | | 25
285 | 5 | | 5 5 | | | | 5 | | 6 | | | 12
51 | 51 | Ì | | | | 25326
26505 | | | MANLEY H SPG
MATANUSKA
MCGRATH | A
HBAS | 61 32N
62 58N | 149 14W | 166
341 | 3 | | 3 3 | | 3 3 | | | 3 | | | 12 | 12
12 | | | | | | 26448
26510 | | | MCKINLEY PRK | A
CAA | 63 43N | | 2092
45 | 5 | 5 9 | 5
5 5 | | 5 5 | | - 1 | 5 5 | 5 | 12 | 05 | 12 | - | | | | i | 26429
25402 | | | MINCHUMINA
MOSES POINT | CAA | 63 53N | | 701
21 | 1 | | 1 1 | 1 | 1 1 | 1 | 1 : | | 1 | | . | 57 | | | | | | 26512
26603
26620 | | | MOSES POINT
MTN VILLAGE | CAA
AAF | | 162 03H
163 45H | 21
496 | 6 | | | 1 | ĺ | | | | | 05 | 03 | 06
53 | | | 03 | | | 26635
25503 | | | NAKNEK
NAKNEK | AAF
AAF | 58 41N
58 40N | 156 45⊬ | 49
48 | 1 | | 1 1 | l | 1 1 | | 1 | | | 01 | 01 | 62
02 | 62 | | בט | | | 26435 | | | NENANA
NENANA
 CAA
AAF | 64 33N | | 364
367 | 1 | П | 1 1 | H | 1 6 | 1 | 3 | 1 1
1 1
7 7 | 7 | | | 55
62 | | | | | | 25404
25605 | | | NJKOLSKI
NOME | AAF | 64 31N | 168 58W | 315
43
12 | 1 1 | 1 | 6 6
1 1
1 1 | 1 | 7 7
1 1
1 1 | 1 | 1 | 1 1 | 1 | 12 | 12 | 62
12 | 62
12 | 12 | 01 | | | 26604
25617 | | | NOME
NORTH DUTCH | CAA
UBAS | 64 29N
60 46N
62 57N | 147 48W | 39
1716 | 1 | | 1 1 | | 1 1 | | 6 | 5 6 | 6 | 05 | 12 | 04
12 | | | | | | 26436
26412 | | | NORTHWAY
NOXAPAGE
NULATO | AAF | 65 32N | 164 12W | 250
210 | 5 | | 5 5 | 11 | 5 5 | 1 | 1 | | 5 | | 09 | 52
12 | 52 | | | | | 26606 | | | NUNIVAK IS
OGLIUGA | AAF
AAF | 50 12N
51 33N | 166 06⊬ | 50 | | | | 6 | 6 6 | 6 | 6 | 6 6 | 6 | Ì | | 54
61 | 54
52 | | | | | 26605
25702 | | | PAXSON
PETERSBURG | A
CAA | 63 03N
56 49N | 132 57W | 111 | 1 | 1 | 1 1 | 3 | 3 3 | 3 | | 3 3
1 1 | 3 | 12 | 05 | 12 | | | | | | 25329
25514 | | | PILOT POINT
PLATINUM | AAF | 57 37N
59 01N | 161 47W | | 7 | 7 | | | 2 2 | | | 7 7 | 7 | 07 | 07 | 03
54
07 | | | | | | 25604
26623 | | | POINT HOPE | AAF | 68 20N | 155 47W | 19 | 1 | 3 | 3 3 |] | 3 3 | 3 | | 6 6 | 6 | 11 | 11 | 53
11 | 53 | | | | | 26601
26624 | | | POINT LAY PORT ALTHORP PORT HEIDEN | SA
A
AAF | 58 09N
56 57N | 136 224 | 12 | | 1 | 1 1 | | 5 6 | | | | 5 | | "- | 62 | 62 | | 06 | | | 25504 | | | PORTAGE
PUNTILLA | A . | 60 51N | 148 59H | 35 | 5 | 5 | 5 5 | 5 5 | 5 5 | | 5 | | 5 | | | 10 | | | | | | 26437
26526 | | | RADIGVILLE
RAPIDS | A | 57 36N
63 32N | 136 09W | 15 | 3 | 3 | 3 3 | | 3 3 | รได | 6 | 3 3
6 6 | | 12 | | 12 | | | | | | 25332 | | | REINDEER PAS
SAND POINT | AAF
NF | 53 31N
55 20N | 160 30W | 32 | 1 | 6 | 6 6 | | 6 | ł | | 1 6 | 7 | 03 | | | | | | | | 25606
25617
25703 | | | SEGUAM
SEHARD | AAF
SA | 52 23N
60 08N | 149 27 | 116 | i 6 | | 5 E | | 6 6 | 6 6 | 6 | 6 6 | | 12 | 02 | 59
12 | | | <u> </u> | | | 26438
26439 | | | SHEEP MTN
SHEMYA | AAF | 61 48N
52 43N | 174 06E | 132 | : | 1 1 | 6 E | | 1 1 | 1 1 | 1 1 | 1 1
1 1
5 5 | 1 | 10 | 05 | 10 | 55 | | | | | 45708
26625 | | | SHISHAREF
SHUNGNAK | SA
CAA
NS | | 166 07F
157 02F
135 21F | 136 | ۱ ا | 1 1 | - 1 | 1 1 | | | 1 1 | 5 5 | 5 | 03 | | 03 | ŀ | | | | | 26513
25307 | | | SITKA
SKAGHAY
SKAGHAY | A
AAF | 59 271 | | 4 1: | . e | | 1 | | | | | ļ | 5 5 | | | | | | | | | 25335
25303 | | | SKWENTNA
SOLOMON | A | 61 571
64 351 | | 1 15 | 5 S | 5 5 | 5 5 | 5 5
5 5 | 5 1 | 5 5 | 5 | 5 5 | | 11 | | 11 | | | | | | 26514
26629
26701 | | | ST MATTHEW
ST MATTHEW | AAF
ASC | 60 291 | 172 424
172 424 | 1 8. | 7 | 1 | 1 | 1 1 | 1 | 1 1 | 1 | 1. | | 12 | | 61
52 | 53
52 | | | | | 25705 | | | ST PAULS IS
STAMPEDE | t | R 63 441 | 170 161
150 221 | 2500 | 5 3 | | | 3 3 | | 3 3 | | 3 3 5 | 5 | | | 76 | 32 | | | | | 26449 | | | STEVENS VILA | SA
CAA | 61 461 | 149 056
156 386
149 086 | 1 55 | 1 : | 3 3 | 3 | 1 1 | 1 | 3 , | | | 1 | 01
10 | 12 | 01
12 | | | | | | 26527
26414 | | | TAKU LODGE
TALKEETNA | A
CAA | 56 33 | | 1 17 | 5 4 | 4 4 | 4 | 4 4 | 4 | | 4 4 | 4 4 | 1 1 | 12 | 07 | 12 | | | | | | 26528 | | | TANACROSS
TANALIAN PT | CAA | 63 24 | N 143 196
N 154 226 | 154 | 5 6 | 6 | 6 | 6 6
5 5 | | 1 | l 1
5 5 | 5 9 | 5 5 | | | 03 | | | | | | 26440
26531 | | | TANANA
TANANA | AFS
CAA | 65 12 | N 152 121
N 152 061 | 4 23 | | 5 6 | 6 | 6 6 | | 1 2 | 1 | 1 | 1 1 | 05 | | 57
01 | | | | | | 26504
26529 | | | TELLER
TELLER | AAF
A | 65 18
65 16 | N 166 551
N 166 211 | ا (1
م | 0 : | 3 3 | | 3 3 | | 6 | 1 1 | | _ | | 1 | 56
12 | | | | | | 26607
26626
25336 | | | TENAKEE
THORNBROUGH | A
AAF |) ' | N 162 43 | H 9 | 9 | 1 1 | 1 | 5 5 | 1 | 1 | 1 1 | | 1 1 | | | 12
62 | | | | | | 25603
25337 | | | TREE POINT | CG
A | 54 48
53 53 | N 160 481 | µ 2 | 0 1 | 4 4 | | 5 5 | 7 | 4 1 | 4 5 | 1 | 1 1 | | | 06 | 54 | | | | | 26627
26608 | | | UNALGA IS
VALDEZ | NF
A | 53 54
53 58
61 07 | N 166 10 | W 71 | 1 | 5 5 | 5 | 5 | | | | 1 | 1 5 | 01 | | 10 | | | | | | 25506
26442 | | | WAINHRIGHT
WALES | SA | 70 37
65 37 | N 160 04 | H 5 | 9 | | | 3 3 | 3 | 3 : | 3 3 | 3 | 3 3 | | 12 | 12 | | | | | | 27503
26518 | | | HALES
HISEMAN | AAF
A | 55 37 | | ы 1 | 7 | 6 6 | Б | 6 6 | | 3 l | 1 1
6 6 | 6 | 1 1
6 6 | 12 | 12 | 56
12 | | 1 | | | | 26509
26511 | | | 1 | 1 | 1 | ł | 1 | I | I | 1 1 | 1 | ı İ | ł | 1 | [| 1 | ı | 1 | 1 | ı | ī | 1 | ī | ' | • | | ALASKA | ì | |--------|---| |--------|---| NUMBER OF MONTHS IN YEAR WITH | | | | | | | но | URL | Y F | REÇ | OR | DS | BY | MO | NTI | н | , | /. / | / / | ر هر/ | I A LA L | / | / _/. | / | '.\$° / | |------|----------------------------------|-------------|----------------------------|-------------------------------|-------------|-----|------------|------------|----------|------|------------|--------------|--------|-----|-----|------------|--------------|---|------------|---|---------|---------|-----|----------------------------------| | | | | | | | | | | | | PE | | | | | Jones J. | ₹ /
/ ≈ | | Signal Sal | | | | | HBAN | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | J | F | n A | M | J | J۴ | 1 5 | 0 | N | 0 | \8\cdot \8 | \$\£. | \$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | <u> </u> | 12.6 | \$\\\$\ | ~ # # / | * E | NUMBER | | 1943 | HRANGELL
YAKATABA | CAA | 56 28N
60 05N | | 43
33 | 5 | | | 5
7 1 | 5 | | 5 5
1 1 | | | 5 | 10 | 04 | 12
10 | | | | | | 25338
26445 | | | YAKUTAT
YAKUTAT | AAF
AAF | 59 31N
59 31N | 139 40H | 31
45 | 1 | 1 | 1 1 | 1 1 | 1 | 1 | 1 1 | | 1 | 1 | 01 | 04 | 62
06 | 62 | | 07 | | İ | 25302
25339 | | 1944 | ADAK | NS | 51 57N | 176 36H | 104 | | | 1 | ľ | ا. ا | 1 | 1 1 | ١, | 1 | 1. | , | | | | | | | ļ | 2570 4 | | | ADAK
ADAK | AAF
NS | 51 53N
51 53N | | 14
15 | 1 | | 1 1 | 1 1 | | 1 | 1 1 | 1 | 1 | | | | | | | | | | 25707
2570 4 | | | AKULURAK
ALATNA | AAF
A | 62 30N
66 34N | | 31
600 | | 1 | 5 5 | 1 1 | 1 | 1 | 1 | | | - | | | 57 | | | | | | 26510 | | | ALEXAI PT
ALITAK | AF5
NF | 52 50N
56 55N | 173 19E
154 15W | 27
30 | 1 | 1 | 1 1 | 1 1 | | 1 | 1 1 | 1 | 1 | 1 | | | 62 | 62 | | 01 | | | 45701
25512 | | | AMAK ISLAND
AMCHITKA IS | AF
AAF | 55 24N
51 24N | | 15
192 | | 1 | 1 | | | 1 : | | | , | , | | | 62 | 62 | 08 | | | | 25609
45702 | | | AMCHITKA IS
AMERICAN RVR | NS
AAF | 51 24N
65 27N | 179 16E | 80
119 | | | | ι | 1 | 1 | 1 | 1 | 1 | - 1 | | | 59 | 59 | | | | | 45711
26611 | | | ANCHORAGE
ANGUON | HBAS. | | | 141 | 1 5 | | 1 1 | | | i | | | | i | 12 | 12 | 12 | 12 | 12 | | | - 1 | 26409
25310 | | İ | ANIAK
ANNETTE IS | CAA | 61 35N
55 02N | 159 32W | 91
114 | 1 | 1 | 1 1 | | | 1 1 | | | 1 | 1 | 12 | 84 | 12 | | | | | | 26516 | | | ANNEX CREEK
ATKA ISLAND | A
AAF | 58 19N
52 13N | 134 06W | 24
35 | | 3 | 3 3 | 3 | 3 | 3 3 | 3 3 | 3 | 3 | 3 | | | 62 | 62 | ı | 12 | | | 25301
25311 | | | ATTU
BARROW | NS | 52 50N
71 18N | | 91
29 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 1 | 1 | 1 | 1 | | | 57 | 60 | | | | | 25708
45709 | | ı | BETHEL
BETTLES | HBAS
CAA | | 161 43H | 15 | 1 | 1 | | 1 | 1 | 6 8 | 1 1 | 1 | | 1 | | 12 | 12 | 12 | 12 | | | - 1 | 27502
26615 | | | BIG DELTA | AF
AAF | 64 DON | 145 44H | 1274 | 1 | 1 | 1 6 | | 3 | 5 6 | ŀ | | - 1 | - | 06 | 02 | 10
06 | | ı | | | | 26517
26415 | | | BIORKA IS
BRUIN BAY | CAA | 56 51N
58 22N | 135 32W | 1272
215 | | | | | 6 | 5 6 | | ľ | 1 | 1 | _ | 1.0 | 58 | 55 | | | | | 26 4 06 | | | BULDIR IS
CANDLE | AAF | 52 22N | 175 58E | 51
49 | 6 | 6 6 | 5 l o | ılвl | 8 | 8 6 | | 6 | | | 07 | | 07
62 | 62 | | | | | 45706 | | İ | CANYON IS | CAA
AAF | 65 56N
58 33N
53 23N | 161 55H
133 40H
167 54H | 10
85 | 6 | 6 0 | 5 5 | 6 | 6 | 5 5
6 6 | 5 6 | | 6 | | | | 03 | | | | | - [| 26619 | | | CAPE DECISION | CG | 56 00N
60 14N | 134 084 | 131
50 | 1 | 1 . | 1 1 | 1 | 1 | 1 1 | 1 1 | i | 1 | 1 | 12 | | 52
12 | 62 | | 04 | | | 25602
25315 | | | CAPE SPENCER
CAPE ST ELIA | CG | 58 12N | 146 39H
136 38H | 185 | | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 12 | | 12 | | | | | | 26417
25316 | | | CAPE WRANGEL | NF | 52 53N | 144 35H
172 31E | 58
50 | | 5 9 | 1 1
5 6 | 5 | 5 | 1 1
5 6 | 5 5 | 5 | 5 | 5 | 08 | | 08 | | ĺ | | | | 25401
45713 | | | CATON ISLAND
CHIRIKOF IS | NF
NF | 54 25N
55 54N | 162 28H
155 34W | 130
75 | 7 | 7 | 7 7 | 7 | | 7 7 | | 7 | 7 | 7 | | | | | | | | | 25615
25511 | | | CHITINA
CHUGINADAK | A
AAF | | 144 27W | 581
80 | 6 | 6 6 | 3 3 | 6 | | 1 | | | ŀ | | | | 56 | | | | | | 25601 | | 1 | CIRCLE
CORDOVA | A
AAF | | 144 04W | 700
45 | 1 | 1 : | 3 3 | | | 3 3 | | | -1 | 3 | | | 62 | 62 | | 11 | | | 26 44 6
26 4 02 | | | CORDOVA
CRAIG | AF
A | 55 29N | 145 30W
133 09W | 45
13 | 5 | 5 9 | 5 5 | 5 | | 5 5 | | 5 | | 5 | 12 | 12 | 12 | 12 | Ī | | | | 26410
25317 | | | CROCKED CREK | A | 62 37N | 158 15W | 125
558 | 5 | 5 ! | 5 5 | 5 | 5 | 3 3
5 5 | 5 | 5 | 5 | 5 | - 1 | İ | | | | | | | 26518 | | | DAVIS
DUTCH HARBOR | AAF
NS | 53 53N | 176 39H
166 32H | 217
26 | 1 | | ιļi | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | İ | 62 | 62 | | 01 | | ŀ | 25701
25611 | | | DUTCH HARBOR
EAGLE
EIELSON | NF
A | 64 46N | 166 32W | 30
806 | 5 | 5 | 1 | | 1 | 1 1 | | . 1 | - [| 1 | | ļ | | | ŀ | l | į | | 25616
26422 | | | ELDRED ROCK | CG | 58 58N | 147 D4W
135 13W | 547
54 | | 1 | | | | 1 1 | ۱, | 1 | 1 | 1 | | | 51 | 52 | | 1 | | - | 26407
25318 | | | ELMENDORF
EXCURSION IN | AAF | 58 25N | 149 48H | 192
25 | 5 | 1 1
5 5 |
• | ! | ı | 1 1 | 1 | 1 | 1 | 1 | | | 62 | 62 | | 09 | | - [| 26401 | | | FAIRBANKS
FAIRWAY IS | CG CG | 57 27N | 147 43H | 442
40 | | | 1 | 1 | 1 | 1 1 | 1 | 1 | | 1 | 12 | 12 | 12 | 12 | 12 | | | | 26411 | | | FAREWELL
FIVE FINGER | CAA | 57 16N | 153 54W
133 37W | 1503 | 1 | 1 1 | 1 1 | 11 | 1 | | | 1 | | 1 | 11 | 04 | 12 | | | | | | 26519
25319 | | | FOREST IS | | | 133 324 | 309
1210 | 5 | | 6 | ļ l | | 1 | 5 | | - | 6 | 05 | | 12
05 | | 1 | l | | | 26520 | | | FORT MORROW
FORT YUKON | CAA | 66 35N | | 94
425 | 6 | | 6 | 6 | 6 | 1 1
6 6 | 6 | 1
5 | | 5 | 12 | 04 | 12 | ľ | | | | | 25504
26413 | | | GALENA
GAMBELL | | 64 43N
63 51N | 171 35H | 135 | 1 | 1 1 | 1 | 1 | 1 | 1 1 | | | 1 | 1 | 12 | 12 | 12 | 62 | | 04 | | | 26501
26703 | | İ | GULBVIN
GUARD ISLAND | CG | 54 33N
55 27N | 131 53W | 12
20 | | 1 1 | 6 | 1 | 5 | 6 6
1 1 | | | 5 | 5 | 10 | | 10 | | | | | | 26628
25320 | | | GULKANA
GUSTAVUS | CAA | 62 09N
58 25N | | 1579
20 | | 1 1 3 | 3 | | | 1 1
3 3 | | 1 7 | | 1 | Ì | - | 12 | 1 | | | | | 26425
25322 | | İ | HAINES
HEALY | CAA | 59 13N
63 51N | 135 26W
148 58W | 257
1350 | | 1 1
5 5 | 6 | 6 | 1 | 1 1
6 6 | 11 | 5 | 1 | 5 | 12 | | 12 | - 1 | - 1 | i | | ŀ | 25323
26447 | | Ì | HOLY CROSS
HOMER | A
CAA | 62 10N
59 38N | | 150
73 | | 3 2 | 3 | | | 3 3 | 3 | 3 | 1 | 3 | 12 | 07 | 12 | İ | | | | | 26521
25507 | | | HUGHES
IL IAMNA | | 58 45N | | 545
152 | 5 | 5 S | 5 | 5 | 5 | | 5 | 5 | 5 | 5 | 12 | 05 | 12 | | | | 1 | | 26522
25506 | | | IMURUK LAKE
JUNEAU | RAF | 65 35N
58 22N | 163 50H
134 35H | 557
22 | | 1 1 | | | - | 1 1 | Η | - 1 | ŀ | | 12 | | 51
12 | 12 | 12 | | | | 26613
25309 | | | KALTAG
KALTAG | AAF
A | 64 18N
64 20N | 158 43H | 158
93 | | 1 1 | . 1 | | | i | | 1 | | i | | | 52 | 54 | | } | | | 26502 | | | KETCHIKAN | CAA
HBB | 60 34N
55 21N | 151 15W | 91 | 1 | 1 1 | | | | 1 1 | 1 1 | 1 | 1 | | 12 | 04
12 | 12 | | | | | | 26523
25325 | | | KISKA ISLAND | AAF | 51 59N
51 58N | 177 34E | 298
71 | 1 | 1 1 | 1 | 1 | 1 | | i | | | | | | 62 | 62 | 1 | | | | 45703
45710 | | | KIVALINA
KODIAK | A
NAF | 67 45N
57 44N | 164 42W | 10 | 3 | 3 | 1 | 1 | 1 | 1 1 | 1 | , | 1 | , | | | 02 | - 1 | | Ì | | | 25501 | | - 1 | KODIAK
KOKRINES | NF
AAF | 57 45N
64 54N | 152 31H | 39
185 | 1 | | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | | | 12 | 62 | 62 | | | 1 | - | 25509
25503 | | Į | KOTZEBUE
KOYUK | | 66 52N | | 20
41 | 1 | 1 1 | 1 | 1 | 1 | 1 1 | 1 | | 1 | | 12 | 12 | 12 | 53 | | | | | 26616 | | J | LADD | | | 147 35W | 464 | | i î | 1 | 1 | 1 | 1 1 | 1 1 | i | | | | 12 | 62 | 61 | | 12 | | | 25602
25403 | | | | | | | | | | | | - | | • | | - | - | | , | • | | , | | • | • | | | | ALASI | KΑ | | | | | | | | | | | | | | NUM | BER | OF M | ONTH | IS IN | YEAR | WIT | н | |------|------------------------------|-------------|------------------|------------------------|-------------|--------|------------|------------|-----|------------|--------|------------|---|-----|----------|----------|------------|----------|----------------|-------|-------|--|----------------| | | | | | | | HOU | RLY | RE | COR | os | вч | MOI | NTH | | /. | / | ' / | ' æ / | VA IA (C MAN) | / 4/ | / ./. | •/ | % / | | | | | | | | i | - | 24 | 089 | P | ER I | DAY | | | | | | * / d | | 2/s. | | Total Part of the Control Con | HBAN | | YEAR | NAME | TYPE | LAT. | LONG . | ELEV. | J | H | A I | н | | A S | 0 | N O | / | 570007. | | [* | /* | 12.4 | | | **/ | NUMBER | | 1844 | LINCOLN ROCK | CG . | | 132 46W
150 38W | 25
285 | 1 | 1 1
1 1 | 1 1 | 1 1 | | | 1 1 | 1 : | | | | 12
59 | 59 | | | | Т | 25326
26505 | | | MANLEY H SPG
MANLEY H SPG | AAF
AAF | 65 DON | 150 39⊬ | 264 | H | - | lł | | 11 | | 1 | | | | | 53
07 | 53 | | | | | 26505
26448 | | | MATANUSKA
MCGRATH | A
HBAS | 62 58N | | 166
341 | 1 | 3 3 | 11 | 3 3 | 1 | 1 | 1 1 | 1 : | ١ | | 12 | 12 | | i | | | 1 | 26510
25402 | | | MIDDLETON IS
MINCHUMINA | CAA | 59 28N
63 53N | | 45
701 | 1 | 5 6 | 11 | 5 6 | 1 1 | 1 | 1 1 | 5 5 | | 12 | 04 | 10 | | | ŀ | | | 26512
26603 | | | MOSES POINT
MTN VILLAGE | AAF
AAF | 64 43N
62 07N | | 21
496 | 1 | 1 1 | 1 | 1 1 | 1 | 1 | 1 1 | | 4 | | - [| 52
59 | 54 | | | | | 26635 | | | NAKNEK
NENANA | AAF
CAA | 58 41N
64 33N | 156 39H
149 05H | 49
364 | | 1 1 | | 1 1 | | | 1 1 | 1 : | | 01 | | 52
12 | 62 | | 12 | | | 25503
26435 | | | NIKOLSKI
NOME | AAF
WB0 | 52 55N | 168 58H
165 24H | 315 | 6 | 6 6 | 6 | 6 6 | 6 | 6 | | 6 8 | 3 | 12 | 12 | 62
12 | 58 | 12 | | | | 25605
26617 | | | NOME | AAF | 64 31N | 165 26⊬ | 46 | 1 | 1 1 | 1 | 1 1 | 1 1 | 1 | 1 1 | 1 | 1 | 12 | 04 | 52
12 | 62 | | 06 | Ī | | 26604
26436 | | | NGRTH DUTCH
NGRTHWAY | CAA
WBAS | 62 57N | 147 48W | 39
1718 | 1 | 5 6
1 1 | 1 | 6 6 | 1 1 | 1 | 1 1 | | | 12 | 12 | 12 | | | | | | 26412 | | | NULATO
NUNIVAK | A | | 158 04W
166 12W | 210
37 | 5 | 5 5 | | 5 5 | 5 5 | 5 ! | 5 5
5 5 | 5 9 | | | 10 | 11 | | | | | ĺ | 26622
26605 | | | NUNIVAK IS | AAF
AAF | 60 12N
51 33N | | 50
50 | | 5 5 | | 5 5 | | | 5 5 | 5 ! | • | | 1 | 52
56 | 52
58 | | | | | 25702 | | i | PAXSON
PETERSBURG | A
CAA | 63 03N
56 49N | 145 27W
132 57W | 2697
111 | | 3 3 | | 3 3 | | | 1 1 | 1 | | 12 | | 12 | | | | | | 25329 | | | PILOT POINT
PLATINUM | A
AAF | 57 37N | | 50
21 | | 5 5 | 5 | 5 5 | 5 5 | | 5 5
7 7 | | 5 | | | 12
62 | | | | ĺ | | 25514
25604 | | | PLEASANT IS
POINT HOPE | A
AAF | 58 10N | 135 30W
166 47H | 14
19 | l i | | | | 1 | | | 1 | 1 | | | 62 | 62 | | | | - | 25340
26601 | | | POINT LAY | SA | 69 45N | 163 03W | 18 | | ļ | 1 1 | Ϊ, | ١ | | 1 | ֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓֓֡֓֡ | 1 | 12 | 08 | 12 | | | | l | | 2662 4 | | | PORT ALTHORP
PORT HEIDEN | A
AAF | 58 09N
56 57N | 158 39H | 12
84 | | 5 6 | 1 | 1 1 | | | 1 1 | 1 | 1 | | | 62 | 62 | | 12 | 1 | | 25504
26437 | | | PORTAGE
PT SPENCER | A
AAF | 60 51N | | 35
10 | 1 | 1 2 | 1 | 5 6 | 1 1 | 1 | 1 1 | | - 1 | | ļ | | | | | | | 26612 | | | PUNTILLA
RADIOVILLE | A | | 152 45W
136 09W | 1837 | 6 | 6 6 | 6 | 6 6 | | | | 3 | | | | 12 | | | | | | 26526
25332 | | | RAPIDS
REINDEER PAS | A
AAF | 63 32N
53 31N | | 2128
74 | 6
1 | 6 6 | | 6 6 | | | 1 1 | 1 | , | 07 | ļ | 07
52 | 52 | | | | | 25606 | | | SAND POINT
SEGUAM | NF
AAF | 55 20N
52 23N | 160 30W | 32
62 | 7 | 7 6 | 7 | 7 | 7 7 | 7 | 7
6 6 | | | 12 | | 62 | 60 | | | | - | 25617
25703 | | | SEMISOPOCHNO | AAF | 51 55N | 179 35E | 100 | 6 | - [6 | 6 | 6 6 | 6 6 | 6 | 6 D | 1 | - [| 12 | 01 | 12 | 53 | | | | | 45707
26438 | | | SEHARD
SHEEP MTN | SA
CAA | 60 08N | 147 41W | 95
2316 | 1 | 1 : | 1 | 1 : | 1 1 | 1 | 1 1 | 1 | 1 | 12 | 01 | 12
51 | 62 | | | | | 26439
45708 | | | SHEMYA
SHISHAREF | AAF
SA | 52 43N
66 14N | 166 07H | 132
16 | | 5 5 | | | | 5 | 1 1
5 5 | 5 | 5 | 12 | 07 | 12 | 02 | | | | | 26625
26513 | | | SHUNGNAK
SITKA | CAA | 66 54N
57 04N | | 138
66 | | | H | | 3 | | 5 5 | | 1 | 12
08 | 04 | 12 | | | | | | 25333 | | | SITKA
SKAGWAY | NS
BAF | 57 03N
58 27N | | | 5 | 5 6 | | | 1
6 6 | | 6 6 | | | | | | 51 | | | | | 25307
25303 | | | SKWENTNA
SOLOMON | A | 51 57N
64 35N | | | 5 | 5 5 | 5 | | 5 5
5 5 | | 5 5 | | | 12 | | 12 | | | | | | 26514
26629 | | | ST MATTHEW
ST MATTHEW | AAF
ASC | 60 21N | 172 42W | 97 | | | | | 1 | | 1 1 | 1 | 1 | 80 | | 62 | 62 | | | | | 26701 | | | ST PAULS IS | AAF
A | 57 08N
66 01N | 170 16H | 96 | 1 5 | 5 | 1 1 | | 1 1 | 1 | 1 1 5 | | 5 | | | 62 | 62 | | | } | | 25705
26449 | | | STONY RIVER | SA | 61 46N | 156 384 | 221 | Ι. | 3 ! | 5 5 | 5 | 5 5 | |
5 5 | 5 | 5 | 05 | 02
12 | 05
12 | | | | | | 26527
26414 | | | SUMMIT
TALKEETNA | CAA | 53 20N | 150 D6W | 356 | 1 | 1 | 1 1 | 1 | 1 1 | | | i | | 12 | | 12 | | Ì | | | | 26528
26440 | | | TANACROSS
TANACROSS | CAA
AAF | 63 24N | 143 194 | 1554 | | | 1 1 | 1 | 1 1 | | | | 1 | 04 | | 57 | 56 | | 1 | | | 26405
25714 | | | TANAGA IS
TANALIAN PT | NS
A | 51 45N
60 13N | 154 224 | 308 | | 5 | 1 6
5 5 | 5 | 6 6
5 5 | 5 | 5 5 | 5 | | | | 12 | | | | | | 26531
26504 | | | TANANA
TELLER | AFS | 65 12N | 152 124
166 554 | | | 1 | 1 1 | | 1 1 | H | 1 | 11 | 1 | | | 62
62 | 53 | İ | | | | 26607 | | | TENAKEE
THORNBROUGH | A | 57 47N
55 12N | 135 124
162 434 | | | | 5 5 | | 5 5
1 1 | | 5 5 | | 1 | | | 09
62 | | | 05 | | | 25336
25603 | | | TREE POINT | CG | 54 48N
53 32N | | | | 1 | 1 1 | ĭ | 1 1 | | | | 1 1 | İ | | 12
56 | | ľ | 08 | | | 25337
25610 | | | UNALAKLEET
UNALGA IS | AAF
NF | 63 54N
53 58N | 160 47H | | | | 1 1 | | 1 1 | 1 1 | 1 1 | | 1 1 | 02 | | 62 | 52 | | | | ł | 26608
25608 | | | VALDEZ
HAINHRIGHT | A
SA | 61 07h | 145 164 | 16 | 5 | 5 | 5 5 | 5 | 5 5
3 3 | 5 | 5 5 | 5 | 5 | 03 | 07 | 12
10 | | | | | 1 | 26442
27503 | | | WALES | AAF | 65 371 | 168 034 | 1 17 | 1 | 1 | 1 1 | 1 | 1 1 | 1 | 1 1 | 1 3 | 1 6 | 12 | 11 | 62
12 | 62 | | | 1 | ı | 26609
26511 | | | WISEMAN
WRANGELL | A | 67 26N
56 26N | 132 234 | 43 | 5 | 5 | 5 B | 5 | 5 5 | 5 | 5 5 | 5 5 | 5 | | •• | 12 | | | | | | 25338
26445 | | | YAKATAGA
YAKUTAT | CAA | | 142 30 | | | | 1 1 | | 1 1 | | | | 1 | 12 | | 62 | 62 | | 12 | | ĺ | 25302 | | 1945 | ADAK | NS | 51 571 | | | | | 1 1 | | 1 1 | | | | | | | | | | ļ | | | 25704 | | | ALEXAI PT | AF5
NS | 52 501 | 1 173 198
1 154 156 | | | | 기기 | 7 | 7 7 | | l | | İ | 03 | | 59 | 59 | 1 | | | ĺ | 45701
25502 | | | AMCHITKA IS
AMERICAN RVR | AAF | 51 24t
65 27t | 179 16E | | | | 1 1 | | 1 1 | | 1 1 | 11 | 1 | | | 52
58 | 58
58 | | | | | 45702
26511 | | | ANCHORAGE
ANGOON | HBAS | | 1 149 50 | 141 | . 1 | | 1 1 | 1 | 1 1
5 5 | 1 1 | | 1 5 | 5 | 80 | 12 | 12 | 12 | 12 | | | | 26409
25310 | | | ANIAK
ANNETTE IS | CAA | 51 351
55 021 | 159 32 | 9 9 2 | . 1 | | 1 1 | 1 | 1 1 | 1 1 | 1 1 | | 1 1 | 12 | | 12
62 | 62 | ļ | 12 | | İ | 26516
25301 | | | ANNEX CREEK
ATKA ISLAND | A | | 134 061 | 4 24 | 3 | 3 | 1 1 | H | | 11 | ш | | | | | 60 | 60 | | | | - | 25311
25708 | | | ATTU | NS | 52 50 | 173 116 | 91 | . 1 | 1 | 1 1 | 1 | | i
6 | 1 3 | 1] 1 | 1 6 | | 12 | 12 | 12 | 11 | 1 | | | 45709
27502 | | | BARROW
BETHEL | HBA: | 5 60 471 | 151 431 | 1 15 | 1 | 1 | 1 1 | 1 | 1 1 | ւլ ւլ | 1 2 | 1 1 1 | 1 | 12 | 12 | 12 | | ii | | | | 26515
26517 | | | BETTLES
BIG DELTA | AAF | | 145 44 | 1 1272 | ! 1 | | 1 1 | 1 | 1 | | 1 1 | | , | | | 60 | 60 | | 1 | | | 26406
26415 | | | BIG DELTA | AF | 64 001 | 145 441 | 1 1 1 | ' | 1 1 | | | | | 11 | - - | | | |) " | ļ | İ | 1 | 1 1 | ł | ALAS | KA | | | | | | | | | | | | | | | NU | MBER | OF ! | MONTI | 4S I | N YE | AR WI | тн | |------|------------------------------|-------------|------------------|--------------------|-----------------------|-----|----------------|----------------|------------|--------|------------|------------|-----|-----|-----|----------|-------|--|--|--|--------|-----------|---------------------------------------|------------------| | | | | | | | но | URL | Υ Ι | REC | ORI | DS | ВЧ | но | INT | н | , | /. / | / , | ر ۾ / | To lot of the t | / | / _ | / | \s\cents\ | | | | | | | | | 1 = | 2 | 4 0 | BS | PE | R (| PAC | , | | ŝ | | THE STATE OF S | STATE OF THE | | | / 83/30 A | | ≸ HBAN | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | J | F I | H F | H | J | J | A S | o | N | D | *\\ | 5/£ 6
| <u> </u> | | 1/26 | ?/\$*4 | ¥/\$5 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | NUMBER | | 1945 | BULDIR IS
CANDLE | AAF
A | 52 22N
65 56N | | 49
24 | 6 | | | 6 6
5 5 | | | 6
5 5 | 5 | 5 | 5 | | | 58
10 | 58 | | | | | 45705
26619 | | | CANYON IS
CAPE | CAA | 58 33N | 133 40H | 85
131 | 6 | Б | 6 0 | 6 6 | 1 1 | 1 | 1 1 | 1 | | | | | 62 | 61 | | 08 | | | 25602 | | | CAPE DECISIO | CG | | 134 D8µ | 50
185 | 1 1 | 1 | 1 : | 1 1 | 1 | 1 | | 1 | | | 12 | | 12 | ٠. | | | | | 25315
26417 | | | CAPE SPENCER
CAPE ST ELIA | CG | 58 12N
59 48N | 136 384 | 88
58 | 1 | 1 | 1 : | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 12 | | 12 | | | | | | 25316 | | | CAPE WRANGEL
CATON ISLAND | NF
NF | 52 53N | 172 31E | 50 | 6 | | | 1 | 1
5 | 1 | 1 1 | 1 | 1 | 1 | 12 | | 12 | | | | | | 25401
45713 | | | CATON ISLAND | NS | 54 25N | 162 284 | 130
140 | 7 | 7 | 1 | 7 | | 7 | | | | | - 1 | | | | | | | | 25615
25612 | | | CHIRIKOF
CHIRIKOF IS | NS
NF | 55 55N
55 54N | 155 35W
155 34W | 143
75 | 1 | | | 1 | 1 | 1 | 1 | l | Ιſ | | | | | | | | | | 25505
25511 | | | CIRCLE
CORDOVA | A
AAF | 65 48N
60 28N | 144 D4H
145 30H | 700
4 5 | 3 | | 5 5
1 1 | | 5 | | 5 5
1 | 5 | 5 | 5 | | . | 58 | 61 | | 08 | | | 26446
26402 | | | CBRDOVA
CRAIG | HBAS
A | 60 30N
55 29N | 145 30H
133 D9H | 44
13 | 5 | 5 | 5 5 | 5 5 | 5 | 5 : | 5 5 | | 5 | 5 | 12 | 04 | 04
12 | 01 | | | | | 26410
25317 | | | CROOKED CREK
CURRY | A | 61 52N
62 37N | 158 15H
150 02H | 125
556 | 3 | | 3 3 | | 3 | | 5 5
5 5 | | 5 | 5 | | | | | | | | | 26518 | | | DAVIS
DUTCH HARBOR | AAF
NF | 51 53N
53 53N | 176 39H
166 32H | 24
30 | 0 | Ð | | 1 1 | | 1 | | | | 1 | | | 62 | 62 | | 10 | | | 25701
25616 | | | DUTCH HARBOR
EIELSON | NS
AAF | 53 53N
64 39N | 166 32H | 26
547 | 1 | 1 | 1 1 | 1 1 | 1 | 1 : | 1 1 | 1 | 1 | 1 | | | 56 | 56 | | 05 | | | 25611
26407 | | | ELDRED ROCK
ELMENDORF | CG
AAF | | 135 13W
149 48W | 54
192 | 1 | 1 | 1 1 | 1 1 | 1 | | 1 1 | | : : | 1 | ļ | | 10 | 62 | | | | | 25318
26401 | | İ | FAIRBANKS
FAREHELL | ₩BAS
CAA | 64 50N
62 32N | 147 43H
153 54H | 442
1503 | 1 | 1 | 1 1 | 1 1 | 1 | 1 : | 1 1 | 1 | 1 | 1 | 10 | 12 | 12 | 12 | 12 | 12 | 05 | | 26411 | | | FIVE FINGER | CG | 57 16N | 133 37₩ | 30 | 1 | 1 : | 1 1 | 니티 | 1 | 1 : | 1 1 | 1 | 1 | 1 | 12 | ĺ | 12 | | | | | | 26519
25319 | | | FORT MORROW
FORT YUKON | AAF | 56 57N | 158 00H | 326
94 | 1 | 1 : | 1 1 | 니티 | 1 | 1 2 | 5 5 | ļ. | | 3 | 03 | | 12 | | | | | | 26520
25504 | | | GALENA | CAA | 64 43N | 145 18W
156 54W | 425
130 | 6 | | 5 6 | 11 | 6 | | 5 5 | | | 6 | [| 1 | 12
02 | | | İ | | | 26413
26509 | | | GALENA
GAMBELL | AFS
MBAS | 64 43N
63 51N | 156 54⊬
171 36⊬ | 123
32 | 1 | 1 | | 1 1 | 1 | 1 1 | 1 1 | 1 | 1 | 1 | 11 | 12 | 60
12 | 59 | ļ | 07 | | | 26501
26703 | | | GOLOVIN
GUARD ISLAND | CG | 64 33N
55 27N | 163 D1H
131 53H | 12
20 | 5 | 1 : | 1 1 | 1 1 | 1 | 1 1 | 5 6 | 1 | 1 | 1 | | | 10 | ĺ | 1 | | | | 26628
25320 | | | GULKANA
GUSTAVUS | CAA | 62 09N
58 25N | 145 27W | 1579
29 | 1 | | 1 1 | 1 1 | | 1 1 | 1 1 | | | 1 | | į | 12 | | İ | . | | | 26425
25322 | | j | HAINES
HEALY | CAA
A | 59 13N
63 51N | 135 26W
148 58W | 257
1350 | | | в € | 6 8 | 6 | 6 6 | 1 1 | | 1 | 1 | 12 | | 12 | | ŀ | l | | | 25323
26447 | | | HOLY CROSS
HOMER | A
CAA | 62 10N
59 36N | 158 45H
151 30H | 150
73 | | 3 3 | 3 3 | 1 1 | 1 | 3 3 | | | | 1 | 12 | | 12 | | | ŀ | | | 26521
25507 | | | HUGHES
IL IAMNA | R
CAA | 66 D4N
59 45N | 154 14W | 545
152 | | 6 8 | 5 6 | | | 6 6 | | | | 6 | 12 | | 12 | | | | | | 26522
25505 | | | IMURUK LAKE
JUNEAU | AAF
HBAS | 65 35N
58 22N | 163 50W | 557
22 | 1 | 1 1 | 1 1 | 1 1 | 1 | 1 1 | | 1 | | 1 | 09 | l | 57
12 | 58
12 | 12 | 1 | | | 26613
25309 | | İ | KAL TAG
KENA I | AAF
CAA | 64 18N
60 34N | 158 43H
151 15H | 158
91 | | 1 1 | | | 1 | 1 1 | | | 1 | 1 | | | 59
12 | 59 | 1 | | | | 26502
26523 | | | KETCHIKAN
KISKA ISLAND | HBB
BBF | 55 21N
51 59N | 131 39H
177 34E | 15
298 | 1 | 1 1 | | 1 | | 1 1 | 1 1 | 1 | | | 12 | 12 | 12
60 | 60 | | ŀ | | | 25325
45703 | | • | KODIAK | NF
NAF | 57 45N
57 44N | 152 31H | 39
112 | | 1 1 | | - I | | | | | | - [| | 05 | | Ī | ļ | | | | 25509
25501 | | 1 | KODIAK
KOKRINES | NAF
AAF | 57 45N
64 54N | 152 30H
154 40H | 112 | | 1 1 | 1 | 1 1 | 1 | 1 1 | | 1 | 1 | 1 | | | 59 | 59 | | | | | 25501
26503 | | | KOTZEBUE
KOUGAROK | WBA5 | 55 52N
54 54N | 162 38W | 20
185 | 1 | | | | 1 | | 1 | 1 | 1 | 1 | 08 | 12 | 11
51 | 51 | | 1 | | | 26616
26614 | | | KOYUK
LADD | AAF
AAB | | 161 06W
147 35W | 41
464 | 1 | | | | 1 | 1 1
1 1 | | 1 | 1 | , | Ĭ | 12 | 59
60 | 59
60 | | 11 | | | 26602
26403 | | | LINCOLN ROCK
MANLEY H SPG | CG
AAF | 56 03N
65 00N | 132 46⊬ | 25
264 | 1 | 1 1 | | 1 | | 1 1 | | 1 | 1 | 1 | | 1- | 12 | ı | | ** | | | 25326 | | | MANLEY HOT S
MATANUSKA | | 65 00N | | 325
166 | ı | 3 3 | | 1 1 | - [| 3 3 | 11 | | 6 | 6 | | | 61 | 61 | ŀ | | | | 26505
26524 | | ľ | MCGRATH
MIDDLETON IS | 1 | | 155 37W | 341 | • 1 | 11 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | | 12 | 12 | - 1 | | | | | 26448
26510 | | | MINCHUMINA
MOSES POINT | CAA | 63 53N | 152 17H | 701 | 2 | 1 1 | 1 | 1 | 1 | 1 1 | | 1 | 1 | | 15 | ŀ | 12 | | | | | | 25402
26512 | | | MOSES POINT
HT VILLAGE | CAR | 64 43N | 162 03H | 21 | 1 | 1 1 | | 1 | 1 | " | 1 | 1 | - 1 | 1 | | | 62 | 61 | İ | | | | 26603
26620 | | | MTN VILLAGE
NAKNEK | AAF
AAF | | 163 45H | 496 | 1 | | | | 1 | | | | - [| 4 | | | 10 | | | - 1 | | | 26521
25535 | | | NENANA | CAA | 64 33N | 156 39W | 49
364 | 1 | 1 1 | 1 | 1 | 1 | 1 1 | 1 | | 1 | 1 | | - 1 | 12 | 62 | | 12 | | | 25503
26435 | | | NIKOLSKI
NOME | AAF
WBO | 64 29N | 188 58H
165 24H | 315 | 1 | 6 E | 1 | 11 | 1 | 1 1 | 1 | | 1 | | oe l | 12 | 58 | 58
12 | 12 | | | | 25605
26617 | | | NOME
NORTH DUTCH | CAA | 60 46N | 165 26H
147 48H | 46
39 | 6 | 1 1
6 6 | 6 | 6 | 6 | 1 1
6 5 | 6 | 6 | 5 | 5 | 12 | ŀ | 59
12 | 57 | | | | j | 26604
26436 | | | NORTHWAY
NUNIVAK | ASC ASC | 60 23N | 141 56H
166 12H | 1718
50 | 5 | 1 1
5 5 | 5 | 5 | 5 | | 5 | | 5 | | 08
04 | 12 | 12 | | 1 | | | j | 26412
26622 | | | NUNIVAK IS
PETERSBURG | AAF
CAA | 56 49N | 166 05₩
132 57₩ | 50
111 | 1 | 5 5
1 1 | 1 | 1 | 1 | 5 5
1 1 | | 1 | 1 | 1 | 12 | - | 58
12 | 58 | | | | 1 | 26605
25329 | | | PILOT POINT
PLATINUM | A | | 157 34⊌
161 47⊌ | 50
20 | 5 | 5 5 | 5 | 11 | 5 | 5 | 5 | Б | 6 | Б | | 1 | 07
04 | |] | - 1 | | | 25514
25613 | | | PLATINUM
PLEASANT IS | AAF
A | 59 01N
58 10N | 161 47W
135 30W | 21
14 | | 7 7 | | 11 | 1 | 7 7 | | | - | | | ſ | 59 | | | | | - 1 | 25604
25340 | | | POINT BARROW
POINT HOPE | NS
A | 71 20N
68 20N | 156 24W | 13
14 | | | | | | 1 1 | 1 | 1 | 1 | | 02 | J | 02 | | 1 | | | | 27501
26623 | | | POINT HOPE
POINT LAY | AAF
SA | 68 21N | 166 47H | 19 | 1 | 1 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | | 09 | | 62
09 | 62 | | | | İ | 26601
26624 | | | PORT HEIDEN
PT RETREAT | | 56 57N | 158 39H
134 57H | 84 | | 1 1 | | 1 1 | 1 | 1 1 | | 5 | 1 | , | | | 60 | 60 | | 10 | | - 1 | 25504 | | | PT SPENCER
PUNTILLA | AAF
A | 65 15N | 166 21H | 19
1837 | 1 | 1 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | - 1 | | | <u></u> | | | | | | 25330
25612 | | | RADIBVILLE | | | 136 09H | 15 | | 6 6
3 3 | 3 | 5 | 3 | 5 6
3 3 | 3 | 3 | 3 | 3 | | | 06 | | |] | | | . 26926
25332 | | ' | | ' | ' | , | | ' | • | • | . 1 | • | • | | ' | ' | ' | ı | ' | ' | ' | ı | 1 | 1 | ' | | | | ALASI | KA | | | | | | | | | | | | | NU | 1BER | OF M | ONTH | S IN | YEAR | WITH | | |------|-----------------------------|----------------|------------------|--------------------|-------------|--------|------|------------|-------------------|-------|------------|----------------|------------|--|----------------------|----------
--|----------------|------|-------|------------|-------------------------| | | | | | | | но | URL | Y RE | COR | DS I | BY ! | HON1 | TH | / | /. / | / / | / e / | Te l'e Commens | / •/ | / 4/2 | | 3/ | | | | | | | | | 1 = | 24 | 089 | PE | R D | RΥ | | ŝ | \$
\$\delta \cdot | | STATE OF THE PARTY | | \$ | | Total Park | WBAN | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | J | FH | A | н | JA | ı s | 0 N | D | S. S | | | / × | / R. F. | | | £ / | NUMBER | | 1945 | REINDEER PAS
SAND POINT | AAF
CAA | 53 31N
55 20N | 167 55H
160 30H | 74
32 | 1.7 | | | 1 1 | 1 1 | 1 1
1 1 | 1 1 | 1 | 09 | | 06 | | | | | 1 2 | 25606
25617 | | | SEGUAM
SEWARD | AAF
SA | 52 23N
60 08N | 172 25W | 62
85 | 5 | 6 0 | | 6 6 | 6 6 | | | | 07 | | 59
07 | 59 | | | | 2 | 95703
96438 | | | SEWARD
SHEEP MTN | SA
CAA | 60 07N
61 46N | 148 27H | 76
2316 | 1 | | | 1 1 | 1 (| 5 6
1 1 | | 6 | 05
12 | | 05
12 | | | | | 2 | 6438
6439 | | | SHEMYA
SHISHAREF | AAF
SA | 52 43N
66 14N | 174 DEE | 132 | 1 5 | 1 . | 1 2 | 1 1 5 5 | 1 | 1 1 | 1 3 | 1 1 | 12 | | 62 | 61 | | 96 | | 4 | 15708
16625 | | | SHUNGNAK
SITKA | CAA | 66 54N
57 D4N | 157 DZW | 138
66 | 6 | | 5 6 | 6 6 | 6 6 | | 6 6 | 5 6 | 12 | | 12 | | | | | 2 | 6513
5333 | | | SKAGWAY
SKAGWAY | AAF
A | 59 27N
59 27N | 135 19W | 21
18 | ā | | 6 | | ΙÌ | 5 6 | ì | 6 6 | 1.5 | | - 15 | 55 | | | | : | 5303
5335 | | | SKHENTNA
SKHENTNA | A
CAA | 61 57N | 151 10W | 153 | 5 | | . [. | 1 1 | Ιİ | | | 1 1 | D1 | | 01
11 | I | | | | ; | 6514
6514 | | | SOLOMON | A | 64 35N | 164 24W | 153
15 | 5 | | 5 5 | 6 6 | 6 6 | | 5 5 | | ** | | 60 | E.D. | | | | 1 2 | 6629
6701 | | | ST MATTHEW
ST PAUL IS | HAF | 60 21N | 170 16W | 97
96 | 1 | lŀ | 11 | 1 1 | 11 | 1 1 | | 1 | | 02 | 02 | 60
02 | | | | : | 25713
25705 | | | ST PAULS IS
STEVENS VILA | AAF | 57 08N
66 01N | 149 05W | 96
350 | 5 | | | 1 1
5 5 | | 1 1
5 5 | 5 | 5 | | | 60 | 60 | | | | 1 2 | 6449
8527 | | | STONY RIVER
SUMMIT | SA
CAA | 61 46N
63 20N | 149 08⊭ | 221
2407 | 1 | | | 1 1 | | | 5 5 | ւ յ | 11 | 12 | 12 | | | | | 2 | 6414
6528 | | | TALKEETNA
TANACROSS | CAA | 62 18N
63 24N | 143 19W | 351
1545 | 1 | 1 1 | | - | | 11 | 1 1 | 1 1 | | | 03 | | | | | : | 26440
26405 | | | TANACROSS
TANAGA IS | AAF
NS | 63 24N
51 45N | 178 D2W | 1554
145 | 1 | 1 | 11 | 1 1 | 1 | | 6 6 | | | | 60 | 60 | | | | 7 | 5714
2531 | | | TANALIAN PT
TANANA | CAA | 60 13N | 152 06H | 306
240 | 5 | 11 | 5 5 | | 11 | 5 5 | 1 | 1 1 | | | 12 | l | | | | 2 | 6529 | | | TANANA
TELLER | AFS
AAF | 65 12N
65 18N | 166 55W | 230
10 | 1 | | 11 | 1 1 | | 1 1 | 1 | 1 | | | 59 | 59 | | : | | 2 | 26504
26607 | | | TENAKEE
THORNBROUGH | AAF | 57 47N
55 12N | 162 43W | 19
99 | 5 | 1 : | 1 1 | 5 5 | 1 1 | | 1 1 | 1 | | | 62 | 62 | | 12 | | 2 | 25 336
25603 | | | TREE POINT
UMIAT | CG
NS | | 152 08W | 36
337 | 1 | | 1 | 1 1 | 1 1 | 1 1 | 1 1 | | | | 12
09 | | | | | 1 6 | 25337
26506 | | | UMMAK ISLAND
UNALAKLEET | AAF
AAF | 63 54N | 167 47W | 67
22 | 1 | 1 | | 1 1 | | 1 1 | | | | | 59
62 | 55
61 | | 09 | | ; | 25610
26608 | | | UNALGA IS | NF
NF | | 156 10W | 21
711 | 1 | | | 1 1 | | 1 1 | 1 | 1 1 | | | | : | | | | 2 | 26627
25608 | | | HAINHRIGHT | A
5A | 61 D7N | 160 D4H | 18
29 | 3 | 3 : | 3 3 | 4 4 | 4 4 | 5
5 5 | 5 5 | 5 5 | 12 | | 12 | | | | | 6 | 26442
27503 | | | WALES
WALES | BAF
CAA | 65 37N
65 37N | 168 03W | 17
16 | 1 | 1 | | 1 1 | | 1 1 | 1 | | 02 | | 62
02 | 55 | | | | 2 | 26609
26618 | | | WISEMAN
WRANGELL | A | 67 26N
56 28N | 132 23W | 1290
43 | 5
5 | 5 9 | 5 5 | 5 6 | 5 9 | 5 5 | 5 5 | 5 5 | 12 | 08 | 04 | , | | | | 3 | 26511
25338 | | | YAKATAGA
YAKUTAT | CAA
AAF | 60 05N | | 33
31 | 1 | | | 1 1 | | 1 1
1 1 | | 1 1 | 12 | | 62
62 | 62 | | 12 | | | 26445
25302 | | 1946 | AMCHITKA IS | AAF | 51 24N | | 202 | 1 | | 1 1 | 1 1 | 1 | 1 1 | 1 2 | | | | 62 | 62 | | 01 | | | 45702 | | | ANCHORAGE
ANGGON | HBAS | 57 30N | 134 35H | 141 | | 5 9 | 5 5 | | 5 9 | 1 1
5 5 | 5 5 | 1 1 | | 15 | 12 | 12 | 12 | | | | 26409
25310 | | | ANIAK
ANNETTE IS | CAA
AAF | 61 35N
55 02N | 131 35₩ | 91
114 | 1 | | 1 1
1 1 | | | 1 1
1 1 | | 1 1 | | | 12
62 | 61 | | 12 | | 1: | 26516
25301 | | | ASI TANAGA
ATTU | NS
NS | 51 40N
52 50N | 173 11E | 148
91 | 1 | | 1 1 | 1 1 | | 1 1 | | 6 | | | | | | | | - - | 25709
45709 | | | BARROH
BETHEL | WBAS | 60 47N | | 29
15 | 1 | 1 | 1 1 | 5 1 | 11 | 1 1 | 1 : | 1 1 | | 12 | 12 | 12 | 15
15 | | | : | 27502
26615 | | | BETTLES
BIG DELTA | CAA | 66 54N
64 DON | 145 44H | 855
1275 | | 1 | 1 1 | 1 1 | 1 | 1 1 | 1 : | | | | 12 | | | | | - - | 26517
26415 | | | CANDLE
CAPE | AAF | 65 56N
53 23N | 167 54H | 24
131 | 1 | 1 | 1 1 | 1 1 | | 1 1 | 1 2 | 5 6 | | | 03
62 | 61 | | 02 | | : | 26619
25602 | | | CAPE DECISIO | CG | 50 14N | | 50
165 | 1 | 1 1 | 6 6 | e) e | 6 | 6 5 | 4 - | 5 5 4 4 | 12 | | 12 | | | | | : | 25315
25417 | | | CAPE SPENCER | CG | 58 12N
59 48N | 144 36H | 88
58 | 5 | | 5 5
5 5 | 5 5 | 5 | 6 6
5 5 | 5 5 | 5 5 | 12 | | 12 | | | | | 2 | 25316
25401
26418 | | | CENTRAL
CIRCLE | A
A
₩BAS | 65 35N
65 48N | 144 04W | 870
700 | 4 | !! | 4 1 | .]. | | | H | 5 5 | | 12 | 12 | 12 | | | | | 25445
25410 | | | CORDOVA
CORDOVA | AAF | 60 29N | 145 30H | 44 | 1 | ! ! | [| 1 1 | | 1 1 | | 1 1 | 08 | 12 | 12 | 51 | | | | 3 | 26402
25317 | | | CRAIG
CROOKED CREK | A | 55 29N
61 52N | 158 15H | 13
125 | 5 | 5 | 5 5 | 5 5 | 5 9 | 5 5 | 5 9 | 5 5 | 08 | | 12 | | | | | | 2651 8 | | | CURRY
DAVIS | AAF | 52 37N
51 53N | 176 39H | 556
14 | 1 | 1 | | 5 5
1 1
1 1 | . 1 | 5 5
1 1 | 1 3 | 1 1 | | | 62 | 62 | | 09 | | | 25701
25611 | | | DUTCH HARBOR
EIELSON | NS
AAF | 53 53N
54 39N | 147 04W | 26
547 | 1 | | 11 | | | 1 1 | 6 6 | 1 1 | | | | 03 | | | | 1 : | 26407 | | | ELDRED ROCK
ELMENDORF | AAF | 58 58N
61 15N | 149 48H | 54
192 | 1 | 1 | 1 1 | 1 1 | 1 | 1 1 | 1 : | 1 1 | | | 11
62 | 62 | | 11 | | | 25318
26401 | | | FAIRBANKS
FAREWELL | CAA | 64 50N | 153 54₩ | 1503 | 1 | 1 | 1 1 | 1 1 | 1 | 1 1 | 1 | 1 1 | | 12 | 12 | 12 | 12 | | | - 1 : | 26411
28519 | | | FIVE FINGER
FLAT | CG
A | 57 16N
52 27N | 158 OOH | 30
326 | 3 | 3 | 1 1 3 3 | 3 3 | 3 | 1 1 | 3 : | 3 3 | | | 06 | | | | | - - | 26520
26520 | | | FORT YUKON
GALENA | CAA | 66 35N
64 43N | 156 54W | 425
130 | 1 | 1 | 1 2 | 6 6 | 1 | 5 5
1 1 | 1 1 | 5 5
1 1 | | | 12 | | | | | - : | 26413
26509 | | | GAMBELL
GUARD ISLAND | CG
CG | 55 27N | 131 53W | 32
20 | 1 | 1 | 1 1 | 1 1 | 1 | 1 1 | 1 . | 1 1 | 01 | 12 | 12
04 | | | | | - 1 : | 26703
25320 | | | GULKANA
GUSTAVUS | CAA | 58 25N | 135 42W | 1579 | 1 1 | 1 | 1 1 | 1 1 | 1 | 1 1 | 1 : | 1 1 | | | 12 | | | | | - 1 - | 26425
25322 | | | HAINES
HOMER | CAA | 59 13N
58 3BN | 151 30W | 257
73 | 1 1 | 1 | 1 1 | 1 1 | 1 1 | 1 1 | [1] . | 1 1 | 12 | | 12 | | | | | - 1 : | 25323
25507 | | | HUGHES
IL IAMNA | CAA | 56 04N | 154 55W | 545
152 | 1 | 1 | 1 1
9 9 | 6 6 | 1 | 5 6
1 1 | 1. | 1 1 | | | 12 | | | | | - : | 26522
25506 | | | JUNEAU | CAA | 60 34N | 151 15H | 91
91 | 1 | 1 | 1 1 | 1 1 | 1 | 1 1 | 1 1 | 1 1 | _ | | 12 | 12 | 12 | | | - 1 : | 25309
26523 | | | KETCHIKAN | MBG | 55 21N | 131 394 | 15 | 1 | 1 | 1 1 | 1 1 | 1 | 1 1 | 1 | 1 1 | 01 | 12 | 12 | | | | | ' | 25325 | ıΩ | 9 | ĸ | Δ | |------|-----|----|---| |
 | . 1 | 11 | п | | | HLH2 | KH | | | | | | | | | | | | | | NU | MBER | OF I | MONT | HS I | N YEA | R WI | TH | |-------|------------------------------|-------------
------------------|--------------------|-------------|--------------|------------|------|------------|-------------|----------------|----------------|-----------|------------|------------|-----|-------------|--|---------------------|--|--|----------------|----------------| | | | | | | | HO | JRL | r Ri | ECO | RDS | B | M | זאנ | н | | / | / | / . | 1 2 | / | / / | , | 121 | | | | | | | | | | | | | | | | | / | 3 / | <i>`</i> ♣/ | | `\$ ^{\$} / | (E) | \$\\\ \\$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | `\$\ | \si \ | | YEAR | NAME | TYPE | LAT. | LONG. | FIEV | | | | | | | | | | 1 | | | The state of s | Ze Je Je | / 10/00/00/00/00/00/00/00/00/00/00/00/00/0 | | | HBAN | | 1946 | | | | | | + | + | ₩ | - | - | ⇊ | 4 | \perp | ٧_ | / ' | 75 | 2/ 4 | | | 7 | */** | / * | NUMBER | | 79-40 | KOKRINES | NAF
AAF | 57 451
64 541 | | 112 | | 1 1 | 1 | | 1 1 | 1 | 1 | 1 | 1 | | | | | | | | | 25501
26503 | | | KOTZEBUE
KOUGAROK | HBAS
AAF | 66 521
64 541 | | 20 | 1 | 1 1 | | 1 : | 1 1 | 1 | | 1 | 3 | | 12 | 12 | | | | | 1 | 26516 | | | LADD | AAB | 64 51 | 1 147 35W | 185
464 | | 1 1 | | | 6
1 1 | | 1 1 | 1 | 1 | | 12 | 59
62 | 59
62 | | 10 | | | 26614
26403 | | | LINCOLN ROCK | CG | | 132 46W | 26
730 | 1 | 1 1 | | 1 : | 비 1 | 1 | 1 € | 4 | | | | 12 | | | |] | | 25326 | | | MANLEY HOT S | A | 65 001 | 150 39µ | 325 | | 6 6 | 6 | 8 6 | s 6 | 6 | 5 E | 6 | 6 | | | | | | | i l | | 26426
26524 | | | MCGRATH
MIDDLETON IS | LABAS | 52 58N | | 341
45 | | 1 1 | | | 1 1 | 1 | 1 1 | | | | 12 | 12 | | | | | | 26510
25402 | | | MINCHUMINA
MOSES POINT | CAA | 63 531 | 152 17W | 701 | 1 | 1 1 | 1 | 1 | 1 | 1 1 1 | 1 1 | 1 | 1 | 01 | | 12 | | | 1 | | | 26512 | | | MT VILLAGE | CAA
SA | 64 42N | | 21
44 | 1 | 1 1 | 1 | 1) | 1 1 | 1 | 1 1 | 1 | 1 | 11 | Ī | 12 | | | | | | 26620
26621 | | | NAKNEK
NENANA | CAA | 58 41N | | 49
364 | | 1 1 | | 1 1 | 1 | 1 | 1 1 | 1 1 | 1 | | | 62 | 62 | | 09 | | | 25503 | | | NOME | ₩8ø | 64 28N | 185 24H | 12 | 1 1 | 1 1 | l I | 11 | 1 | * | " | 1 | 1 | | 03 | 12
03 | 03 | 03 | | | - 1 | 26435
26617 | | | NOME
NOME | HBAS | 64 31N | | 46
15 | 1 | 1 1 | | 1 , | | | | 1 | . | | 09 | 53
09 | 53
09 | 09 | | | | 26604 | | | NORTH DUTCH
NORTHWAY | CAA | 60 46N | 147 48W | 39 | | 6 6 | 6 | 6 5 | Ы | 5 | 6 E | 6 | 6 | | | 12 | Da | UB | | | | 26617
26436 | | | NUNIVAK | MBAS
SA | 62 57N
60 23N | | 1718
50 | | 1 1 | | 1 1 | | | 1 1 | | 4 | | 12 | 12 | | | | | | 26412
26622 | | | PETERSBURG
PLATINUM | CAA | 56 49N
59 01N | | 111
20 | | 1 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | | | 12 | | | | | | 25329 | | | POINT BARROW | NS | 71 20N | 156 24⊭ | 13 | ı | 6 6
6 6 | 6 | 6 6
6 6 | 6 | | 6 6 | Б | • | | ١. | 12 | | | | | - 1 | 25613
27501 | | | POINT BARROW
POINT HOPE | CAA | 71 20N
68 20N | | 11 | 4 | 4 4 | 4 | 4 4 | 4 | 4 | | 1 | | 12 | | 02
12 | | | | | | 27504 | | | PRINT LAY
PT RETREAT | SA | 69 45N | 163 D3W | 16 | | 1 | 1 | 1 | 1 | - [| 1 | | | 12 | | 12 | | | | | ļ | 26623
26624 | | | PUNTILLA | A | 58 25N
62 06N | | 20
1837 | | 1 6
6 6 | | 6 6
6 8 | 5 | | 5 4
6 6 | | | | | | 1 | | | 1 1 | | 25330
26526 | | | RADIOVILLE
SAND POINT | CAA | 57 36N
55 20N | | 15
32 | 3 | 3 3 | 3 | 3 3 | 1 | ı | 5 6 | 11 | - 1 | | | 4.5 | | | | | - 1 | 25332 | | | SEWARD | A | 60 D7N | 149 27H | 76 | 6 | 6 6 | 5 | 6 6 | 6 | 6 (| 5 6 | 6 | | | | 12
12 | i | | | | j | 25617
26438 | | | SHEEP MTN
SHEMYA | CAA | 61 48N
52 43N | | 2316
132 | | 1 1 | 1 1 | 1 1 | | 1 | 1 1 | | 1 | ļ | | 12
62 | 62 | | 12 | | - 1 | 25439
45708 | | | SHISHAREF
SHUNGNAK | SA
CAA | 55 14N
68 54N | | 16 | 5 | 5 5 | 5 | 5 5 | 5 | 5 ! | 5 i 5 | 5 | 5 | | • | 12 | ٠- ا | | 12 | | Į | 26625 | | | SITKA | CAR | 57 04N | 135 21H | 138
66 | | 5 6
1 1 | | 6 5
1 1 | | 5 6 | 5 6 | | 6 | ļ | | 12 | | | | | - 1 | 26513
25333 | | | SKAGHAY
SKHENTNA | CAA | 59 27N
61 58N | | 19
153 | | 5 5
1 1 | | ١, | 1 | 1 | ١, | | 5 | | | 12 | | | | | - 1 | 25335 | | | SOLOMON
ST PAUL IS | A
⊌B@ | 54 35N
57 07N | 164 24W | 15 | | 5 5 | | 1. | | 1 | ^ | $ \cdot $ | 1 | | | | - 1 | | | | - 1 | 26514
26629 | | | ST PAULS IS | AAF | 57 08N | 170 16H | 96
96 | | | | | $\ \cdot\ $ | ı | | | | | 12 | 12 | 07
55 | | | | | 25713
25705 | | | STEVENS VILA
STONY RIVER | A
5A | 66 01N
61 46N | 149 05H
156 38H | 350
221 | 5
 5 ! | 5 5 | 5 | 5 5 | 5 | _ | | 1 | | oe | | | | | | | - 1 | 26449 | | | TIMMUZ | CAA | 63 20N | 149 08H | 2407 | 1 | 1 1 | 1 | 1 1 | 11 | 1 1 | 1 | | 1 | 03 | 07 | 06
12 | | | | | | 26527
26414 | | | TALKEETNA
TANACROSS | CAA | 62 18N
63 24N | | 351
1546 | | 1 1 | 1 | 1 1 | 1 1 | 1 1 | | | 1 | - 1 | | 12 | | | | | | 26528
26440 | | | TANAGA IS
TANALIAN PT | NS
A | 51 45N
60 13N | | 145
308 | 6 6 | 5 5 | | ı | 1 | - | 1 | | | İ | | | - 1 | - 1 | | | İ | 25714 | | | TANANA | CAA | 65 10N | 152 06H | 240 | 1 | | 1 | 5 5
1 1 | 1 | 5 5 | | | 5 | ŀ | | 12 | - 1 | | i | | | 26531
26529 | | | TELLER
TENAKEE | A | 65 1BN
57 47N | | 10
19 | 5 ! | 5 5 | 5 | 5 5
5 5 | | 5 5 | 5 | 5 | 5 | l | | 06 | - 1 | ı | | | - 1 | 26626 | | | THORNBROUGH
TREE POINT | AAF
CG | 55 12N | 162 43H | 99 | 1 | 1 1 | 3 | 1 1 | 1 | 1 1 | 1 | | 1 | | | 62 | 52 | | 12 | İ | İ | 25336
25603 | | | UMIAT | CAA | 69 22N | 130 56H
152 08H | 36
337 | 1 6 | 16 | 6 | 6 | | 7 7 7 | | | 1 | | . | 09
05 | 1 | | | | | 25337
26508 | | | UMIAT
UMNAK ISLAND | NS
BAF | 69 22N
53 32N | | 337
67 | 1 1 | 니기 | 1 | 1 1 | 1 | ŀ | | | | | | D7
58 | | ľ | | | | 26506 | | | UNALAKLEET
VALDEZ | CAA
A | 63 53N | 160 48H | 21 | 3 3 | 1 1 | 1 3 | 1 1 | 1 | 1 1 | 1 | 1 | 1 | | | 12 | 58 | | | | Ì | 25610
26627 | | ı | WAINWRIGHT | SA | 61 07N
70 37N | 160 04H | 13
29 | 5 5 | 3 3 | 5 5 | 5 5 | 5 | 5 5
5 5 | 5 | 5 | 5 | 12 | | 12 | | | | | | 26442
27503 | | İ | WALES
WALES | HBAS
BAF | 65 37N | | 15
17 | - 11 | 11 | 5 9 | 5 5 | 5 | 5 5 | 5 | 5 | 5 | 10 | | 10
52 | | | İ | | | 25618 | | | WHITE MOUNTA | A | 54 41N | 163 24H | 50 | | | 5 5 | 5 5 | | | | - | | ĺ | ļ | | | 1 | ļ | | - 1 | 26609
26630 | | | WISEMAN
WRANGELL | A | 55 28N | 150 13H
132 23H | 1290
43 | 5 5 | 5 5 | 5 5 | 5 5 | | | | 5 | | 12 | | 12 | | | İ | - 1 | - | 26511
25338 | | i | YAKATAGA
YAKUTAT | CAA
AAF | 60 05N
59 31N | 142 30H | 33 | 1 1 | 1 1 | | 1 1 | 1 | 1 1 | 1 | 1 | 1 | | | 12 | | | j | | - 1 | 26445 | | 1947 | | i | | | 1 | 1 | 11 | 11 | ` ^ | | | П | | 1 | | I | 62 | 62 | - 1 | | | | 25302 | | 1877 | AMCHITKA IS
AMCHITKA IS | AAF
AAF | 51 23N
51 24N | 179 15E | 505 | 1 1 | | 1 , | | 1 | 1 1 | 1 | 1 | 1 | | - 1 | 56
06 | 56
06 | - | - 1 | ļ | Į | 45702
45702 | | ĺ | ANCHORAGE
ANGOON | ⊮BAS
A | 61 13N
57 30N | | 141 | 1 1 | 111 | 11.1 | ılıl | 1 | 1 1 | 1 | 1 | 1 | ı | 12 | 12 | 12 | 15 | 1 | | | 26409 | | | ANJAK | CAA | 61 35N | 159 32H | 91 | | | 5 5 | 1 | 1 | 1 1 | 1 | 1 | [] | | - | 12 | | | . | | | 26516
26516 | | ł | ANNETTE IS | MBAS
AAF | | 131 34W | 113 | 1 1 | 11 | 1 1 | 1-1 | - 1 | 1 1 | П | 1 | 1 | | | 01
61 | | l | | | | 25308 | | | ASI TANAGA
ATKA ISLAND | NS | | 178 00W | 148 | 6 1 | i | î | 1 | i | 1 1 | 1 | 1 2 | 1 | | ļ | | 61 | ļ | 12 | | | 25301
25709 | | l | ATTU | NS | 52 50N | 173 11E | 35
91 | 1 1 | | 1 1 | 1 | 1 | 1 5 | | 6 6 | | | İ | 58 | 58 | . | - 1 | | | 25708
45709 | | Ì | BARROW
BARTER IS | | 71 18N
70 08N | | 29
40 | 1 1 | 1 | 1 1 | 1 | | | [1 | 1 1 | ı | | 12 | 12
53 | 12 | 12 | j | . | | 27502 | | ł | BETHEL | HBAS | 50 47N | 151 43W | 15 | | | 1 1 | | 1 | 1 1 | 1 | 1 1 | ιl | | 12 | 12 | | 12 | | | | 27401
26615 | | ł | BETTLES
BIG DELTA | CAA
 66 54N
64 00N | 145 441 | 855
1275 | | 1 1 | 1 1 | 1 | 1 2 | 1 1
1 1 | | 1 1 | | | | 12 | | - 1 | 1 | | | 26517
26415 | | | BOUNDARY
CANDLE | A | 64 D4N | | 2600
24 | - 1 | 6 | | 11 | - 1 | 1 | 5 | 5 5 | <u>ا</u> ا | | | | | | [| | 1 | 26416 | | ŀ | CAPE | AAF | 53 23N | 167 54H | 131 | 1 1 | 1 | 1 1 | 1 | 1 1 | | 1 | 5 5 | ı | | [| 65 | 55 | - 1 | - 1 | } | | 26619
25602 | | | CAPE DECISION | CG | 60 14N | | 50
185 | 4 4 | 4 | 5 5 | 4 | | 4 4 | | 5 5 | | 12 | | 10 | ſ | | | | | 25315
26417 | | - 1 | CAPE SPENCER
CAPE ST ELIA | | 58 12N
59 48N | | 88
58 | 6 6
5 5 | 6 | 6 6 | 6 | 5 5 | 5 6 | 6 | 6 E | i | 12 | | 12 | | | j | | | 25316 | | | CENTRAL | A | 65 35N | 144 48H | 870 | 5 5 | 5 | 5 5 | 5 | 5 | 5 5 | 5 | 5 5 | | 12 | - 1 | 12 | | | | | | 25401
26418 | | - 1 | CLEAR STA A | AF5 | 02 13N | 148 054 | 537 | | П | | | | | 1 | 1 | | | } | | | | | | | 26408 | | | ALASI | KA | | | | | | | | | | | | | NUP | IBER | 0F M | 10NTH | IS IN | YEAR | R MI | тн | |------|---|------------------|------------------|-------------------------------|-----------------|-------------|-------------------|-----|-------------------|----------|-------|-------------------|-----------|----------|-----|----------------|---|------------|-------|--|------|-------------------------| | | | | | | | HÖL | IRLY | RE | COR | 1 8G | BY M | ONT | н | , | ′ / | , , | / es / | / A | / _ / | / _/ | / | 3/ | | | | | | | | 1 | = | 24 | 085 | PE | R DA | Y | | /ŝ | 4 | \$ | * | | 5/2 | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | HBAN | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | د | F M | A | н | J F | 1 5 | n c | 0 | S. S. S. | | | See | TA JA JA S | | To long to the second s | | NUMBER | | 1947 | CORDOVA
CRAIG | HBAS
A | 60 30N
55 29N | 145 30W | 44 | 1 5 | 1 1
5 5 | 1 5 | 1 1
5 5 | 1 5 | | 1 1
5 5 | | | 12 | 12
12 | 03 | | | | | 26410
25317 | | | CROOKED CREK | A | 61 52N
62 37N | | 125
556 | | 5 5 | 51 | 5 5 | 5 5 | | 5 5 | 5 | | | | | | | | | 26518 | | | DAVIS
DUTCH HARBOR | AAF
NS | 51 53N
53 53N | 176 39H | 15
26 | 1 | 1 1 | 1 | 5 5 1 1 1 | 1 1 | 1 1 | 1 1 | | | ŀ | 62 | 62 | | 12 | | | 25701
25811 | | | EAGLE
EIELSON | A
AAF | 64 46N
64 39N | 141 12W
147 D4W | 806
547 | | 1 1 | 1 [| 4 5 | 5 5 | 5 5 | 5
1
1 | | | | 54 | 62 | | | - 1 | | 26422
26407 | | | ELDRED ROCK
ELMENDORF | CG | 58 58N
61 15N | 135 13W
149 48W | 54
192 | 1 1 | 1 1 | 11 | 1 1 |] 1 : | 1 1 | i i | 1 | | | 11
62 | 62 | | 12 | 1 | | 25318
26401 | | | FAIRBANKS
FAREWELL | HBAS
CAA | | 147 43H
153 54H | 442
1503 | 1 | 1 1 1 | 1 | 1 1 | 1 1 3 | 1 1 | i i | 1 | | 12 | 12 | 12 | 12 | | | | 26411
26519 | | | FIVE FINGER | CG
B | 57 16N
62 27N | 133 37W
158 DDW | 30
326 | 4 | 4 4 | 4 | 4 4 | 4 4 | 4 4 | 4 4 | 4 | | | 12 | | | | l | | 25319
26520 | | | FORT YUKON
GALENA | CAA
HBAS | 66 35N | 145 18H
156 54H | 425
139 | | 5 6
1 1 | 6 | 5 6
1 1 | 6 6 | 5 6 | 6 6
1 1 | 6 | | 03 | 12
12 | | | | | | 26413
26509 | | | GAMBELL
GUARD ISLAND | HBAS
CG | | 171 36H
131 53H | 32
20 | 1 1 | 1 1 | 1 | 1 1 | 111 | 1 1 | 1
4
4 | 1 | | 12 | 12 | | 10 | | | | 26703
25320 | | | GULKANA
GUSTAVUS | CAA | 62 09N
58 25N | | 1579
29 | 1 1 | 1 1 | 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1 | | | 12 | | | | | | 26425
25322 | | | HAINES
HOMER | CAR | 59 13N
59 38N | 135 26W
151 30W | 257
73 | 3 | 1 1 | 1 | 1 1 | 1 1 3 | | 1 1 | | 12 | | 12 | | | | 1 | | 25323
25507 | | | HUGHES
IL IAMNA | A
CAA | 56 04N | 154 14W
154 55W | 545
152 | 5 | 6 6
1 1 | | 6 6 | | | 6 6
1 1 | | | | 12 | | | | } | | 26522
25506 | | | MENAI
MEAU | UBAS
CAA | 60 34N | 134 35W
151 15W | 22
91 | 1 5 | 1 1 | 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1 | | | 12 | 12 | 12 | | | | 25309
26523 | | | KETCHIKAN
KODIAK | MAF | 55 21N
57 45N | | 15
112 | 1 | 1 1 | 1 | 1 1 | 2 : | 1 1 | 1 1 | 1 1 | | 12 | 15 | | | | . | | 25325
25501 | | | KOTZEBUE
LADD | HBAS
AAB | 66 52N | 147 35H | 20
464 | 1 | 1 1 | 1 | 1 1 | 1 1 3 | 1 1 | 1 1 | 1 | , | 12 | 12
59 | 59 | | 12 | Ì | | 26616
25403 | | | LINCOLN ROCK
MANLEY HOT S | CG
A | 56 03N | 150 39H | 25
325 | | 6 6 | 6 | 4 4
6 6 | 5 6 | 5 6 | 4 4
6 6 | 6 | | | 12 | | | | | | 25326
26524 | | | MCGRATH
MIDDLETON IS | CAA | 59 28N | 155 37W | 341
45 | | 1 1 | 1 | 1 1
1 1
1 1 | 1 1 | 1 1 | | 1 | | 12 | 12 | | | | | | 26510
25402
26512 | | | MINCHUMINA
MOSES POINT
MT VILLAGE | CAA
CAA
SA | | 152 17W
162 03W
163 45W | 701
21
44 | 1 | 1 1 1 3 | 1 | 1 1 | | | 1 1 | | 12 | | 12
12
12 | | | | 1 | | 26620
26621 | | | NAKNEK
NENANA | AAF
CAA | 58 41N
64 33N | | 49
364 | 1 1 | 1 1 | 1 | 1 1 | 1 1 | | 1 1 | | 12 | | 62
12 | 62 | | 09 | | | 25503
26435 | | | NGME
NGRTH DUTCH | WBAS
CAA | | 165 26W | 15
39 | 1 | 1 1 5 6 | 1 | 1 1 | 1 : | 1 1 | 1
6 6 | 1 | | 12 | 12 | 12 | 12 | | | | 26617
26436 | | | NGRTHWAY
NUNIVAK | WBAS
SA | | 141 56H
166 12W | 1718 | 1 4 | | 1 | 1 1 | . 1 : | 1 1 | 1 1 | 1 | 12 | 12 | 12 | | | | | | 26412
26622 | | | PALMER
PETERSBURG | A
CAA | 61 36N
56 48N | 149 07W
132 57W | 245
111 | 3 | 3 1 | } | 1 1 | Ιł | | 1 1 | | | | 12 | | | | 1 | | 25331
25329 | | | PLATINUM
POINT BARROW | A
CAA | 59 01N
71 20N | 161 47H
156 39H | 20
11 | | | 6 | 6 E | 6 6 | 5 6 | 6 6
1 1 | 6 | | | 12
12 | | | | - 1 | | 25613
27504 | | | POINT HOPE
POINT LAY | A
SA | 88 20N
89 45N | 166 46H
163 D3H | 14
18 | ٩ | 4 4 | 4 | 4 4 | 4 | 4 | 4 | 4 | 12 | | 12 | | | | 1 | 1 | 26623
26624 | | | PORT HEIDEN
PT RETREAT | CAA | 56 57N
58 25N | 134 57W | 102
20 | 4 | 4 4 | | 4 4 | | 4 4 | 1 1 | 4 | | | 04 | | | | j | | 2550 8
25330 | | | PUNTILLA
SAND POINT | CAA | 62 06N
55 20N | 152 45H
160 30H | 1837
32 | 6 | 6 6
6 6 | | 6 6 | | 1 | 6 6 | ! | | | 07 | | | | | | 26526
25617 | | | SAVOONGA
SEHARD | A | 63 41N
60 07N | 170 26W
149 27W | 35
76 | | 6 6 | 6 | 6 6 | 6 | 5 5 | 3 3
6 6 | 6 | | | 04
12 | | | | 1 | | 26438 | | | SHEEP MI'N
SHEMYR | AAF | 51 48N
52 43N | 147 41W | 2316
132 | 1 1 | 1 1 | 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1 | | | 12
62 | 52 | | 12 | | | 26439
45708 | | | SHISHAREF
SHUNGNAK | CAA | 56 14N | | | 6 | | | | 5 1 | 6 6 | 5 5
6 6 | 6 | | | 12
12 | | | | l | | 26625
26513
25341 | | | SISTER IS
SITKA
SKAGWAY | A
CAA
A | 57 04N | 135 15H
135 21H
135 19H | 66 | 1 5 | | | | 1 | 1 1 | 3 3
1 1
5 5 | | | } | 12 | | | | l | | 25333
25335 | | | SKWENTNA
ST PAUL IS | CAA | 61 58N | 151 12W
170 16W | 153 | 1 1 | | 1 | 1 1 | 1 | | ī | | 01 | 06 | 12
06 | 80 | | | | | 26514
25713 | | | ST PAUL IS
STONY RIVER | HBAS
SA | 57 09N | 170 13H
156 38H | 28
221 | | | | | | | 5 5 | 5 | 03 | 06 | 06
03 | 06 | | | 1 | i | 25713
26527 | | • | SUMMIT
TALKEETNA | CAA | 63 20N | 149 08H
150 06H | | 1
1 | 1 1 | | 1 1 | | 1 1 | 1 1 | 1 | 0.1 | | 12 | | | | - 1 | | 26414
26528 | | | TANACROSS
TANACROSS | CAA | 63 24N
63 24N | 143 19W | 1546
1554 | 1 | 1 1 | | 1 1 | 1 | | 1 1 | | | | 12
53 | 53 | | | 1 | | 26440
26405 | | | TANALIAN PT
TANANA | A
CAA | | 154 22H
152 06H | 308
240 | 5 | 5 5 | 1 | 5 5 | . 11 . | 1 1 | 5 5
1 1 | 1 1 | | | 12 | | | | - 1 | | 26531
26529 | | | TELLER
TENAKEE | A | 57 47N | 166 21H
135 12H | 10
19 | 5 | 5 5 | 5 | 5 5
5 5 | 5 ! | 5 5 | 5
5
5 | 5 | | | | | | | | | 26626
25336 | | | THORNBROUGH
TREE POINT | CG
CG | 54 48N | 162 43H
130 56H | 36 | 4 | 1 1 | 4 | 1 1 1 | 1 4 | 4 4 | 1 1 | 4 | | | 10 | 62 | | 12 | | | 25603
25337 | | | UMIAT | LABAS | 63 53N | 160 48W |
337 | 1 | 1 1 | 1 | 1 1 | 11 | 1 1 | 1 1 | 1 1 | | ŀ | 12 | | | | 1 | | 26508
26627 | | | VALDEZ
HAINHRIGHT | SA | 70 37N | 146 16H | 29 | 5 | 5 5 | 5 | 5 5
5 5
7 1 | 5 9 | 5 5 | 5 5
5 5
1 1 | 5 | 12
12 | · | 12 | | | | | | 26442
27503 | | | WALES
WISEMAN
WRANGELL | HBAS
A | 67 26N | 158 03H
150 13H | | 5
6
5 | | | | 5
5 | 5 6 | 1 1
6 6
5 5 | 6 | 15 | | 15 | | | | ĺ | | 26618
26511
25338 | | | YAKATAGA
YAKUTAT | CAA
RAF | | 132 23W
142 30W
139 40W | 33
31 | 1 | 5 5
1 1
1 1 | 1 | 5 5
1 1
1 1 | 1 | 1 1 | 1 1 | | | | 12
82 | 62 | | | | | 25338
26445
25302 | | 1948 | AMCHITKA IS | AAF | ĺ | 179 15E | 505 | , | 1 1 | H | 1 1 | 11 | | 1. | $ \cdot $ | | | 56 | 56 | | 02 | | | 45702 | | 10 | AMCHITKA IS
ANCHORAGE | AFB
HBAS | 51 24N | 179 18E
149 50H | 202 | 1 | 1 1 | | 1, | 1 1 | | 1 1 | | | 12 | 56
12 | 56
12 | 12 | 05 | | | 45702
28409 | | | ANGOON
ANIAK | A
CAA | 57 30N
61 35N | 134 35W | 14 | 5 | 5 5
1 1 | 5 | 5 5
1 1
1 1 | 5 !
1 | 5 5 | 5 1 | | | . – | 12 | | | | | | 25310
26516 | | | ANNETTE | HBAS | | | | 1 | 1 1 | 1 | 1 1 | 1 | 1 1 | 1 1 | | | 12 | 12 | | | | | 1 | 25308 | | | | | | | | | | | 00 | 7 | | | | | | | | | | | | | | ALASKA | | |--------|--| | | | | | ALAS | KA | | | | | | | | | | | | | NU | MBER | OF I | HONTI | is II | N YERF | HTIW S | | |------|------------------------------|-------------|------------------|--------------------|-------------------|--|---------------|-------------------|--------------------------|------------|-------------------|------------|-----------|-------|-------|---------------|--|--|---------------------------------------|--|------------|------------------------| | | | | | | | HOU | RLY | REC | CORD | S A | Y M | ONTH | ı | , | , | | / . | _ | | | | 1 | | | | | | | | | | 24 (| | | | | , | /: | / ۶ | ` <i>à</i> / | <i>\$</i> / | 8 / | . Æ/ | \$\Z | | | | YEAR | NAME | TYPE | | | | | | | | | | | . / | /\$. | | <i>\$</i> / £ | THE STATE OF S | TA J. S. J. S. | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | of a N | MBAN | | | | 1172 | LAT. | LONG. | ELEV. | 17, | | HIM | 17 | JA | S | וואוי | <u> </u> | 9 4 | / 💝 % | - 6 | | /~ 4 | 7 * 9 | E/ & &/ | / e / N | UMBER | | 1948 | ASI TANAGA
ATKA ISLAND | NS
AAF | 51 40N
52 13N | | 146
36 | | 6 6
6 6 | | | 6
6 6 | | 1 1 | 1 | | | 62 | | | | | 25 | 709 | | | ATTU | NS | 52 50N | 173 11E | 91 | 1 | 1 1 | 1 1 | ı 1 | 1 1 | 1 1 3 | 1 1 | 1 | | | 62 | 62 | | | | | 708
709 | | | BARROW
BARTER IS | HBAS
AF8 | 71 18N
70 08N | | 29
40 | | 1 1 | | 11 | 1 1 | 1 1 | 1 1 | | - 1 | 12 | 12
62 | 12
58 | 12 | | 1 1 | | 7502
7401 | | | BETHEL
BETTLES | HBAS | | | 15 | 1 | 1 1 | 1 1 | 1 | 1 1 | 1 : | 1 1 | 1 | 05 | 12 | 12 | | 12 | | | 26 | 615 | | | 8IG DELTA | CAA | 66 54N
64 00N | | 855
1275 | | 1 1 | | 1 | 1 1 | 1 1 | 1 1 | 1 | | - 1 | 12 | | | | | | 517
5415 | | | BOUNDARY
CANDLE | A | 64 D4N
65 56N | | 2600
24 | | 5 S | 5 5 | 5 | 5 5
6 6 | 5 5 | 5 5 | 5 | - | | | | | | | 26 | 416 | | | CAPE | AFB | 53 23N | 167 54W | 131 | 1 | 1 1 | | 1 1 | 1 1 1 | 11 1 | | 5
1- | | | 62 | 62 | | | 1 | | 619
602 | | | CAPE DECISIO
CAPE HINCHIN | CG | 56 00N
60 14N | 134 08W | 50
1 85 | | 5 5 | | | 5 5 | 5 5 | | 4 | 12 | | 12 | | | | l f | | 315
417 | | | CAPE SPENCER
CAPE ST ELIA | CG | 58 12N | 136 38H | 66 | Б | 5 6 | l 6 l 6 | 6 6 | 6 6 | 6 6 | 5 6 6 | 5 | 12 | | 12 | | | | | | 316 | | | CENTRAL | CB
A | 59 48N
65 35N | | 58
870 | 5 9 | 5 5 | | | 5 5 | | | 5 | 12 | i | 12 | | | | | | 401
418 | | | CLEAR STA A | AFS
WBAS | 62 13N
60 30N | 149 05H
145 30H | 537 | | | | 11 | | | 11 | | | | 52 | 53 | | | li | 25 | 408 | | | CRAIG | A | 55 29N | 133 D9W | 44
13 | | 5 5 | 5 5 | l 5 i s | 1 1 | 5 5 | | | | 12 | 12 | | | | | | 3410
317 | | ļ | CROOKED CREK
CURRY | A | 61 52N
62 37N | 158 15W | 125
556 | 5 5 | 5 5 | 5 5 | 5 ! | 5 5 | 5 5 | 5 5 | • | | İ | | | l | | | | 518 | | | DAVIS
DUTCH HARBOR | AFB | 51 53N | 176 38H | 15 | | 1 1 | 1 1 | 1 2 | 1 1 | | | | | | 62 | 62 | | 11 | | | 701 | | 1 | EAGLE | SA
A | 53 53N
64 46N | 166 32H | 906
906 | 5 5 | 5 5 | 5 5 | 5 | 5 5 | 5 5 | | | | | | | i | | | | 614
422 | | | EJELSON
ELDRED ROCK | AFB
CG | 64 39N
58 58N | 147 04W
135 13W | 547
54 | 1 1 2 | 1 1 | 1 1 | 1 : | 1 1 | 1 1 | 1 1 | ı | Ī | ŀ | 62 | 62 | | 10 | | 26 | 407 | | | ELMENDORF | AFB | 61 15N | 149 484 | 192 | 1 | 1 1 | 1 1 | 1 2 | 1 1 | | | | | | 03
62 | 62 | | 11 | | | 318
401 | | | FAIRBANKS
FAREWELL | ₩BAS
CAA | 64 50N
62 32N | 147 43W | 442
1503 | 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | | | 12 | 12 | 12 | 12 | | } | | 411 | | | FIRE ISLAND
FIVE FINGER | AFS | 61 09N | 150 14W | 50 | 5 5 | i 5 | 5 | | | | 11 | | | ı | 54 | 54 | | | | | 518
507 | | 1 | FLAT | CG
A | 57 15N
62 27N | 133 37W | 30
326 | 3 3 | 3 3 | | 3 3 | 4 4 3 | | | : | | | 12 | İ | İ | | | | 319
520 | | İ | FORT YUKON
GALENA | CAA
WBAS | 66 35N
64 43N | 145 18W
156 54W | 425
139 | 6 6 | 5) 6 <u>}</u> | 6 6 | 6 6 | 3 6 E | 6 6 | 6 6 | 3 | | | 12 | | | | | 26 | 413 | | | GAMBELL | HBAS | 63 51N | 171 36H | 32 | 1 1 1 | 1 1 | 1 1 | 1 1 1 | 1 1 | 1 1 | | | | 12 | 12 | l | 12 | | | | 509
703 | | | GUARD ISLAND | CG | | | 20
1579 | 1 1 | 1 1 | | | 11 | | | 1 | | 1 | 12 | | | i | | | 320
425 | | - 1 | GUSTAVUS
HAINES | CAA | 58 25N | 135 42H | 29 | 1 1 | 비기 | 1 1 | 1 1 1 | 1 1 | 1 1 | 1 1 | ١ | | | 12 | ŀ | i | | | 25 | 322 | | | HOMER | CAA | | 151 30H | 25 <i>7</i>
73 | 1 1 | ı 1 | 1 1 | 1 1 1 | 1 1 | | | | 12 | | 12 | | | | | | 323
507 | | | HUGHES
IL IAMNA | A
CAA | | | 545
152 | 6 6 | 6 | 6 6
1 1
1 1 | 6 6
1 1 | 6 1 | 1 1
6 6
1 1 | 5 6 | | | | 12 | - 1 | - 1 | ı | | 26 | 522 | | 1 | JUNEAU
KENAI | WBAS
CAA | 58 22N | 134 35H | 22 | 1 1 1 | 1 1 | | 1 1 1 | ı 1 | 1 1 | 1 1 | | 1 | I | 12 | 12 | 12 | | - | | 506
309 | | | KETCHIKAN | SAWR | 60 34N
55 20N | | 91
D | 1 1
5 5 | | 1 1 5 5 | 5 9 | | 5 5 | 5 5 | ; | | | 12
01 | | ſ | | İ | | 523
325 | | | KODIAK
KOTZEBUE | NAF
WBAS | 57 45N
66 52N | | 112
20 | 1 1 1 | | 1 1
1 1 | | 1 1 | 1 1 | 1 1 | | | اء، | | | | | Ì | 259 | 501 | | | LADD | AAB | 84 51N | 147 35H | 454 | 1 1 | 1 1 | 1 1 |] 1 1 | ılıl | 1 1 | 1 1 | | ļ | 12 | 12
62 | 62 | | 10 | | | 616
403 | | | HANLEY HOT S | CG
A | 56 03N | | 25
325 | 5 6 | | 6 6 | | SI 61 | 6 6 | | | 1 | Į | 12 | | | 1 | | | 326
524 | | - | MCGRATH
MIDDLETON IS | HBAS
CAA | 62 58N
59 28N | | 341
45 | 1 1 | 1 1 | 1 1 | 1 1 | 1 | 1 1 | 1 1 1 | | - | 12 | 12 | | - 1 | | | 269 | 510 | | - 1 | MINCHUMINA | CAR | 63 53N | 152 17W | 701 | 1 1 | 1 | 1 1 | 1 1 | 1 | 1 1 | | | 17 | | 12 | ı | l | | | | 402
512 | | 1 | MOSES POINT | CAA
SA | 64 42N | | 21
44 | 1 1 | 11 | 1 1 | 1 1 | 1 | 1 1
3 3 | | | | - | 12 | İ | | ļ | ĺ | 260 | 620 | | | NAKNEK
NENANA | AFB
CAA | 58 41N | 156 39W | 49 | 1 1 | | 1 1 | 1 1 | | 1 1 | 2 1 | | 1 | | 62 | 62 | | 12 | | | 621
503 | | | NGME | ₩BAS | 54 33N
64 30N | | 354
15 | $\begin{vmatrix} 1 \\ 1 \end{vmatrix}_1$ | | 1 1 | 1 1
1 1
1 1 | 1 1 | 1 1 | | | | 12 | 12 | 12 | 12 | l | - | | 435
617 | | 1 | NORTH DUTCH
NORTHHAY | CAA
HBAS | 60 46N
62 57N | | 39
1718 | 6 6
1 1 | | 5 6 | 6 6 | | | | | - [| 12 | 12 | | | - | İ | 264 | 436 | | - 1 | NUNIVAK
PALMER | SA | 60 23N | 166 12H | 50 | | 3 | 3 3 | 3 1 | | | 3 3 | | 2 | 16 | 12 | | | | | | 4 12
622 | | | PETERSBURG | CAA | | 149 06W | 300
111 | 1 1 | 1 | 1 1 | 1 1 | | 1 1 | 3 3 | 1 | | | 12 | | - 1 | ł | | 25: | 331
329 | | | PLATINUM
POINT
BARROW | CAA | | 161 47W | 20
11 | 6 6
1 1 | | 5 6
1 1 | | | 6 6 | 6 6 | | | 1 | 12 | l | | | ı | 256 | 613 | | | POINT HOPE | Α | 68 20N | 156 48H | 14 | 4 4 | | 4 4 | | | 4 4 | 4 4 | 1 | 2 | | 12 | | | 1 | | | 504
523 | | | POINT LAY | SA
CAA | | 163 03W | 16
102 | 1 1 | 1 | 1 1 | 1 1 | 1 | 1 1 | 1 1 | | 0 | | 10 | ł | | | | | 624
50 8 | | - 1 | PT RETREAT PUNTILLA | CG | 58 25N
62 06N | 134 57H
152 45H | 20
1837 | 4 4
6 5 | | 4 4
6 6 | 4 4 | | 4 4
5 5 | 6 6 | ĺ | | | | - 1 | | | - 1 | 250 | 330 | | 1 | SAVOGNGA | A | 53 41N | 170 26W | 35 | 3 3 | 3 | 3 3 | 3 3 | 3 | 3 3 | 3 3 | 1 | | | 10 | | | | - 1 | 269 | 526 | | | SEMARD
SHEEP MTN | A
CAA | | 149 27H
147 41H | 76
2316 | 6 6 | | 6 6 | 3 3
6 6
1 1
1 1 | | 5 5 | 6 6
1 1 | | | 1 | 12 | l | | | | | 438
438 | | | SHEMYA
SHISHAREF | AF8
SA | 52 43N
66 14N | 174 06E
166 07H | 132
16 | 1 1
5 5 | 1 5 | 1 1
1 1
5 5 | 1 1 | 11 | 1 1 | 1 1 | 1 | | ŀ | 62 | 59 | | 12 | | 457 | 708 | | 1 | SHUNGNAK | CAA | 66 54N | 157 024 | 138 | 6 6 | 6 | 6 6 | 5 5
6 6
5 5
1 1 | 6 | 5 5
6 6 | 5 5 | | | | 12 | | ļ | - 1 | | | 525
513 | | | SISTER IS
SITKA | CAA | | 135 15W | 35
66 | 5 5 | 5 | 5 5
1 1 | 5 5 | | 5 5
1 1 | 5 5
1 1 | | | ł | 12 | | 1 | 1 | | 253 | 341 | | | SKAGWAY
SKWENTNA | A | 59 27N | 135 19W | 18 | 5 5 | 5 | 5 5 | 5 5 | 5 | 5 5 | 5 5 | 1 | | | | ŀ | 1 | | 1 | 253 | | | | ST PAUL IS | ₩BAS | 57 09N | 151 12H | 153
28 | 1 1 | | 1 1 | 1 1 | 1 | 1 1 | 1 1 | 1 | | 12 | 12 | 12 | | | | 265
257 | 514
713 | | [| STAMPEDE
STONY RIVER | SAHR
SA | 63 44N
61 46N | 150 22#
156 38# | 2500
221 | 4 3
5 5 | | 5 5 | 5 5 | 5 | 5 5 | | Ι. | , [| - |] | | | - 1 | | | | | | TIMMUZ | CAA | 63 20N | 149 OBH | 2407 | 1 1 | 1 | 1 1 | 1 1 | 1 | 1 1 | 1 1 | 1 | 1 | | 11 | | | f | | 265
264 | | | | TALKEETNA
TANACROSS | | | 150 05W | 351
1546 | 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | | 1 | | 12 | | | 1 | | 269
264 | 528 | | | TANALIAN PT | | 60 13N | 154 22H | 308
240 | 5 5
1 1 | 5 | 5 5
1 1 | 5 5 | 5 | 5 5 | 5 5 | 1 | | | 10 | | | J | | 269 | 531 | | | TELLER | A | 65 16N | 166 21W | 10 | 5 5 | 5 | 5 5 | 5 5 | 5 | 1 1
5 5 | | | | | 12 | | 1 | | | 265
265 | | | 1 | TENAKEE
THORNBROUGH | | 55 12N | 135 12W | 19
98 | 5 5 | 5 | 5 5
1 1 | 5 5 | 5 | 1 1 | 1 1 | | | | 62 | 62 | 1 | 12 | | 253 | 336 | | | TREE POINT | | | 130 564 | 36 | 4 4 | | 4 4 | 1 1 | 4 | 4 4 | 4 4 | | | | 15 | - | | ** | | 256
253 | | | • | • | • | 1 | 1 | ' | ' | | | ı | 1 1 | 1 | | 1 | 1 | 1 | ' | ı | ı | 1 | ı | 1 | | | \sim | 1 | $\overline{}$ | | 1 | $\overline{}$ | |--------|---|---------------|---|---|---------------| | м | L | н | J | n | н | | | ALAS | KA | | | | | | | | | | | | | | | | | NL | | OF | MONT | | | AR HI | ТН | |------|--|---------------------|----------|-------------------|-------------------|-------------------|----------------------------|-----|-----------------|-------------------|------|------------|-------------------|--------|-----|-------------------|-----|------------|--|----------------|---------------------------------------|--|-----|--|-------|-------------------------| | | | | | | | | | | | | | | | | | NTH | | / | (· | / ,/ | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Tales Separate Separa | / 3 | La Constitution of the Con | | / § **/ | | YEAR | NAME | TYPE | -} . | AT. | ا ا | NG. | ELEV. | | | | . 1 | | PE | | | a. In | . / | 8 | 2. 1 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. | | | | | | | HBAN | | 1948 | UMIAT | HBAS | 1 | 22N | | 0814 | 337 | 1 | 1 | }- | + | Н | 4 | 1 1 | Н | 1 1 | Τ. | ? ~ | /= | 12 | <u> </u> | / ` | 7 * | 7 . | ~ | NUMBER
26508 | | | UNALAKLEET
VALDEZ | CAA | 63 | 53N
07N | 160 | 48H | 21
15 | 1 | | 1 1 | | 1 | 1 . | 1 1 | 1 | 1 1 | ١ | | | 15 | | | | | | 26527
26442 | | | MAINWRIGHT
MALES | | 65 | 37N
37N | 168 | | 29
18 | | 5 | 1 5 | | 5 | 5 3 | 5 5 | 5 | 5 5 | | 12 | | 12
12 | | | | | | 27503
26618 | | | WISEMAN
WRANGELL | A | 56 | 26N | 132 | 13M
23M | 1290
43 | 5 | 5 | 5 5 | 5 5 | 5 | 5 9 | 5 5 | 5 | | ; | 12 | | 12 | | | | | | 26511
26338 | | | YAKATAGA
YAKUTAT
YAKUTAT | AAF
HBAS | 59 | 05N
31N
31N | | 40H | 33
31
31 | | 1 | 1 1 | 1 1 | 1 1 | 1 | 1 | 1 1 | 1 1 | 1 | | 05 | 57
55 | 57
05 | | | | | 26445
25302
25339 | | 1949 | AMCHITKA IS
ANCHORAGE | AF8
HBAS | | 24N
13N | | 18E
504 | 202
141 | l i | ı | 1 | 1 | 1 | 1 | | 1 | 1 1 | 1 | | | 62
12 | 62
12 | 12 | | | | 45702
26409 | | | ANGOON
AN I AK | A
CAA | 61 | 31N
35N | 159 | 35H
32H | 14
91 | 1 | 5 | 5 5
1 1 | 5 | 5 | 5 5 | 5 5 | | 5 5 | | | | 12 | | | | | | 25310
26516 | | | ANNETTE
ASI TANAGA | NS NS | 51 | 02N
40N | 131
178 | 34H
00H | 113
148 | | | 1 | | | 1 | | | 1 | | | | 12 | | | | | | 25308
25709 | | | ATKA ISLAND
ATTU
BARROW | NS
NS | 52 | 13N
50N | 174 | 12H
11E | 36
91 | 1 | 1 | 1 1 | 1 1, | 1 | | 1 1 | 1 | 1 1 | | | | 61 | 61 | | | İ | | 25708
45709 | | | BARTER IS
BETHEL | AFB
WBAS | | 18N
08N
47N | 156
143
151 | 47H
36H
43H | 29
40 | | | | 1 | | 1 1 | 1 1 | | 1 1 | | | | 12
62 | 12
62 | 12 | | | | 27502
27401 | | | BETTLES
BIG DELTA | CAA | 66 | 54N
00N | 151 | 43H
44H | 15
855
1275 | 1 | | 1 1 | 1 | | 1 1 | | | 1 1 | | ļ | | 12
12
12 | | | | | | 26615
26517
26415 | | | BOUNDARY
CANDLE | A | 54 | 04N
56N | 141 | 07W | 2600
24 | | 5 9 | 5 5 | 5 | 5 | 5 6 | 5 5 | 5 | 5 5 | - | | | 12 | | | | | | 26416
26619 | | | CAPE DECISIO | AFB
CG | 56 | 23N
00N | 167
134 | 54H
08H | 131
50 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 1 | 1 | 1 1 | | 12 | |
62
12 | 62 | | | | | 25602
25315 | | | CAPE HINCHIN
CAPE SPENCER
CAPE ST ELIA | CG | | 14N
12N
48N | | 39H
36H | 185
88
58 | 6 | | 4 4
6 6
4 4 | | 6 | 6 6 4 | 6 6 | 6 | 4 4
5 6
4 4 | 1 | 2 | | 12
12 | | | | | | 25417
25316
25401 | | | CENTRAL
CORDOVA | A
WBAS | | | 145 | 48H
30H | 870
44 | 5 | 5 ! | 5 5 | 5 | 5 | 5 5 | 5 | 5 | 5 5 | 1 | Í | | 12 | | | | | | 26418
26410 | | | CRAIG
CROCKED CREK
DAVIS | A
A
AFB | 51 | | 133 | 15H | 13
125 | | | 5 5 | | | 5 5 | | | 5 5 | | | | 12 | | | | | | 25317
26518 | | | DUTCH HARBOR
EAGLE | SA
A | | 53N
53N
46N | | 32W
12W | 15
22
806 | 5 | 5 9 | 1 1
5 5
5 5 | 5 | 5 | 1 1
5 5
3 3 | 5 | 5 | 1 1
5 5
3 3 | | | | 62 | 62 | | 11 | | | 25701
25614 | | | EIELSON
ELDRED ROCK | AFB
CG | 64 | | 147 | 04H | 547
54 | 1 | 1 : | 1 1 | 11 | 2 | 1 1 | 1 | 1 | 1 1 1 | | ı | | .62 | 62 | | 12 | | | 26422
26407
25318 | | | ELMENDORF
FAIRBANKS | AFB
HBAS | 61 | 15N
50N | 149 | 48µ
43µ | 192
442 | 1 | | | i | | i i | | | i | | | | 62
12 | 62
12 | 12 | 12 | | | 26401
26411 | | | FAREWELL
FIVE FINGER | CG | 57 | 32N
16N | 133 | 54H
37H | 1503
30 | 1 4 | | 1 1 | | | 1 1
4 4 | | | 1 1 | | İ | | 12 | | | | | | 26519
25319 | | | FLAT
FORT YUKON | CAA | 66 | 27H
35N | 145 | 18W | 326
425 | | | 5 6 | | | 6 6 | | 6 | 3 3
5 5 | | | | 12 | | | | | | 26520
26413 | | | GALENA
GAMBELL
GUARD ISLAND | HBAS
HBAS
CG | 63 | 43N
51N
27N | 171 | 54H
36H
53H | 125
32
20 | 1 | 1 1 | | 1 | 1 | 1 1
1 1
4 4 | 11 | 1 | 1 1 | 1 | - | | 12
12 | | 12 | | |] [| 26508
26703 | | | GULKANA
GUSTAVUS | CAA | 62 | 09N
25N | 145 | 27H
42H | 1579
29 | 1 | 1 1 | | 1 | 1 | 4 4
1 1
1 1 | 1 | 1 | 1 1 1 1 | | | | 12
12 | | | | | | 25320
26425
25322 | | | HAINES
HOMER | CAA
CAA | | 13N
38N | 135 | 26W | 257
73 | 1 | 1 1 | 1 1 | 1 | 1 | 1 1 | 2 | 1 | 1 1 | 1 | 2 | | 12 | | | | | | 25323
25507 | | | HUGHES
IL IAMNA | A
CAA | 59 | 45N | 154 | 14H
55H | 545
152 | 1 | , , | 1 1 | 1 | 1 | 1 1 |] , | 1 | 1 1 | | | | 04
12 | | | | İ | | 26522
25506 | | ĺ | JUNEAU
KENAI | CAA | 60 | 22N
34N | 151 | 35₩
15₩ | 91
22 | 1 | 1 1 | 1 | 1 | 1 | 0 0 | 1 | 1 | 1 1 | 1 | | | 12 | 12 | 12 | | | | 25309
26523 | | | KETCHIKAN
KBDIAK
KBTZEBUE | SAWR
NAF
WBAS | 57 | 20N | 152 | 34W
30H
38H | 112 | 1 | 1 1 | 1 1 | | 1 | 5 5 | 1 | 1 | 5 5 | | | | | | | | | | 25325
25501 | | | LADD
LINCOLN ROCK | | 64 | 51N | 147 | 35H
46H | 20
464
25 | 1 | 1 1 | | | 1 | 1 1 | 1 | 1 | 0 0
1 1
4 4 | | | | 12
62
12 | 61 | | 12 | | | 26616
25403 | | | MANLEY HOT S
MCGRATH | A
HBAS | 65 | DDN | 150 | 39H
37H | 325
341 | 6 | 6 6 | 5 6 | 5 | | 6 6 | | 6 | 6 6
0 0 | | ł | | 12 | | | | | | 25326
26524
26510 | | | MCKINLEY PRK
MIDDLETON IS | A
CAA | 63
59 | 43N
28N | 146 | 58H
19H | 2092
45 | 1 | 1 1 | 1 | 1 | - 9 | 5 5
1 1 | 5 | 5 | 5 1 | | | | 12 | | | | | | 26429
25402 | | | MINCHUMINA
MOSES POINT | CAA | 64 | 53N
42N | 162 | 17₩
03₩ | 701
21 | 1 | 1 1 | 1 1 | 1 | 1 | 1 1
1 1 | | | 1 1 | | - | | 12
12 | | | | | | 26512
26620 | | | MT VILLAGE
NAKNEK
NEMAMA | SA
AFB
CAA | 58 | 41N | 156 | 45H | 49 | 1 | | 1 | 1 | | | | | 1 1 | 1 | 1 | | 11
62 | 62 | | 12 | | | 26621
25503 | | | NOME
NORTH DUTCH | HBAS
CAA | 64 | 30N
46N | 165 | 25H
26H
48H | 364
.15
39 | | 1 1
1
6 6 | | 1 | | 1 1
5 5 | | 1 | 1 1
1 1
6 6 | | | | 12 | 12 | 12 | | | l | 26435
26617 | | | NORTHWAY
NUNIVAK | WBAS
SA | 62 | | 141 | | 1718 | | 1 1 | 1 | 1 | | 1 1 | 1 | 1 | 5 5
1 1
3 3 | 1 | | | 12 | | | | | | 26436
26412 | | | NYAC
PALMER | SAWR
A | 61 | | 159 | 59H
08H | 450
300 | 3 | 3 3 | | | - [- | 4 4 | 3 | 4 | 3 3 | 1 | | | | | İ | | | | 26622
26525
25331 | | | PETERSAURG
PLATINUM | CAA | 56
59 | 49N | 132 ·
161 · | 57W
47W | 111 | 5 | 1 1
5 6 | 1
6 | 5 | 1 2
5 6 | 1 1 | 1
6 | 6 | 1 1 | | | | 12
12 | | | | | | 25329
25613 | | | POINT BARROW
POINT HOPE | CAA
A | 68 | | 166 | 39H
48H | 11 | 1 . | 1 1 | 1 | 1 | 1 1 | | 1 | 1 4 | 1 1 | 1 | | | 12
12 | | | | | | 27504
26623 | | | POINT LAY PORT ALEXAND PORT HEIDEN | SA
A
CAA | 56 | 15N | 134 | 39H | 18 | | | | | | 5 5 | | 5 ! | 3 3 | 1 | 2 | | 12 | | | | | | 25624
25348 | | | PT RETREAT PUNTILLA | CG
A | 58 | 25N | 134 | 37W
57W
45W | 102
20
1 83 7 | 6 6 | 1 1
5 6 | IJ | 4 | | 1 1 | 4 | 4 | 1 1 | | | | 12 | | | | | | 25508
25330 | | | SAVOONGA
SEHARD | A | | 41N | 170 | 26H
27H | 35 | 4 4 | 4 4 | 4 | 4 | 6 E | | | 1 | 5 6 | | | İ | 05
12 | | | | | | 26526 | | | SHEEP MTN
SHEMYR | CAA
AFB | 61 | 48N | | 41 W | 2315
132 | 1 1 | 1 1
1 1 | 1 | 1 | 1 1 | 1 1 | 1 | 1 . | 1 1 | | | ļ | 12 | 62 | | 12 | | | 26438
26439
45708 | | | SHISHAREF
SHUNGNAK | SA
CAA | 66
66 | 14N | 166 (
157 (| 07H | 16
138 | | 5 S | | 5 | 5 5
6 6 | 5 5 | 5 | 5 9 | 5 5 | | | ļ | 12 | - | | | | | 26625
26513 | | | + | į | | - 1 | | ı | i | t | 1 | ıl | 1 | 1 | 1 | ı I | | 1 | 1 | - 1 | - 1 | | - 1 | | - 1 | - 1 | - 1 | | | | ALASI | | | | | | | | | | | NUMBER OF MONTHS IN YEAR WITH | | | | | | | | тн | | | | |------|--|--
--|---|--|---|--|--|--|---|--|---|---|--|-------------|--------|--|--|--|----------------|----------|------------|---| | | | | | | | нои | RLY | RE | ECOF | RDS | BY | MO | NTH | ı | / | /. / | ′ / | / 2 / | September 19 19 19 19 19 19 19 19 19 19 19 19 19 | /
e./ | / ./ | ,
4.e-/ | | | | | | | | | 1 | # | 24 | 089 | 5 P(| ER (| DAY | | | ŝ | Z /~ . | | ST. L. | | \$\\
\$\\\$ | , | | MBAN | | YEAR | NAME | TYPE | LAT. | LONG. | ELĒV. | J | H | A | нJ | | A S | 0 | N I | 0 | S S | | 1 | / * * | 15.4 | | | / & | NUMBER | | 1949 | SISTER IS SITKA SITKA SKAGUAY SKAGUAY SKAGUAY SKAGUAY STONY RIVER SUMMIT TALKEETNA TANACROSS TANANA TELLER TENAKEE THORNBROUGH TREE POINT UMIAT UNAL AKLEET VAL DEZ LIA INHRIGHT HALES | | 61 46N
63 20N
62 16N
65 10N
65 10N
57 47N
55 12N
60 22N
60 57N
70 37N | 135 15H
135 21H
135 19H
135 19H
170 13H
170 13H
156 38H
150 06H
152 06H
152 08H
152 08H | 36
66
18
153
28
221
240
351
1546
240
10
18
99
36
337
21
15
15 | 5 1 1 1 1 5 5 | 61151 5111 55141 5555 | 1
5
1
1
1
1
1
5
5
1
1
1
1
5
5
1
7
5
7
7
7
7 | 5 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 15105111155141155 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 15105111155141155 | 5151051111551411555 | 12 | | 12
12
12
12
12
12
12
12
12
12
12
12
12 | 12
62 | | 12 | | |
25341
25333
25335
26514
25713
26527
26414
26529
26440
26529
26526
25336
25337
26503
25337
26503
26327
26442
27503
2618 | | | HISEMAN
HRANGELL
YAKATAGA
YAKUTAT | A
A
CAA
MBAS | 67 26N
56 28N
60 05N | 150 13W
132 23W | 1290
43
33
31 | 5 | 6 6
5 5
1 1 | 5 | 6 6
5 5
1 1 | 5 5 | 5 5 | 5 6
5 5
1 1 | 5 | 6
5
1 | 12 | | 10
12 | 12 | | | | | 26511
25338
26445
25339 | | 1950 | YAKATAGA | | 55 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 142 30M
178 30E
178 30E
149 50H
134 35H
131 32H
131 32H
131 32H
131 32H
131 32H
131 32H
131 33H
131 33H
131 33H
134 30H
135 30H
136 39H
136 39H
137 31H
138 39H
138 39H
138 39H
138 39H
139 39H
131 39H | 33
31
15
202
141
141
91
153
90
16
855
26
1275
2600
24
131
505
185
58
870
44
131
125
23
22
806
547
547
547
547
547
547
547
547
547
547 | 1 1 1 1 1 1 5 1 5 4 6 5 5 5 5 1 5 5 1 4 1 1 4 3 6 1 1 5 1 1 | 11 1 51 1111 1155154655 551 55141 14 | 1 1 51 101 1155154655 551 55141 143611511 | 11 1 51 101 1155154655 561 55141 142611511 | 1 1 51 101 1155154655 55 5 5 141 1475 | 11 11 51 101 1155154665 55 5 141 143611511 | 1 1 0 1 1 1 5 1 1 1 0 1 1 1 1 5 5 1 5 4 6 5 5 5 5 5 5 5 5 1 4 4 1 1 1 4 4 3 | 10 11 51 3101 1155154655 55 55141 143611511 | 10 1 51 3101 115 54655 55 156141 143611511 | 15 15 15 15 | | | 12
60
12
55
51
62
62
12 | 12 | 01 | | | | | | HATTER HOMER HOMER HUGHES ILIAMMA JUNEAU KENAI KETCHIKAN KODIAK KOTZEBUE LADD LINCBLN ROCK MANLEY HOT S MCGRATH HIDDLETON IS MINCHUMINA MOSES POINT MT VILLAGE MAVNEK NENANA NOME NORTH DUTCH NORTHHAY NUNIVAK NYAC PALMER | THE AREA SECTION OF THE STREET | 59 36N
66 04N
58 45N
68 22N
60 34N
60 34N
60 35N
64 51N
66 03N
66 | 151 30H
154 14H
154 55H
154 35H
151 35H
151 39H
152 30H
152 30H
152 30H
152 30H
152 37H
152 37H
153 37H
156 39H
156 39H
157 39H
158 39H
158 39H
149 39H | 73
545
152
22
91
0
112
20
464
25
3341
45
701
21
44
49
364
49
15
39
1718
50 | 1 0 1 5 1 0 1 4 6 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 11 | 1 101510246022224 111523 | 10015101460011144 | 1 | 1 10 15 10 14 60 11 11 51 13 3 | 1 | 1
1
0
1
5
1
0
1
4
6
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 1
1
0
1
5
1
1
4
6
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 05
05 | | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | 52
12 | 12 | 12 | | | 25527
26522
25508
25309
26523
25325
25501
26616
26616
26624
26510
26620
26620
26620
26620
26621
26621
26621
26621
26621
26621
26622
26622
26622
26525
26627
26620
26627
26627
26628
26627
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638
26638 | | | ALAS | KA | | | | | | | | | | | | | | N | UMBER | 0F | MONT | HS II | N YEAR | HITH | |------|--|--|--|---|--|---|------------------------|---|--------------------------|-----------------------------------|--|--|--|---------------------------|----|----|--|--|-----------|--------------------|---|--| | | | | | | | н | OURLY RECORDS BY MONTH | | | | | | / | / | 10 | 18 | / | / / | | | | | | | | | | | | | 1 : | 2 | 1 08 | 35 | PER | DE | ΙY | | /5 | Ž/ | / <u>*</u> | | | 4.5 ² / | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | S HBAN | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | J | F | н а |]n | ۱ د | ı a | s | 0 N | (D | 1 | | Se S | The state of s | I P. I.P. | | (| HBAN
NUMBER | | 1950 | PLATINUM PGINT BARROW PGINT HGPE PGINT LEY PGRT ALEXAND PGRT HEIDEN PT RETREAT | A
CAA
A
SA
A
CAA | 59 01N
71 20N
68 20N
69 45N
56 15N
56 57N
58 25N | 156 39W
156 48W
163 03W
134 39W
158 37W
134 57W | 20
11
14
18
18
102
20 | 4 2 4 4 4 | | 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 1 3 5 1 4 | 5 1 4 | 4 4
3 3
5 5
1 1
4 4 | 1
4
3
5
1
4 | 1
4
3
5
1 | 5 6 1 1 4 4 3 3 5 5 1 1 5 | 12 | | 12
12
12
11 | | | | | 25613
27504
26623
26624
25348
25508
25330 | | | PUNTILLA
SEMARD SHEEP MTN SHEMYA SHISHAREF SHUNGNAK SISTER IS SITKA | A
CAA
AFB
SA
CAA
A | 62 06N
60 07N
61 48N
52 43N
66 14N
66 54N
58 10N
57 04N | 148 27H
147 41H
174 06E
166 07H
157 02H
135 15H
135 21H | 1637
76
2316
132
16
138
35
68 | 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5 5 | 6 6 6 6 1 1 1 1 5 5 5 6 5 5 1 1 | 6
1
5
6
5 | 6 (
1
5 (
5 (
1 | 6 6
6 6
1 1
5 5
6 6
5 5 | 5
5 | 6 6
1 1
5 5
5 5 | 5 6 6 1 1 1 5 5 5 5 5 1 1 | | | 12
12
62
11
10 | 62 | | 12 | | 26526
26438
26439
45708
26525
26513
25341
25333 | | | SKAGHAY SKHENTNA ST PAUL IS STONY RIVER SUMMIT TALKEETNA TANACROSS TANANA TELLER | A
CAA
WBAS
A
CAA
CAA
CAA | 61 46N
63 20N
62 18N
63 24N
65 10N | 170 13W
156 38W
149 08W
150 06W
143 19W
152 06W | 18
153
28
221
2407
351
1546
240 | 9 | 1 1 1 1 1 1 | 5 5 5 5 5 5 1 1 1 1 1 1 1 1 | 1
5
1
1 | 1 : 0 (5 : 1 : 1 : 1 : 1 : 1 : 1 | 5 5 5 5 5 1 1 1 1 1 1 1 | 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 | | | 12
12
12
12
12
08 | 12 | | | | 25335
26514
25713
26527
26414
26528
26440
26529 | | | TENAKE THORNBROUGH TREE POINT UMIAT UNALAKLEET VALDEZ WAINWRIGHT | A
AFB
CG
WBAS
CAA
A
SA | 63 53N
61 07N
70 37N | 135 12W
162 43W
130 56W
152 08W
160 48W
146 16W
160 04W | 10
19
99
36
337
21
15 | 11 11 11 11 11 11 11 11 11 11 11 11 11 | 1 1 5 5 | 5 5 5 1 1 4 4 1 1 1 5 5 5 5 | 5 1 4 1 1 5 5 | 1 1
5 5
5 5 | 1 1 1 1 5 5 5 | 5 1 4 1 1 5 5 | 5 5
1 1
4 4
1 1
1 1
5 5 | 1 4 1 1 5 5 | 12 | | 62
05
12
12 | 62 | | 12 | | 26626
25336
25603
25337
26508
26527
26442
27503 | | 1951 | WISEMAN
WRANGELL
YAKATAGA
YAKUTAT
ADAK | WBAS
A
CAA
WBAS | 67 26N
56 28N
60 05N
59 31N
51 53N | 150 13H
132 23H
142 30H
139 40H | 18
1290
43
33
31 | 5
5
1
0 | 5
1 | 5 5
5 5
1 1
0 0 | 5
1
0 | | 5 5 | 5 | 5 5 | 5 | 05 | | 12
05
12
12 | 12 | | | | 26618
26511
26338
26445
25339 | | | ANCHORAGE
ANGOON
ANIAK
ANMETTE
ATKA
ATTU
BARROW | HBAS
CAA
HBAS
SAHR
NS
HBAS | 61 13N
57 31N
61 35N
55 02N
52 10N
52 50N
71 18N | 174 12W
173 11E | 141
14
91
113
50
91 | 5
1
5 | 5 | 1 1
4 4 | 11 | 3 4 | 1 | 5 1 | 1 1 | 1 | | | 12, | 12 | 12 | 12 | | 26409
25310
26516
25308
25716
45709 | | | BARTER IS BETHEL BETTLES BETTLES BIG DELTA BOUNDARY CAPE DECISIO | AFB
WBAS
CAA
CAA
CAA
A | 70 08N
60 47N
66 55N
66 54N
64 00N
64 04N
56 00N | 143 36W
161 43W
151 31W
151 43W
145 44W
141 07W
134 08W | 40
15
672
855
1275
2600 | 1 1 5 5 | 1
1
5
5 | 1 1
1 1
5 5
5 5 | 1 5 5 | 1 1
1 1
1 1
5 5 | 1 1 5 5 | 1 : 5 : | 1 1 | 1
1
1
5 | 12 | | 12
12
12
09
03
12 | 09 | 12 | | | 27502
27401
26615
26533
26517
26415
26416
25315 | | | CAPE HINCHIN CAPE SPUNCER CAPE ST ELIA CENTRAL CBRDBVA CRAIG CROOKED CREK DILLINGHAM | CG
CG
CG
ABAS
ABAS
ABAS | 65 35N
60 30N
55 29N
61 52N | | 185
88
58
870
44
13
125 | 6 5 5 5 | 5 | 4 4 6 5 5 5 5 5 5 5 5 5 5 | 5 5 | 4 4
6 5
5 5
5 5
5 5 | 5 | 5 5 | | 6
5 | 12 | | 12
12
12 | | | | | 26417
25316
25401
26418
26418
26317
26518
25513 | | | DUTCH HARBOR EAGLE | AFS
A | 53 54N | 156 32H
141 12H | 23
836 | 1 5 | | 1 1
5 5 | | 1
5 5 | | 1 1 | | 1 | | | 12 | 12 | l | | | 25620
26422 | | j | EJELSON
ELDRED ROCK | AFB
CG | | 147 04H
135 13H | 547
54 | 1 | 1 | 1 1
4 4 | 1 | 1 1 | 1 | 5 5
1 1
4 4 | 1 | 1 | | | 12 | 15 | . | 12 | | 26407
25318 | | | ELMENDORF
FAIRBANKS
FAIRBANKS
FAREHELL
FIVE FINGER
FLAT | AFB
HBAS
HBAS
CAA
CG | 64 50N
62 32N
57 16N | 147 52H
147 43H
153 54H
133 37H | 192
443
442
1503 | 1 4 | 1 4 | 1 1 | 1 4 | 1 1 | 1 | 1 1 | 1 1 5 | 1 1 5 | | | 12
04
00
12 | 12
04
08 | oe. | 12 | | 26401
26411
26411
26519
25319 | | | FORT YUKON GALENA GAMBELL GUARD ISLAND GULKANA | CAA
WBAS
WBAS
CG
CAA | 66 35N | 131 53W | 326
425
125
32
20
1579 | 3
5
1
5 | 6 !
1
1
5 ! | 3 3
5 5
1 1
1 1
5 5 | 6 !
1 : | 3 3
5 6
1 1
1 1
5 5 | 5
1
1 | 3 3
6 6
1 1
1 1
5 5
1 1 | 1 1 5 | 6
1
1
5 | | | 12
12
12 | | 06 | | | 26520
26413
26509
26703
25320
26425 | | | GUSTAVUS
HAINES
HOMER
ILIAMNA
INDIAN MTN | CAA
CAA
CAA
CAA
AFS | 58 25N
59 13N
59 38N
59 45N
66 03N | 135 42W
135 26W
151 30W
154 55W
153 45W | 29
257
73
152
1075 | 1
1
1 | 1 1 1 | 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 5 | 1 1 1 5 | 1 1 1 1 1 1 1 1 5 5 | 1
1
1
5 | 1 1 1 5 | 12 | | 12
12
12
12 | | | | | 25722
25323
25507
25506
26535 | | | KETCHIKAN
KETCHIKAN
KODIAK
KOTZEBUE
LADD | CAA
SAHR
NAF | 58 22N
60 34N
55 20N
57 45N
66 52N
64 51N | 151 15H
131 34H
152 30H
162 38H | 91
0
112
20 | 5 1 0 1 | 1 :
5 :
1 : | 0 0
1 1
5 5
1 1 | 1 1
5 5
1 1
0 0 | 5 5 | 1
5
1
0 | 0 0
1 1
5 5
1 1
0 0
1 1 | 1
5
1
0 | 5 | | | 12 | 12 | 12 | | | 25309
26523
25325
25501
26616 | | | LINCOLN ROCK MANLEY HOT S MCGRATH MCKINLEY PRK MIDDLETON IS MINCHUMINA | CG
A
HBAS
A
CAA | 56 03N
65 00N
62 58N
63 43N | 132 46H
150 39H
155 37H
148 58H
146 19H | 25
325
341
2092
45
701 | 4
6
0 | 6 6 | 6 6 | 6 6 | 4 4 | 6 0 | 4 4
6 6 | 4
5
0 | 4 6 0 | | | 12 | 11 | | 12 | | 26403
25326
26524
26510
26429
25402
26512 | | | ALASI | | | | | | | | | | | NUMBER OF MONTHS IN YEAR WITH | | | | | | | | | | | | |------|--
--|--|--|--|--|--|--|--|--|--|--|--|--|--------------|--------|--|--|--|--|------------|--
---| | | | | | | | но | URL | Y R | ECO | RD\$ | BY | MÓ | NTH | | / | 4/ | / ./ | /
* / | TALE OF THE SECOND SECO | 1 5 S | /
.s-/. | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | | | _ | | | | | | 1 = | 24 | 08 | 5 P | ER | DAY | , | | /§ | | | Land Services | | | | | WBAN | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | J | F | 1 A | M. | ı l | A S | 5 0 | N O | \angle | <u>ئې دې</u> | 5/ k 3 | / 8 | | /** & | \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | / * * | / ex | | | 1951 | MOSES POINT MT VILLAGE NAKNEK NENANA NOMETH DUTCH NORTH DUTCH NORTHHAY NUMIVAK NYAC PETERSBURG PLATINUM POINT BARROW POINT HOPE POINT HOPE POINT HOPE POINT HERE SISTER IS SITHAR SHEEMYA SKWENTHA SHERMYA SKWENTHA SPARREVBHN ST PAUL IS SITHA STENY RIVER SUMMIT TALKET THE TONY RIVER TONY RIVER TONY RIVER THE | A BARAR I A A AG INA A ASA ARA BARAR A A A AG ARA ARA A A AG ARA A ASA ARA BARAR A A A A A A A A A A A A A A | 64 42N 652 643 643 644 652 644 652 644 652 654 654 654 655 655 655 655 655 655 655 | 162 03W
163 43H
156 39H
149 05H
147 48H
141 56H
148 05H
168 12H
168 12H
168 39H
168 39H
163 03H
164 39H
163 03H
164 25H
164 25H
165 15H
165 15H
174 27H
175 21H
176 06H
155 34H
176 06H
156 12H
176 06H
176 06H
176 06H
176 06H
177 06H
178 38H
179 06H
179 | 21
44
49
364
18
39
1718
50
450
1911
20
111
21
111
14
18
92
20
20
1837
76
2316
25
26
27
27
27
27
27
27
27
27
27
27
27
27
27 | 14
11
14
33
16
15
33
15
66
51
15
51 | 1411 5143316153615665155151 05111551415155 | 14411 5143315153514665155151 | 1411 4143315-63614665+6515151 05 141616565 | 1411 41433151445 4665155151 0 11115 1415155655 | 1411 41433151445 466515515160 1115 141515555 | 1411 414331515454466515515160 1115 1 | 14-1 4-400-0-440000000000000000000000000 | 1911 91933151445555555551551] [[1]5 141515555 | 12 12 12 12 | | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | 12 | 12 | 12 | | | 26620
26621
26621
26523
26435
26435
26417
26436
26412
26522
26525
25331
25329
25513
25526
26526
26526
2638
26438
26526
2638
26438
26526
26336
26526
26336
26438
26526
26336
26526
26337
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26528
26 | | 1952 | ANAMARA YAKUTAT ADAK ANCHBRAGE ANGBON ANIAK ANNETTE BARROH BARTER IS BETTLES BIG DELTA BOUNDARY CAPE LISBURN CAPE LISBURN CAPE LISBURN CAPE SAPENCER CAPE STELIA CENTRAL CORDOVA CRAIG CROOKED CREK DILLINGHAM DUTCH HARBOR DUTCH HARBOR EAGLE EIELSON ELDRED ROCK ELMENDORF FAIRBANKS FAREWELL FIVE FINGER FLAT FORT YUKON GALENA GUSTAVUS HAINES HOMER ILIAMMA GUSTAVUS HAINES HOMER ILIAMMA INDIAN INDIAN KENAI | TOWN THE CHIEFBER S S WE B BEE ARE AREAS A | 80 05N N N N N N N N N N N N N N N N N N | 142 30M
176 39M
176 39M
134 35M
134 35M
156 37M
156 37M
151 31M
151 32M
151 | 33
31
14
141
114
91
113
29
40
155
2600
50
185
67
1758
870
44
13
15
13
15
15
30
30
31
54
42
43
15
31
32
54
42
43
15
32
55
42
55
67
12
55
67
12
55
67
12
55
67
12
55
67
12
55
67
12
55
67
12
55
67
12
55
67
12
55
67
12
55
67
40
12
55
67
12
55
67
12
55
67
12
55
67
12
55
67
12
55
67
12
55
67
12
55
67
12
55
67
12
55
67
12
55
67
12
55
67
12
55
67
12
55
67
12
55
12
55
12
55
12
55
12
55
12
55
12
12
12
12
12
12
12
12
12
12
12
12
12 | 10 | 10 1151 01 11554 655 55 1 5141 1536111511111 | 10 11551 01 115554 5666 55 1 5141 1535111511111501 | 10 1151 01 11554 5655 55 1 5141 14361151111160 | 10 1151 01 11554 5655 553 15141 143611151 | 10 1151 01 1155465655 553 15141 14361151111160 | 10 1151 01 1155465655 553 15141 14361151111160 | | 11151 11155455655 9555
1551 | 12 12 | | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | 12
12
12
12
12
12
12
12 | 12 | 12
12
12
12 | 12 | | 26445
25339
25704
26409
25310
26516
25308
27502
27601
26615
26633
26416
25317
26531
26522
25316
25401
25410
25317
26521
25317
26522
25318
26410
25317
26528
26410
25317
26529
26410
25317
26529
26410
25318
26410
25318
26410
25318
26410
25318
26410
25318
26410
25318
26410
25318
26410
25318
26410
25318
26410
25318
26410
25318
26410
25318
26410
25318
26410
25318
26410
25318
26410
25318
26410
25318
26410
25318
26410
25318
26410
25318
26410
25318
26410
25318
26520
26413
26520
26413
26520
26413
26520
26413
26520
26413
26520
26413
26520
26413
26520
26413
26520
26413
26520
26413
26520
26413
26520
26413
26520
26413
26520
26425
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532
26532 | | | ALASI | | HOURLY RECORDS BY MONTH | | | | | | | | | | NUMBER OF MONTHS IN YEAR WITH | | | | | | | | | | |-----|------------------------------|--------------|-------------------------|--------------------|--------------------|------------|-------------------|-------|------------|------|-------------------|---------|-------------------------------|------------|----------|---|----------|-----------|--------------|--------|---|---------------| | | | | | | 1 = 24 OBS PER DAY | | | | | | | | | 1H | /. | (÷ / | /چو | | 8 / S | J. 3 / | \$ /: | \
\$\$_\$ | | EAR | NAME | TYPE | LAT. | LONG. | ELEV. | 1. | | | | | | | | ılo | 1 | 31. Tal. 12. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15 | | Same Sale | Te La Commis | | 1 (0,000; 10; 10; 10; 10; 10; 10; 10; 10; 10; | | | 952 | KETCHIKAN | SAHR | | 131 34W | 0 | + | 5 5 | + | 5 5 | Н | 5 5 | 5 | , r | ₩. | / | 7 ~ 7 | <u>/</u> | 4 | _ | | | | | 552 | KODIAK
KOTZEBUE | NAF
HBAS | | 152 30W | 112 | | 1 1 | | 1 1 | 1 | 1 1 | 1 | 1 : | 1 1 | | | 11
12 | | | 12 | 12 | | | | LADD
LINCOLN ROCK | AAB
CG | 64 51N | 147 35H
132 46H | 464
25 | Н | 1 1 | 1 1 | 1 1 | 1 | 1 1 | 1 | 1 : | | | | 12 | 12 | | 12 | | | | | MANLEY HOT S | A | 65 DON | 150 39⊭ | 325 | 1 | 6 6 | 6 | 6 6 | 6 | 6 6 | 6 | Б (| 5 6 | | | | | | | | | | | MCGRATH
MIDDLETON IS | WBAS
CAA | 59 28N | 155 37H
146 19H | 341
45 | | 1 1 | 비비 | 1 1 | 1 | 1 1 | 1 | 1 . | 1 1 | | | 12 | | | | | | | | MINCHUMINA
MOSES POINT | CAA | | 152 17H
162 03H | 701
21 | | 1 1 | | 1 1 | 1 | 1 1 | 1 | 1 | | | | 12 | | | | | | | | MT VILLAGE
NAKNEK | SA
AFB | 58 41N | | 44
49 | | 4 4 | | 4 4 | 4 | 4 4 | | 4 1 | 1 1 | 12 | | 12 | 03 | | 12 | | | | | NENANA
NGME | CAA
WBAS | 64 33N
64 30N | 149 05H
165 26H | 364
16 | | 1 1 | 1 | 1 1 | 1 | 1 1 | 1 | 1 : | | |] | 12
12 | 12 | 10 | | | | | | NORTH DUTCH
NORTHEAST CA | CAA
AFS | 60 46N
63 19N | 147 48H
158 56H | 39
36 | | 4 | 11 | 4 4 | | 4 4 | | 4 | 14 | | | | | | | | | | | NBRTHWAY
NUNIVAK | ⊌BAS
SA | | 141 56W
165 12H | 1718
50 | | 1 1 | | 1 1
4 4 | 1 | 1 1 | 1 | 1 : | 1 1 | 12 | | 12
12 | | | | | | | | NYAC
PALMER | SAHR | 61 00N | 159 59W
149 05W | 450
198 | ш | 3 3 | 3 | 3 3 | 3 | 3 3 | 3 | 3 : | 3 3 | | 1 | | | | 1 | , | | | | PETERSBURG
PLATINUM | CAA | 56 49N | 132 57H
161 47H | 111 | | 1
5 5 | l 1 | 1 1 | 1 | 1 1 | 1 | | 1 1 | | | 12
12 | | | | | | | | POINT BARROW | CAA | 71 20N | 156 39W | 11 | 1 | 1 1 | լ լ | 1 1 | 11 | 1 1 | 1 | | ili | 08 | | 12 | | | | | | | | POINT HOPE
POINT LAY | 5A | 69 45N | 165 46H
163 03H | 18 | 1 | 4 4 | 1 4 | 4 4 | 11 | 4 4 | 4 | | 4 4 | 12 | | 09 | | | | | | | ļ | PORT HEIDEN | A
SA | 56 57N | | 18
92 | ! | 5 5
5 5 | 5 5 | 5 5
5 5 | 5 | 5 5
5 5 | 5 | 5 9 | 5 5 | 09 | | 12 | | | | | | | | PT RETREAT
PUNTILLA | CG
A | | 152 45W | 20
1837 | ' | 5 9
6 6 | 6 6 | 5 5
6 6 | 6 | 4 4
6 6 | 6 | 6 6 | 6 6 | | | | | | | | | | | SEMARD
SHEEP MTN | A
SAHR | 60 07N
61 48N | 149 27H | 76
2316 | | 6 6
5 9 | | 6 5
5 5 | | 5 6
5 5 | | 6 (
5 ! | 5 6 | | | 12 | | | | | | | | SHEMYA
SHISHAREF | AFB
SA | 52 43N
56 14N | 174 06E
166 07W | 132
16 | | 1 1
5 5 | | 1 1
5 5 | 1 | 1 1 | 1 | 1 : | 1 1 | | | 12 | 12 | | 11 | | | | | SISTER IS
SITKA | A
CAA | 58 10N | | 35
66 | | 5 5
5 5
1 1 | 5 5 | 5 5
1 1 | 5 | 5 5
1 1 | | 5 ! | 5 5 | | | 12 | | | | | | | | SKAGWAY
SKWENTNA | A
CAA | 59 27N | 135 19H
151 12H | 18
153 | 1 | 5 5 | 5 5 | 5 5 | 5 | 5 5
1 1 | 5 | 5 : | 5 5 | | | 12 | | | | | | | | SPARREVOHN
ST PAUL IS | AFS
WBAS | 61 06N | | 1729
28 | 1 | 0 0 | | 0 0 | П | 6 6
0 0 | 6 | 6 (| 6 6 | | | 05
12 | 12 | | | | | | | SUMMIT | CAA | 53 20N | 149 08W | 2407
351 | ١, | 1 1 | 1 1 | 1 1 | 1 | 1 1 | 1 | 1 | 1 1 1 | | | 12 | 12 | | | | | | | TALKEETNA
TANANA | CAA | 65 10N | 152 05H | 240 | 1 | 1 1 | 1 1 | 1 1 | 1 | 1 1 | 1 | 1 | 1 1 | | | 12 | | | | | | | | TATAL INA
TELLER | AFB
A | 62 54N
65 16N | 166 21H | 939 | 1 | 5 5 | 5 | 5
5 5 | 5 | 5 5
5 5 | 5 | | 5 5 | | | 03 | | | | | | | 1 | THORNBROUGH
TREE POINT | AFB
CG | | 130 56W | 99
36 | 1 | | 4 | 1 1 | 4 | 1 1 | 4 | 4 | 1 1 | | | 12 | 12 | | 12 | | | | ł | UMNAK | HBA5
SAHR | 69 22N
53 23N | 152 08W | 337
130 | 1 | 1 1
5 5 | | 1 1
5 5 | 5 | 1 1
5 5 | | | 1 1 | | | 12 | | | | | | | ł | UNALAKLEET
VALDEZ | CAA
A | 63 53N
61 D7N | | 21
15 | 1 | 1 1
5 5 | 5 5 | 1 1
5 5 | 5 | 1 1
5 5 | 5 | 5 9 | 1 1 5 | | 1 | 12 | | | | | | | | HAINWRIGHT
WALES | SA
SA | 70 37N
65 37N | | 29
18 | | 5 5
5 5 | | 5 5
5 5 | 5 | 5 5
5 3 | | | 5 5 | 12 | | 12
12 | | | | | | | İ | WISEMAN
WRANGELL | A | 67 26N
56 28N | | 1290
43 | 1 | 5 5
5 5 | | 5 5
5 5 | 5 | 5 5
5 5 | 5 | 5 , | 5 5 | | | | | | | | | | | YAKATAGA
YAKUTAT | CAA
WBAS | 60 05N
59 31N | 142 30W | 33
31 | 5 | 1 2 | 1 1 | 1 1 | 1 | 1 1 | 1 | 1 | 1 1 | | | 12 | 12 | | | | | | 53 | ADAK | NS. | 51 53N | · | 14 | | 1 | 1 1 | i | | 1 1 | H | | 1 1 | | | 12 | | | 12 | 12 | 1 | | - | ANCHORAGE
ANCHORAGE | WBAS | 61 10N | 149 59H | 105 | , | 1 2 | 1 1 | 1 1 | | ł | $ \ $ | | 5 | | | 02 | 02
10 | 10 | 01 | | | | | ANGOON | A
CAA | 57 31N | 134 35H | 14 | | | 5 5 | 5 5
1 1 | | 5 5 | | | 5 5 | | | 12 | | ,0 | | | | | | ANIAK
ANNETTE | WBAS | 55 D2N | 159 32W
131 34W | 113 | 1 | | 1 1 | | 1 [| | H | - | | | | 12 | | 12 | 12 | | | | | BARROW
BARTER IS | AF8 | 70 08N | | 29
40 | 1 | 1 1 | 1 1 | 1 1 | | 1 1 | 1 | | 1 1 | | | 12 | 12
03 | 12 | | | | | | BETHEL
BETTLES | UBAS
CAA | | 151 31W | 15
672 | , | | | 1 1 | | 1 1 | | | 1 1 | | | 12 | | | | | | | | BIG DELTA
BOUNDARY | CAA
A | | 141 07W | 1275
2600 |) | 5 5 | 5 5 | 1 1
5 5 | 5 | | 5 | 5 9 | 1 1 | | | 12 | | | | | | | | CAPE DECISIB | CG | 56 00N
60 14N | 134 08W | 50
185 | | 5 4 | 4 4 | 5 5 | 4 | 5 5 | 4 | | 5 5 | 12 | | 12 | | | | | | | | CAPE LISBURN
CAPE NEWENHA | AFS
AFS | 58 52N
58 40N | 166 08⊭ | 67
543 | , | 6 6 | 5 6 | 5 5 | 6 | 5
6 6 | | | 5 6
5 5 | | | 04
06 | | | | | | | | CAPE ROMANZO
CAPE SARICHE | AFS
CG | 61 47N
54 36N | 165 52W | 434
175 | 3 | 5 5 | | 7 7 5 | 7 | 7
5 5 | | 6 (| 5 5 | | | 10 | | | | | | | | CAPE SPENCER | CG | 58 12N
59 48N | 135 38₩ | 88
58 | 3 | 5 5 | 5 6 | 6 6 | 6 | 6 6
5 5 | 6 | 6 (| 5 6 | 12
12 | | 12
12 | | | | | | | | CENTRAL
CHIRIKOF IS | A
SAMR | 65 35N | 144 48W | 870
25 |) | 5 | 5 5 | 5 5
3 3 | 5 | 5 5 | 5 | 5 | 5 5 | | | | | | | | | | | COLD BAY | SAWR | 55 12N | 162 43H | 98
44 | 3 | | | | | | П | | 5 5 | | | 12 | | | | | | | | CRAIG | A | 55 29N | 133 D9W | 13 | ١, | 5 5 | 5 5 | 5 5 | 5 | 5 5 | 5 | | 5 5 | | | 12 | | | | | | | | CROOKED CREK
DILLINGHAM | SAWR | 59 03N | | 125 | 3 | 5 5 | 5 5 | 5 5 | l sl | 5 5 | 5 | 5 | 5 5 | | | | | | | | | | | DUTCH HARBOR
EAGLE | NS
A | 53 54N
64 46N | 141 12H | 15
836 | ۶ | 5 5 | 5 5 | 1 1
5 5 | 5 | 1 1
5 5
1 1 | 5 | 5 9 | 1 1
5 5 | | | D1 | 11 | | 10 | | | | | EIELSON
ELDRED ROCK | AFB
CG | 64 39N
58 58N | 135 13W | 552
54 | ۱, | 5 5 | 5 5 | 1 1
5 5 | 151 | 5 5 | 5 | 5 9 | 1 1 5 5 | | | 12 | 03 | | 11 | | | | | ELMENDORF
ELMENDORF 2 | AFB
AFB | 61 15N
61 15N | 149 48H | 192
206 | ١, | 1 1 | 1 1 | 1 1 | 1 | 1 1 | | 1 | 1 1 | | | 10
03 | 03 | | 10 | | | | | FAIRBANKS
FAREWELL | HBAS
CAA | 64 49N | 147 52H
153 54H | 443
1503 | | 1 : | 1 1 | 1 1 |] 1 | 1 1 | 1 | | 1 1 | | | 12 | 12 | 12 | | | | | - 1 | | 1 | 1 | 1 | | ı | 1 | 1 1 | T | 1 | 1 1 | 1 1 | ł | 1 | | } | | I | l | ! | i | ı { | | | ALASI | | | | | | | | | | | NUMBER OF MONTHS IN YEAR WITH | | | | | | | | тн | | |
 |------|-----------------------------------|---------------------|----------------------------|-------------------------------|-------------------|--------------|--------|-------------------|-------------|-------------------|----------|-------------------------------|-------------------|--|-----|--|----------|----------------------|--------------|----------|-----------|----------|---------------------------------| | | | | | | | HÖI | JRL | YR | ECO | RDS | B | r M | BNI | Н | / | /s / | / _/ | / <u>*</u> | Teles Sample | / */ | /
.e./ | 28/ | 8/ | | | · | ı | | | | | ٠. | 24 | | ٠. | - | | | | | 2. Tag 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | Sample of the second | | | | | HBAN | | TEAR | NAME | | LAT. | | | Н | 4 | \bot | \sqcup | _ | \sqcup | | _ | ⊢ ₄ | /54 | Z & 83 | / 8 | | /ו | / * · · | / * · « | <u> </u> | <u> </u> | | 1953 | FIVE FINGER
FLAT
FORT YUKON | CG
R
CAA | 57 16N
62 27N
66 35N | 158 DOW | 30
326
425 | 3 | 3 | | 3 | 3 3 | 3 | 5 5 | 3 3 | 3 | | | 12 | | | | | | 25319
26520
26413 | | | GALENA
GALENA | WBAS
AFS | | | 125 | ĭ | ٦ | | 1 | 1 | П | 1 | |], | | | 05
07 | | | | | | 26509
26501 | | | GAMBELL
GUARD ISLAND | HBAS
CG | 63 51N | 171 36W
131 53W | 32
20 | 1 5 | | 1 1 5 | 1 | 1 | П | 5 ! | | 1 1 | | | 05 | | | | | | 26703
25320 | | | GULKANA
GUSTAVUS | CAA | 62 09N
58 25N | 145 27W | 1579
29 | 1 | 1 | 1 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | | | 12
12 | | | | | | 26425
25322 | | | HAINES
HOMER | CAA | 59 13N
59 38N | 135 28H
151 30H | 257
73 | 1 | 1 | 1 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 1 | 09 | | 09
12 | | | | | | 25323
25507 | | | HUGHES
IL IAMNA | A
CAA | 66 04N
59 45N | 154 14H
154 55H | 545
152 | 6

 1 | 5 | 1 1 | 1 | 5 6 | 1 | | 1 1 | | | | 12 | | | | | | 26522
25506 | | | INDIAN MTN
JUNEAU | AFS
WBAS | 66 03N
58 22N | 134 35W | 1075
22 | 0 | 0 | | 이 | | 미 | | 0 0 | 0 | | | 12 | 12 | 12 | | | | 26535
25309 | | | KETCHIKAN | CAA
SAHR
A | | 151 15H
131 34H | 91 | 5 | | 1 1
5 5 | | 1 1
5 5 | 5 | 5 4 | 1 1 | 5 | | | 12 | | | İ | | | 26523
25325 | | | KODIAK
KOTZEBUE | NAF
HBAS | 66 54N
57 45N
66 52N | | 140
112
20 | 1 | | 1 1 | 1 | 1 1 | 1 | 1 : | 5 5
1 1
3 0 | 1 1 | | | 11 | | 09 | 11 | 11 | | 25501
26616 | | | LADD
LINCOLN ROCK | AAB
CG | 64 51N
56 03N | 147 35H | 464 | 1 4 | 1 | 1 1 | 1 | 1 1 | 1 | 1 : | 1 1 | 1 1 | | | 12 | 02 | | 12 | | | 26403
25326 | | | MANLEY HOT S
MCGRATH | A
WBAS | 85 DON | 150 39W | 325
341 | 6 | 6 | 6
6
0 | 6 | 6 6 | 5 | 6 (| 5 6 | 6 | | | 12 | | | | | | 26524
26510 | | | MIDDLETON IS
MINCHUMINA | CAA | 59 28N
63 53N | 146 19H
152 17H | 45
701 | 1 1 | 1 | 1 1 | | 1 1 | 1 | 1 : | 1 1 | 1 1 | | | 12
12 | | | | | | 25402
26512 | | | MOSES POINT
MT VILLAGE | CAA
SA | 64 42N
62 07N | 163 43W | 21
44 | 1 4 | 4 | 4 4 | 4 | 1 1 | 4 | 3 3 | 3 3 | | 12 | | 12
12 | | | | | | 26620
26621 | | | NAKNEK
NENANA | AFB
CAA | 58 41N
64 33N | 149 05W | 49
354 | 1 | | 1 1 | | 1 1 | | | | $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ | | | 12 | | | 12 | | | 25503
26435 | | | NORTH DUTCH
NORTHEAST CA | WBAS
CAA
AFS | 64 30N
60 46N
63 1SN | | 18
39 | 4 | 4 5 | 4 4 5 5 | 4 | 4 | | | 4 4 | | | | 12 | 12 | 12 | | | | 2661 <i>7</i>
26436
26632 | | | NORTHWAY
NUNIVAK | WBAS
SA | 63 19N
62 57N
60 23N | | 38
1718
50 | 6
1
4 | 1 | 1 1 | 1 | 6 6
1 1
4 4 | 2 | 2 | 1 1 | 1 4 | 12 | | 12 | | | | | | 26412
26622 | | | NYAC
PALMER | SAHR | 61 00N
61 36N | 159 59₩ | 450
198 | 3 | 3 | 3 3 | 3 | | 3 | 3 : | 3 3 | 3 | | | | | | | | | 26525
25331 | | | PETERSBURG
PLATINUM | CAA
A | 56 49N
59 01N | 132 57W | 111
20 | 1
6 | 2 | 1 1 | 3 | 1 1
5 5 | 1 | 3 . | 1 1 | 1 | | | 12
12 | | | | | | 25329
25613 | | | POINT BARROW
POINT LAY | CAA
SA | 69 45N | 156 38W
163 03W | 11
18 | 3 4 | 4 | 1 1
4 4 | 4 | 1 1
4 4 | 4 | | | 4 | 09 | | 12 | | | | | | 2750 4
2662 4 | | | PORT ALEXAND
PORT HEIDEN | A
SA | 56 57N | 134 39H
158 37W | 18
92 | 5 | 5 | 5 5
5 4 | 11 | 5 | 5 | 5 ! | 1 | 1 1 | 05 | | 12 | | | | | | 25348
25508 | | | PT RETREAT
PUNTILLA
SEWARD | CG
A | | 152 45H | 20
1837 | 5 | 5 | 6 6 | 6 | 6 6 | 6 | 6 (| 5 E | 5 | | | | | | | | | 25330
26526 | | | SHEEP MTN
SHEMYA | SAUR
AFB | | 149 274
147 414
174 D6E | 76
2260
132 | 5 | 5 | 6 6
5 5
1 1 | 5 | 6 6
5 5
1 1 | 5 | 5 5 | | 5 | | | 12 | 03 | | 11 | | | 26438
26439
45708 | | | SISTER IS
SITKA | A
CAA | 58 10N
57 04N | 135 15H | 35
66 | 5 | | 5 5 | 5 | | 5 | 5 3 | 5 5 | 5 | | | 12 | 43 | | - 11 | | | 25341
25333 | | | SKAGHAY
SKHENTNA | A
CAA | 59 27N
61 58N | 135 19W | 18
153 | 5 | 5 | | 5 | 5 5 | 5 | 5 9 | 5 5 | 5 | | | 12 | | | | | | 25335
26514 | | | SPARREVOHN
ST PAUL 15 | AFS
WBAS | 57 D9N | | 1729
28 | 6
0 | D | 5 1
0 0 | | 1 1 | 0 | | 미 | | | | 12
12 | 12 | | | | | 2653 4
25713 | | | SUMMIT
TALKEETNA | CAA | 63 20N
62 18N | 150 06W | 2407
351 | 1 | 1 | | 1 | | 1 | 1 | | . 1 | | | 12 | | | | | | 26414
26526 | | | TANANA
TATALINA
TELLER | CAA
AFB
A | 65 10N
62 54N
65 16N | 155 59H | 240
939
10 | 1
6
5 | | 1 1
6 6 | 1
6
5 | 1 1
B 6 | 6 | 1
6
5 | 5 E | 8 | | | 12 | | | | | | 26529
26536
26626 | | | THORNBROUGH
TIN CITY | AFB
AFS | 55 12N | | 99
271 |] 1 | | 1 1 | 11 | 1 1 6 7 | 1 | 1 | 1 3 | 1 | | | 11 | 03 | | 03 | | | 25603
26634 | | | TREE POINT
UMIAT | CG
AFS | 54 48N
69 22N | 130 56H | 36
340 | 4 | 4 | 4 4 | | 4 4 | 4 | 4 | 4 4 | | | | 06 | | | | | | 25337
25337 | | | UMIAT
UMNAK | CAA
SAHR | 69 22N
53 23N | 167 54⊭ | 337
130 | 5 | 5 | 5 5
5 5 | 5 | 5
5 5
1 1 | | | 5 5 | | | | 06 | | | | | | 26508
25621 | | | UNALAKLEET
VALDEZ | CAA
A | 63 53N | 145 15H | 21
15 | 5 | 5 | 1 1
5 5 | 5 | 5 5 | 5 | 5 9 | | 5 | | | 12 | | | İ | | | 26627
26442 | | | HAINHRIGHT
HALES
WRANGELL | SA
SA | 70 37N
65 37N
56 28N | 168 03W | 29
18
43 | 3 | 3 | 5 5
3 3
5 5 | 3 | 5 5
3 3
5 5 | 3 | 3 : | | 3 | 12 | | 12 | | | | | | 27503
26610 | | | YAKATAGA
YAKUTAT | CAA
WBAS | 50 D5N | 132 23W
142 30W
139 40W | 33 | 1, | | 1 1 | | 1 1 | 1 | 1 | 1 1 | 1 | | | 12
12 | 12 | | | | | 25338
26445
25339 | | 1954 | ADAK | NS. | 51 53N | | 14 | 1 | 1 | 1 1 | Н | 1 1 | 1 | | 1 1 | | | | 12 | | | 12 | 12 | | 25704 | | | ANCHORAGE
ANCHORAGE | SAWR
WBAS | 61 13N | | 134
105 | 5 | 5 | 5 5 | 3 | 1 1 | 1 | 4 : | 3 4 | 4 | | | 12 | 12 | : | 11 | | | 26409
26451 | | | ANGOON
ANIAK | A
CAA | 61 35N | 134 35W
158 32W | 14
91 | 5 | | 1 1 | 1 | 5 5 | 1 | 1 | 1 1 | | | | 12 | | | | | | 25310
26516 | | | ANNETTE | NB AS | 52 48N | | 113
92 | 1 | 1 | i | | | 1 | 1 | 1 1 | 1 1 | | | 12
05 | | | 12
05 | 05 | | 25308
45709 | | | BARROW
BARTER IS | MBAS
AFB
WBAS | 70 08N | 156 47H
143 36H
161 43H | 29
21
15 | 1 | 1 | 5 6 | 1 | 5 6 | . 1 | 1 | 1 1 | | | | 12 | 12 | 12 | | | | 27502
27401 | | | BETHEL
BETTLES
BIG DELTA | CAA | 66 55N | 161 43W
151 31W
145 44W | 672
1275 | 1
1
1 | 1 1 | 1 1
1 1
1 1 | 1 | 1 1
1 1
1 1 | 1 | 1 | 1 1 1 | | | | 12 | | | | | | 26515
26533
26415 | | | BOUNDARY
CAPE DECISIO | A | 64 04N | 141 07H | 2600
50 | 5 | 5 | | 5 | 5 5 | 5 | 5 | 5 5 | 5 | 12 | | 12 | | | | | | 26416
25315 | | | CAPE HINCHIN | CG
AFS | 60 14N | 146 39H
166 08H | 185
67 | 5 | 5 | 5 5 | 5 | 5 5 | 5 | 5 | 5 5
6 6 | 5 | | | 15 | | | | | | 26417
26631 | | : | CAPE NEWENHA | AFS
AFS | 58 40N
61 47N | 162 10H
165 52W | 543
434 | 6
6 | 6
6 | 5 6
5 6 | 5 | 6 6 | 6 | 6 | 6 E | 6 | | | 12 | | | | | | 25623
26633 | | | CAPE SARICHE | ce | 54 36N | 164 56H | 175 | 5 | 5 | 5 5 | 5 | 5 5 | 5 | 5 | 5 5 | 5 | | | | | } | | | | 25622 | ΚE | CUNUS | TWÜ | L X | HI | 11 | Ηľ | VGt | :U | В | Y | H | CHr | (| | | | | | | | |------|-----------------------------|-------------|------------------|--------------------|-------------|-----|-------------|---------------------|------|-------------|--------|-------------------|----------------|------|-----|-----|-----------
--|---------------------------------------|-------------------|--|------------------|----------------------------| | | ALAS | KA | | | | | | | | | | | | | | NU | MBER | OF I | MONT | HS II | N YE | AR N | I TH | | | | | | | | ноц | JR L.Y | r R | EC(| DRD: | S 8 | Y H | ΦN | tH | | / | / | | | , | | | | | | | | | | | 1 | = | 24 | 01 | BS F | PER | DA | Y | | | 8/ | */ | * | \$ / | y <u>z</u> e/ | <i>\$</i> | \? `& | / § / | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | [] | F H | A | н | J J | A | sli | 3 N | 0 | 1 | | <i>\$</i> | STATE OF THE PARTY | V V V V V V V V V V V V V V V V V V V | | To the state of th | | HBAN
NUMBER | | 1854 | CAPE SPENCER | CG | 58 12N | 136 38W | 69 | Б | 6 6 | 6 | В | 6 6 | 5 5 | 6 | + | 6 | 12 | | 12 | | \leftarrow | / | \leftarrow | \leftarrow | 25316 | | | CAPE ST ELIA
CENTRAL | CG | 59 48N
65 35N | 144 484 | 870 | | 5 5 | | 5 | 5 5 | 1 | 5 | 5 ! | 5 | 12 | | 12 | | | | | | 25401
25418 | | | CHIRIKOF IS
CIRCLE HOT S | SAMR | 65 29N | 155 34W
144 36W | 25
935 | | 3 | 3 | | 3 3 | 5 | 5 | 5 . | 5 | | | | | | | | | 25511
26419 | | | COLD BAY | SAMA | | 162 43H | 93
44 | 5 | 5 5 | 5 | | 1 1 | 1 | 1 | | | | | 06
12 | | | | 1 | i | 25624
26410 | | | CRAIG
CROOKED CREK | A | 55 28N | | 13
125 | 5 | 5 5 | 5 | 5 | 5 5 | 5 | | 5 • | 4 | | | 12 | | | | | | 25317 | | | DILLINGHAM
DUTCH HARBOR | SAHR | 59 03N | 158 27₩ | 30 | | 1 | 3 | 3 | 3 3 | 3 | | 5 5 | | | | | | | | | 1 | 26518
25513 | | | DUTCH HARBOR
EAGLE | SAMR | 53 53N | 166 32H | 10 | | 1 1 | 1 | - 1 | 1 1 | 5 | 5 | | 5 | | | 07 | 05 | | 06 | ĺ | ŀ | 25611
25614 | | | EIELSON | A
AFB | 64 46N
64 39N | 147 D4W | 836
539 | 1 | 5 5
1 1 | 1 | 1 | 5 5 | . 1 | | 5 5 | | | | 12 | | | 07 | | | 26422
26407 | | | ELDRED ROCK
ELMENDORF 2 | CG
AFB | 58 58N
61 15N | 135 13W
149 48W | 54
206 | | 5 5 | | 5 | 5 5 | | | 5 5
1 1 | | | | 12 | | | 05 | | İ | 25318
26452 | | | FAIRBANKS
FAREHELL | LABAS | 64 49N
62 32N | 147 52H
153 54H | 443
1503 | | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | | | 12
12 | 12 | 12 |] | | | 26411
26519 | | | FIVE FINGER
FLAT | CG | 57 1BN
62 27N | | 30
326 | 5 | 5 5
3 3 | 5 | 5 | 5 5 | 5 | 5 | 5 5 | 5 | | | | | | | | } | 25319
26520 | | | FORT YUKON
GALENA | CAA | 66 35N
64 43N | 145 18⊬ | 425
125 | 6 | 6 6
1 1 | 6 | 6 | 6 6 | 5 | 6 | | 5 | | | 12 | | | | | | 26413 | | | GAMBELL
GUARD ISLAND | SAHR
CG | | 171 36W | 30
20 | | 5 5 | 11 | - 1 | - 1 | i i | | 3 | ıl I | | | | | | | | | 26501 | | | GULKANA
GUSTAVUS | CAA | 62 09N | 145 27H
135 42H | 1579
29 | 1 | 1 1 | 111 | 4 | 1 1 | 1 | 1 | 1 1 | 1 1 | | | 12 | | | | | | 25320
26425 | | | HOMER
HUGHES | CAA | 59 38N
66 04N | 151 30M | 73 | | 1 1 | | 1 | 1 1 | 1 | 1 | 1 1 | 1 1 | | - 1 | 12 | ļ | | | |] | 25322
25507 | | | ILIAMNA
INDIAN MTM | CAA | 59 45N | 154 55H | 545
152 | | 1 1 | | 1 | 5 5 | 1 | | 1 1 | 1 | | | 12 | Ì | | | | | 26522
25506 | | | JUNEAU
KENAI | AFS
WBAS | 66 03N
58 22N | 153 45W
134 35W | 1075
22 | 1 | 6 6
1 1 | 1 | 1 | 1 1 | 1 | 6 (| 1 1 | 1 1 | | | 12 | 12 | 12 | | | | 2653 5
25309 | | | KETCHIKAN | CAA
SAHR | | 151 15H
131 34H | 91 | 5 | 1 1
5 5 | 5 | | 1 1
5 5 | 5 | 5 5 | 5 5 | 5 | | | 12 | l | | | | | 26523
25325 | | | KODIAK | A
NAF | 86 54N
57 45N | 156 52H | 140
112 | 1 | 5 5
1 1 | | 1 | 1 1 | 1 | 1 | | 1 | 1 | ł | 12 | | 11 | 12 | 12 | | 25501 | | | LADO | HBAS | 66 52N
64 51N | 162 38H | 20
464 | | 1 1 | | | 1 1 | 1 | 1 1 | 1 1 | | | | 12 | İ | | 12 | | | 26616
26403 | | | LINCOLN ROCK | CG
A | 56 03N
65 00N | 132 46H
150 39H | 25
325 | 5 | 5 5
6 6 | | 5 | 5 5
6 6 | | 5 5 | | | ĺ | | | | | - | | | 25326
26524 | | | MCGRATH
MIDDLETON IS | WBAS
CAA | 62 58N
59 28N | 155 37W | 341
45 | 1 | 1 1 | 1 | 1 | 1 1 | | 1 1 | | 1 | | İ | 12 | | | | | | 26510
25402 | | | MINCHUMINA
MBSES POINT | CAA | 63 53N
64 42N | 152 17H | 701
21 | 1 | 1 1 | 1 | | 1 1 | 1 | 1 1 | 1 | 1 | ļ | | 12 | | | | | | 26512 | | | MT VILLAGE
NAKNEK | SA
AFB | 62 07N | 163 43H
156 39H | 44 | ㅋ. | 4 4 | 4 | 4 | 4 4 | | 3 3 | s 3 | 3 | 12 | | 12 | | | 20 | | | 26620
26621 | | | NENANA
NGME | CAA
HBAS | 54 33N | 149 05H
165 26H | 364
18 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 1 | 1 | 1 | 1 | | 15 | | | 08 | | | 25503
26435 | | | NORTH DUTCH
NORTHERST CA | CAA | 60 46N | 147 48H | 39 | 4 | 4 4 | 4 | 4 | 1 1 | 4 | 4 4 | | 4 | | | 12 | 12 | 12 | ı | | | 26617
26436 | | | NORTHWAY
NUNIVAK | HBAS
SA | 62 57N | 141 56W | 36
1718 | | 1 1 | 1 | 1 | 6 6
1 1 | 1 | 5 E | 1 | 1 | | - 1 | 12 | | | | | | 26632
26412 | | | NYAC | SAUR | 61 DOM | 166 12H
159 59H | 50
450 | 3 : | 3 4 | 3 | - 1: | 3 3
3 3 | 3 | 3 3 | 3 | 3 | 12 | i | 12 | | | ł | | | 26622
26525 | | | PALMER
PETERSBURG | CAA | 56 49N | 149 05H
132 57H | 198 | 1 . | | 1 | 1 | 3 3 | | 3 3 | 3 | | | | 12 | | | | | | 25331
25329 | | | PLATINUM
PBINT LAY | SA SA | 69 45N | 161 47W | 20
18 | | 4 4 | 4 | 4 . | 5 6
4 4 | 5 | 6 6 | 5 | | 12 | ŀ | 12 | | | i | | | 25513
26624 | | | PORT ALEXAND
PORT HEIDEN | A
SA | 56 57N | 134 38H
158 37H | 18 | 5 | 1 1 | | -19 | 5 5 | | 5 5 | 5 | 5 | 80 | | 90 | l | | ŀ | | | 25348
25508 | | | PT RETREAT
PUNTILLA | CG
A | 58 25N | 134 57H
152 45H | 20
1837 | 5 9 | 5 5 | 5 | | 5 5
6 6 | 5 | 5 5
6 6 | 5 | 5 | | Ī | ŀ | 1 | | ı | | | 25330
25526 | | | SEHARD
SHEEP MTN | A
SAMR | | 149 27H | 76
2280 | 5 5 | 6 6 | 6 6 | 6 (| 6 6
5 5 | 6 | 6 6 | 6 | 6 | | į | 12 | - 1 | | | | | 26438
26439 | | - 1 | SHEMYA
SISTER IS | AFB
A | | 174 06E
135 15W | 132 | 5 9 | l 1 | 1 | 1 : | 1 4 | 4 | - 1 | 5 | | | | 08 | ŀ | | 05 | | ļ | 45708
25341 | | |
SITKA
SKAGWAY | CAA | 57 04N
59 27N | 135 21H
135 19H | 56
18 | 1 5 | 1 | 1 | 1 : | 1 1 | 1 | | 1 | 1 | | - 1 | 12 | | | ļ | | | 25333
25335 | | | SKHENTNA
SPARREVOHN | CAA
AFS | 61 5BN | 151 124
155 344 | 153
1729 | 1 1 | 1 1 | 1]: | 1 : | 5 5 | 1 | 1 1 | 1 | | - 1 | | 12 | | | İ | | | 26514
26534 | | | ST PAUL IS
SUMMIT | HBAS
CAA | | 170 13H | 28
2407 | | + 4 | 1 | 4 4 | 1 1 | 4 | 4 4 | 4 | 4 | [| | 12 | 12 | | | | | 25713 | | | TALKEETHA
TANANA | CAA | 62 18N | 150 06H | 351
240 | 1 1 | 1 | 1 : | 1 1 | 1 1 | 1 | 1 1 | 1 | 1 | - 1 | | 12 | | | | | - 1 | 26414
26526 | | | TATAL INA
TELLER | AFB | 62 54N | 155 59H
166 21H | 939 | 5 5 | 6 | 6 6 | 6 6 | 6
5 | 6 | 6 6 | 6 | 6 | ļ | 1 | 12 | | | | | | 26529
26536 | | | THORNBROUGH
TIN CITY | AFB | 55 12N
65 34N | 162 43H | 99
271 | 4 4 | 4 | | 4 4 | ۱ II | - 1 | 5 5
6 6 | П | - 1 | 1 | | 06 | | | | | | 26626
25603 | |] | TREE POINT | CG
AFS | 54 48N | | 36
340 | 5 5 | 5 | 5 9 | 5 9 | 5 5 | 5 | 5 5 | | | | | 12 | 1 | | | | | 26634
25337 | | | UMNAK
UNALAKLEET | SAHR | 53 23N | 167 54H | 130 | 5 5 | 1 | 5 5 | 5 9 | 5 | | 5 6 | | | | İ | 08 | - 1 | | | | | 26537
25621 | | | VALDEZ
HAINHRIGHT | A
SA | 63 53N
61 07N | 146 16W | 15 | 5 9 | 5 | 1 :
5 : | 5 5 | 5 5 | 5 | 1 1 | 5 | 5 | | | 12 | | | | | | 26527
25442 | | 1 | HALES | SA | | 168 03W | 18 | 5 5 | 5 | 3 | 5 5 | 3 3 | 3 | 5 5
3 3 | 3 | 3 | 12 | - 1 | 12 | | İ | | | | 27503
26618 | | | YAKATAGA | CAA | 60 05N | | 33 | 5 5 | 1 | 5 5 5 5 5 5 5 1 1 1 | 5 5 | 5 | 1 | 5 5 | 1 1 | 1 | | | 12 | | | | | - 1 | 25338
26445 | | 1055 | YAKUTAT | l i | 59 31N | ĺ | 31 | - 1 | ŀΙ | - 1 | 1 | 11 | ł | 1 1 | Ш | - 1 | | } | 12 | 12 | | | | | 25339 | | 1955 | ADAK
ANCHORAGE | | 51 53N
61 13N | 149 50H | 134 | | 5 | 1 1
6 6 | 5 6 | ia k | 6l (| 1 1
5 6 | 8 | 6 | | | 12 | | | 11 | 12 | | 25704
26409 | | | ANCHORAGE
ANGOON | A | 57 31N | 134 35H | | 5 5 | 1
5
1 | 1 1
5 5
1 1 | 5 5 | 1
5
1 | 1
5 | 1 1
5 5
1 1 | 51 | 5 | | | 10 | 10 | | 12 | İ | | 26451
25310 | | ŀ | ANIAK | CAA | 61 35N | 159 32H | 91 | 1 3 | 1 | 1 1 | 11 | 1 | 1 | 1 1 | 1 | 1 | | | 15 | | 1 | | | | 26516 | ALASI | (A | | | | | | | | | | | | | | | NU | MBER | 0F 1 | 10NTH | IS IN | I YEF | R WITH | | |--------------|---|--|--|---|---|---|--|--|-----|---|--|--|---|---|--|-------------------|------------|--|----------------|-----------------|--------------|---------|---|--| | | | | | | | но | URL | YR | ECO | RDS | 3 E | 3Y I | MON | ΙTΗ | | / | /
.s. / | / . / | / æ / | / g t. / | / <u>*</u> / | /
&/ | | / | | | | | | | | | 1 = | 24 | 08 | S P | ER | R DE | ĤΥ | | | ŝ | :
* / ~ | \$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | § / [| | \$\\
\$ | 2 3 | | BAN | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | J | F | H A | H . | J | A | 5 | 0 1 | D | | ع ^ر در | 100 | \$/ \$ | / * | 12.4 | 7/3° 4 | ÿ/¥ 4 | Ş ∕ Se / NU | MBER | | YEAR
1955 | NAME ANNETTE ATTU BARRABH BARTER IS BETHLES BIG DELTA BEGUNDARY CAPE DECISIO CAPE HINCHIN CAPE HISBURN CAPE REMANZO CAPE SPENCH CAPE SPENCH CAPE CAPE CAPE CAPE CAPE CAPE CAPE CAPE | HIS SECTION OF | 2NNNTANANANANANANANANANANANANANANANANANA | 131 34W 173 105 156 379 114 151 379 156 159 159 159 159 159 159 159 159 159 159 | 1132
1132
1132
121
121
127
127
127
126
126
126
126
126
126
126
126 | J 1111111555166565511555651 511115361 811156111115 1111146143316145556 65 51511411156 | F 1111111155566655551155551 5111536135111511115 111561111311146143316145555365 51511411656 | A 1111111155556665656551155551 51115361 5111511115 1115611111311146143316545556365 515115111 | M | J 11111111555111156551655551 51115361 5111511115 11156111113111147643316 45556369 | A 1111111555111156651759591 51115361 5111511115 111156111113111476433165459556369 6515115111 | 8 111511155511156 51756551 5111536135111511115 111156111113111141643316 5556 65 65151151 | 0 1111511115551885565517555551 511115361 511115111115 111115611111141643316 5556 69 65151151111 | 11115111155566665656517 6551 511115361 5111151111151111156111113 1146643 18 45956 651 | | 12 12 12 11 | | TINE TO THE TANK OF THE
PROPERTY PROPER | 12 | 12 01 11 | 12 12 12 | 12 | 263 264 265 265 265 265 265 265 265 265 265 265 | M 309 2015 3 5 6 1 9 2 1 9 2 1 9 2 1 9 2 1 9 2 1 9 2 1 9 2 1 1 1 1 | | l | UMNAK | SAWR | 53 23N | 167 54W | 130 | 5 | 5 | 5 5 | 5 | 5 5 | 5 | 5 | 5 | 5 5 | | | | | | | | | 256 | 51 | | | ALASI | ۲A | | | | | | | | | | | | | | NUM | BER | OF M | ONTH | | YEAR | | | |------|---|--|--|--|--|---|---|---|---|--|-----------------------|---------------------------------------|--|---------------------------------|------------|------|---|------|---|---|---|----
---| | | | | | | | ноц | JRL1 | Y RE | COF | tDS | BY | MO | NTH | | / | . / | ′./ | * / | TA TA TA | 4 (4) (4 | 1 () () () () () () () () () (| 8/ | § / | | | | | | | | | | | 089 | | | | | | S. Popolis | | () () () () () () () () () () | | Tajaja
Perint | | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | HBAN | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | ٦ | FM | ш | _ | ╁╌╁ | - | ╄ | ₩ | | 1 2 1 N | /₹°% | | / × | <u>/~ </u> | / * · e ² / | / * * / | * | | | 1955 | UNALAKLEET VALDEZ WAINWRIGHT WALES WRANGELL YAKATAGA YAKUTAT | CAA
SA
SA
A
CAA
WBAS | 65 37N
56 28N
60 05N | 160 04W
168 03W
132 23W
142 30W | 21
15
29
18
43
33 | 5 5 5 1 1 | 5 5 5 | 5 5 5 3 3 | 5 5
5 5
1 1 | 5 5 3 5 | 5 5 5 5 5 5 5 5 | | 5 5 5 | 5 5 1 | 12 | | 12
12
12
12 | 12 | | | | | 25627
25442
27503
26618
25338
26445
25339 | | 1956 | ADAK
ANCHORAGE
ANCHORAGE
ANGOON | NS
CAA
WBAS
A | 51 53N
61 13N
61 10N
57 31N | 149 50W
148 59W | 14
134
105
14 | 1 | 5 1 | 1 1
5 6
1 1
5 5 | 6 6 | 6 | 6 (| 1 1
5 6
1 1
5 5 | 5 | 5 | | | 12 | 12 | | 12 | 12 | | 25704
26409
26451
25310
26516 | | | ANIAK ANNETTE ATTU BARROH BARTER IS BARTER IS BETHEL BETTLES BIG DÉLTA BOUNDARY CAPE DECISIO CAPE HINCHIN CAPE LISBURN CAPE REMENHA CAPE SARICHE CAPE SARICHE CAPE SARICHE CAPE STELLE CIRCLE HOT S COLD BAY CORRODYA | CHESTS SAME CONTROL OF THE O | 52 48N
71 18N
70 08N
70 08N
60 47N
64 00N
64 00N
66 55N
56 14N
68 52N
68 52N
58 42N
58 48N
68 29N
65 29N
66 30N | 131 34W
173 10E
156 47W
143 38W
143 36W
151 31W
151 31W
141 07W
144 08W
146 08W
166 08W
166 08W
166 38W
165 52W
164 56W
136 38W
144 36W
144 36W
142 43W | 91
113
92
31
50
26
15
672
1275
2600
185
52
543
434
176
68
935
935 | 1
5
5
5
3
1 | 111 5111555111565311 | 1 1 1 1 1 5 5 5 5 1 1 1 1 5 5 6 5 5 3 1 1 1 1 | 55111565311 | 111155511115653111 | 11111555111565311 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 5 5 5 5 1 1 1 5 5 5 5 3 1 1 | 5 5 1 1 1 5 | 12 | | 12
12
12
12
12
12
12
12
12
11
11
11
11
1 | 12 | 12 | 12 | 12 | | 25308
457502
27502
27401
26615
26513
26513
26513
26515
26416
25315
26417
26631
26633
26633
25623
25316
25401
25401
25624
25419
25624
26410
25317 | | | CRAIG CROOKED CREK DILLINGHAM DUTCH HARBOR EAGLE EIELSON EKLUTNA LAKE | A
SAME
SAME
A
AFB
COOR | 61 52N
59 03N
53 53N
64 46N
64 39N | 158 27W
156 32W
141 12W
147 04W | 13
125
50
13
836
539
880 | 5
5 | 5
5 | 5 5 5 5 5 5 1 1 | 5
5
5 | 5 5
3 5 | 5 4 5 5 | 3 5
5 5 | 5 5 5 5 5 | 5
3
5
5 | | | 11 | | | 11 | 12 | | 26518
25513
25614
26422
26407 | | | ELDRED ROCK ELMENDORF ELMENDORF 2 FAIRBANKS FAREWELL FIVE FINGER FLAT FORT YUKON GALENA | CG
AFB
AFB
UBAS
CAA
CG
A
CAA
AFS | 58 58N
61 15N
61 15N
64 49N
62 32N
57 16N
62 27N | 135 13W
149 48W
149 48W
147 52W
153 54W
133 37W
158 00W
145 18W | 54
258
206
440
1503
30
326
425 | 1
1
5
3
6 | 1
5
3
5 | 5 5
1 1
1 1
1 1
5 5
3 3
6 6 | 1 1 5 3 6 | 1 1
1 1
5 5
3 3
6 6 | 1
5
3 | 1
1
5
3
6 | 1 1
1 1
5 5
3 3
6 6
1 1 | 5
1
1
5
3
6
1 | | | 08
04
12
12
12 | 12 | | 09 | | | 25318
26401
26452
26411
26519
25319
26520
26413
26501 | | | GAMBELL GUARD ISLAND GULKANA GUSTAVUS HOMER HUGHES ICY BAY | CAA
CAA
CAA
CAA
CAA
A | 55 27N
62 09N
58 25N
59 36N
66 04N | 131 534
145 274
135 424 | 30
20
1579
29
73
545 | 5
1
1
1
5 | 1 1 5 | 5 5 1 1 1 1 1 5 5 3 3 | 1 1 5 | 5 5
1 1
1 1
1 1
5 5
3 1 | 1 1 5 | 1
1
5 | | 3 1 1 5 1 | | | 12
12
12 | | | | | | 25320
26425
25322
25507
26522 | | | ILIAMMA INDIAN MTN JUNEAU KENAI KETCHIKAN KING SALMBN KBDIAK KBTZEBUE LADD LINCGLN RBCK MANLEY HBT S | CAA
AFS
WBA!
CAA
SAW!
WBA!
NAF
WBA!
AAB
CG | 59 45N
66 03N
59 22N
60 34N
55 20N
55 41N
56 52N
64 51N
66 52N
65 00N | 154 55W
153 45W
134 35W
131 34W
131 34W
156 38W
152 30W
162 38W
14 147 35W
14 147 35W
132 46W | 152
1075
22
91
0
48
112
20
464
25 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 1
1
1
5
1
1
1
1 | 1 1
1 1
1 1
1 1 | 1 1 1 1 1 1 1 1 5 | 1 1 1 1 1 1 5 5 1 1 1 1 1 1 1 5 5 6 6 | 1 1 5 1 1 1 5 6 | 1 1 1 1 1 1 1 1 5 6 | 1
1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
5 5 | 1 1 5 6 | | | 15 15 15 15 15 15 15 15 15 15 15 15 15 1 | 12 | 12 | 11 | 11 | | 25506
26535
25309
26523
25325
25513
25501
26616
26403
25326
26524 | | | MCCARTHY MCGRATH MCDDLETGN IS MINCHUMINA MBSES PBINT MT VILLAGE NENANA NGME NGRTH DUTCH NGRTHEAST CA NGRTHHAY NUNIVAK NYAC PALMER PETERSBURG PLATINUM POINT LAY PORT ALEXAND PORT HEIDEN PT RETREAT PUNTILLA SEMARD SEWARD SHEEP MTN SHEMYA | SAWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | 5 62 588
59 283
64 421
62 071
64 301
66 3 191
6 62 571
6 60 230
61 369
61 369
65 57
56 57
56 57
56 57
56 60 48 | 155 37W
164 19W
152 17W
162 03W
163 43W
163 26W
147 26W
147 26W
168 26W
169 56W
169 56W
169 56W
169 56W
169 56W
169 56W
169 57W
169 57W
169 37W
159 37W
159 37W
159 37W
159 57W
159 57W
159 57W
159 57W
169 | 341
45
701
21
444
16
364
171
198
450
198
20
20
20
20
21
21
21
22
20
21
22
21
22
22
22
22
22
22
22
22
22
22 | | 1 | 46643 | 1 1 1 3 1 1 4 1 6 4 3 3 5 6 4 4 5 5 5 5 | | 1111311141645 5645556 | 111131141643355455566 5 | 0111131141647756455566751 | 13114674335645556635 | 12 | | 12
12
12
12
12
12
12
12
12
12
12
12
12
1 | 12 | 12 | | | | 26510
25402
26512
26620
26621
26435
26617
26436
26412
26522
26522
26525
25331
25329
25613
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348
25348 | | | I | 1 | 1 | | I | 1 | | 1 | 1 } | 1 | 1 3 | [| I | | | l | I | I | 1 | ł | i | l | 1 | | | ALAS | KA | | | | NUMBER OF MONTHS I | N YEAR WITH | |------|---|---|--|--|--|--|---| | | | | | | | | | | | | | | | | 1 = 24 OBS PER DRY | | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | IURLY RECORDS BY HONTH 1 = 24 OBS PER DAY F M A M J J A S O N D S S S S S S S S S S S S S S S S S S | MBAN NUMBER | | 1958 | SISTER IS
SITKA
SKAGWAY
SKWENTNA
SPARREVOHN
ST PAUL IS
SUMMIT | A
CAA
A
CAA
AFS
WBAS
CAA | | 135 21H
135 19H
151 12H | 35
66
18
153
1729
26
2410 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 25341
25333
25335
26514
26534
25713 | | | TALKEETHA TANANA TATALINA TELLER TIN CITY TREE PGINT UMIAT UMIAT UNALAKLEET | CAA
CAA
AFB
AFS
CG
SAUR
SAUR
CAA | 62 18N
65 10N
62 54N
65 16N
65 34N
54 46N
68 22N
63 23N
63 53N | 150 084 | 351
240
939
10
271
36
337
130
21 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 26414
26528
26528
26528
26526
26626
26537
25537
25508
25521
26627 | | | UPPER RUSSIA
VALDEZ
HAINWRIGHT
HALES
WRANGELL
YAKATAGA
YAKUTAT | SAHR
SA
SA
SA
CAA
HBAS | 61 07N
70 37N
65 37N
56 26N
60 05N | 146 164
160 044
168 034
132 234
142 304 | 700
15
29
18
43
33 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 26442
27503
26618
26338
26445
25339 | | 1957 | ADAK
ANCHORAGE
ANCHORAGE
ANGOON
ANIAK
ANNETTE | NS
CAA
HBAS
A
CAA
HBAS | 51 53N
61 13N
61 10N
57 31N
61 35N
55 02N | 176 394
149 504
149 594
134 354
159 324
131 344 | 14
134
105
14
91
113 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 25704
28409
26451
25310
26516
25308 | | | ATTU BARROW BARTER IS BETHEL BETTLES BIG DELTA BBUNDARY CAPE DECISIB CAPE HINCHIN | HBAS
HBAS
CAA
CAA
A
CG | 56 DON | 156 47µ
143 36µ
161 43µ
151 31µ
145 44µ
141 07µ | 92
31
50
15
672
1275
2600
50
185 | 1 1 1 1 1 1 1 1 1 6 5 5 5 5 1 1 2 12 12 12 12 12 12 12 12 12 12 12 | 12 45708
27502
27401
26815
26533
26415
26416
25315 | | | CAPE LISBURN CAPE NEMENHA CAPE ROMANZO CAPE SARICHE CAPE SPENCER CAPE ST ELIA CIRCLE HOT S COLO BAY | AFS
AFS
CG
CG
CG | 68 52N
58 40N
61 47N
54 36N
58 12N
59 48N
65 28N | 166 08H
162 10H
165 52H
164 55H
136 38H
144 36H
144 36H
162 43H | 52
543
434
176
88
58
935 | 5 5 5 5 5 5 5 6 5 6 5 5 5 5 5 1 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 | 26417
28631
25623
26633
25622
25316
25401
26419 | | | CGRDBVA CRAIG CROGKED CREK DILLINGHAM EAGLE EIELSON EKLUTNA LAKE ELDRED ROCK | HBAS
A
SAHR
A
AFB
COOP | 60 30N
55 29N
61 52N
59 03N
64 46N
64 39N
61 24N | 145 30H
133 09H
150 15H
158 27H
141 12H
147 04H
149 09H
135 13H | 44
13
125
50
821
539
880
54 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 25624
26410
25317
26518
25513
26422
26407 | | | ELMENDORF
FAIRBANKS
FAREWELL
FIVE FINGER
FLAT
FORT YUKON
GALENA
GAMBE-L | AFB
HBAS
CAA
CG
A
CAA
AFS | 61 15N
64 49N
62 32N
57 16N
62 27N
66 35N | 149 48W
147 52W
153 54W
133 37W
158 00W
145 16W
156 54W | 258
440
1503
30
326 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 25316
26401
26411
26519
25319
26520
26413
26501 | | | GUARD ISLAND GULKANA GUSTAVUS HOMER HUGHES ICY BAY ILIAMNA | CG
CAA
CAA
CAA
A
SAMR | 55 27N
62 09N
58 25N
59 38N
66 04N | 131 534
145 274
135 424
151 304
154 144
141 484 | 20
1579
29
73
545
10 | 5 5 5 5 5 5 5 6 5 5 5 5 1 12 11 11 11 11 11 11 11 11 11 11 11 1 | 25320
26425
25322
25507
26522 | | | INDIAN MTN
JUNEAU
KENAI
KETCHIKAN
KING SALMON
KODIAK | AFS
HBAS
CAA
SAHR
HBAS
NAF | 66 03N
68 22N
60 34N
65 20N
58 41N
57 45N | 153 45W
134 35W
151 15W
131 34W
156 39W
152 30W | 1075
22
91
0
49 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 25506
26535
25309
26523
25325
25503 | | | KOTZEBUE
LADD
LINCOLN ROCK
MANLEY HOT S
MCGARTHY
MCGRATH | AAB
CG
A
SAHR
HBAS | 66 62N
64 51N
66 03N
65 00N
61 26N
62 58N | 147 35H
132 46H
150 39H
142 55H
155 37H | 20
484
25
325
1800
341 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 26616
26403
26326
26524
26510 | | | MIDDLETON IS MINCHUMINA MOSES POINT MT VILLAGE NENANA NOME NORTH DUTCH | CAA (| 59 28N
63 53N
64 42N
62 07N
64 33N
64 30N
80 46N | 152 17W
162 03W
163
43W
149 05W | 45
701
21
44
364
18 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 25402
26512
26620
26621
26435
26617 | | | NORTHEAST CA
NORTHWAY
NUNIVAK | AFS (| 53 19N | 168 56H
141 56H | 38 | 5 6 5 6 6 1 1 1 1 1 1 1 1 5 6 7 6 7 8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 26436
26632
26412
26622 | | | ALASI | (A | | | | NUMBER OF MONTHS IN YEA | | |------|--|---|---|---|---|--|--| | | | | | | | HOURLY RECORDS BY MONTH | | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | HOURLY RECORDS BY MONTH 1 = 24 OBS PER DAY J F M A M J J A S O N D | HBAN
NUMBER | | 1957 | NYAC PALMER PETERSBURG PLATINUM PBINT LAY PORT ALEXAND PORT HEIDEN PT RETREAT PUNTILLA SEMARD SEMARD SHEEP MTN SHEMYA SISTER IS SITKA SKAGWAY SLEETMUTE SPARREVOUN ST PAUL IS SUMMIT TALKEETNA TANANA TATALINA TELLER TIN CITY TREE PBINT UMMAK UMALAKLEET UPPER RUSSIA VALDEZ WAINHRIGHT WALES WARATAGR VAKUTAT | | 60 07N
51 48N
58 104N
59 27N
51 04N
59 27N
61 42N
61 42N
61 42N
63 20N
63 20N
63 18N
65 14N
65 15N
66 14N
67 170
68 18N
68 18N
69 28N
60 28N
60 05N
60 05N | 149 05H 132 57H 133 57H 153 03H 154 39H 158 37H 154 57H 154 57H 154 57H 154 68E 135 15H 136 15H 136 15H 136 05H 136 05H 136 05H 136 05H 136 05H 136 05H | 450
198
50
20
12
18
92
20
18
17
76
28
23
35
56
66
18
152
28
24
10
35
10
27
10
27
10
21
70
20
21
21
21
21
21
21
21
21
21
21
21
21
21 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 26525
26331
25329
25613
26624
25346
25346
25346
25330
26526
26438
26439
46715
25333
25335
26614
26534
26713
26414
26529
26536
26626
26634
25337
26614
25337
26618
25338
26618
25338
26449
25338
26449
25338 | | 1958 | ADAK ANCHORAGE ANGGON ANIAK ANNETTE ATTU BARROW BARTER IS BETHEL BETTLES BIG DELTA CAPE LISBURN CAPE LISBURN CAPE NEWENNA CAPE NEWENNA CAPE SARICHE CAPE SPENCER CAPE SARICHE CAPE STELIA CIRCLE HOT S COLODONA CRAIG DILLINGHAM EAGLE EIELSON | | 61 10N
61 35N
55 24N
71 18N
70 28N
60 47N
60 47N
66 56 50N
64 00N
66 52N
64 36N
58 40N
69 42N
69 42N
69 49N
69 49N | 139 35H
139 32W
131 34H
173 10E
156 47H
161 43W
161 48H
151 31H
145 44W
146 38H
166 08H
166 52H
166 52H
164 56H
136 38H
144 35H
143 36H
143 36H
143 36H
143 36H
143 36H
143 36H
144 35H
143 36H
143 36H
144 35H
145 30H
146 27H | 14
105
14
91
113
92
31
50
15
13
13
13
16
12
12
50
185
543
434
176
88
935
946
443
15
16
95
96
96
96
96
96
96
96
96
96
96
96
96
96 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 25704
26451
25310
26516
25308
45709
27502
27401
28615
26515
26533
26415
25315
25417
25633
25631
25631
25631
25623
25636
25401
26419
25640
25317
25513
26419
26424
26410 | | | EKLUTNA LAKE ELDRED ROCK ELDRED ROCK ELMENDORF FAIRBANKS FAREWELL FIVE FINGER FLAT FORT YUKON GALENA GUSTAVUS HOMER HUGHES ILIAMNA INDIAN HTN JUNEAU KENAI KETCHIKAN KING SALMON KODIAK KOTZEBUE KULIK LAKE LADD LINCOLN ROCK MANLEY HOT S MCCARTHY | COG
CG
AFBAN
CAAC
CAAA
CAAA
CAAA
CAAA
CAAA
CAAA
C | 61 154
61 155
64 148
62 327
66 357
66 27
66 357
66 27
66 27
66 357
68 29
68 20
68 20 | 149 09W
135 13W
149 48W
147 52W
153 54W
153 37W
156 00W
156 54W
156 54W | 880
544
2588
4400
326
4255
125
20
1579
735
162
20
1075
20
401
401
401
401
401
401
401
401
401
40 | 12 08 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 25318
26401
26411
26519
25319
26520
26413
26501
25322
25425
25322
25506
26522
25506
26523
25325
25309
26523
25326
25309
26523
25325
25326
26403
26524 | | ALAS | KA | | NUMB | ER OF MO | NTHS IN | I YEAR WITH | | |---
--|--|-------------|--|----------------------|--|---| | | | HOURLY RECORDS BY MONTH | /4/ | The Figure 1 | ** / ** / | / \$/\$\$/\$*/ | | | YEAR NAME | TYPE LAT. LONG. ELEV | 1 = 24 OBS PER DAY . J F m a m J J a s 0 n D | | Precional Property (1) | | E E NUME | | | 1958 MCGRATH | WBAS 62 58N 155 37W 34 | | | 12 | | 2651 | _ | | MIDDLETON IS MINCHUMINA MISSES POINT MT VILLAGE NEMANA NOME NORTHHAY NUNIVAK NYAC PALMER PPLMER PPLMER PPLMER PPLMER PRITISUAN PORT ALEXAND PORT ALEXAND PORT ALEXAND PORT ALEXAND SHEEP MTN SHEMYA SISTER IS SITKA SKAGWAY SKHENTNA SKEETMUTE SPARREVOHN ST PAUL IS SUMMIT TALKEETNA TANANA TATALINA TATALINA TELLER TIN CITY TREE POINT UMALAKLEET UPPER RUSSIA VALDEZ | CAR 59 28N 146 19W 4 CAR 63 53N 152 17W 70 CAR 64 42N 162 03W 2 SA 62 07N 163 43W 4 CAR 64 33N 149 05W 36 WBAS 64 30N 165 26W 3 A 62 57N 141 56W 171 SA 62 57N 141 56W 171 SA 60 23N 166 12W 3 SAWR 61 00N 159 59W 45 A 61 36N 148 07W 23 A 61 36N 148 07W 23 A 61 36N 148 07W 23 A 68 45N 163 03W 11 A 56 57N 158 37W 9 SA 68 45N 163 03W 11 A 56 57N 158 37W 9 CG 58 25N 134 33W 11 A 56 57N 158 37W 9 SAWR 60 08N 192 57W 22 CG 58 25N 134 57W 22 CG 58 25N 158 37W 9 CG 58 25N 174 06E 11 SAWR 60 08N 192 55W 22 CG 58 45N 155 19W 174 CAR 61 50N 155 15W 32 CAR 57 04N 135 19W 11 CAR 61 50N 155 15W 32 CAR 61 60N 155 34W 172 CAR 61 60N 155 15W 32 CAR 65 10N 135 15W 32 CAR 67 04N 135 11W 28 CAR 61 60N 157 11W 28 CAR 63 20N 149 08W 241 CAR 62 18N 150 06W 35 CAR 65 10N 155 06W 35 CAR 65 10N 165 56W 35 CAR 65 10N 165 56W 35 CAR 65 10N 165 56W 35 CAR 65 10N 165 56W 35 CAR 65 10N 165 56W 33 CAR 65 10N 165 56W 33 CAR 65 10N 165 68W 160 | 5 | 12 | 12 | 07 | 2651
2540
2651
2662
2663
2661
2663
2661
2663
2652
2653
2533
2533
2533
2552
2543
2553
2553
25 | 22011572225111934888668 9451354 43489664787 2 | | HAINHRIGHT HALES HRANGELL YAKATAGA YAKUTAT | A 70 37N 160 04W 25 5A 65 37N 168 03W 11 A 56 88N 132 23W 45 CAA 60 05N 142 30W 35 WARD 59 31N 139 40W 3 | 3 | 12 | 03
12
12 | | 2750
2661
2533
2644
2533 | 8
8
5 | | YAKUTAT 1959 ADAK ANCHORAGE ANCHORAGE ANCHORAGE ANCHORAGE ANGGON ANIAK ANNETTE BARROH BARTER IS BETHLES BIS DELTA CAPE DECISIO CAPE HINCHIN CAPE LISBURN CAPE HINCHIN CAPE LISBURN CAPE REMANZO CAPE SARICHE CAPE SARICHE CAPE SHOCER CAPE STELIA CAPE THOMPSO CLEAR COLD BAY CORDOVA CRAIG DILLINGHAM DRIFTHOOD BY EAGLE EIELSON EKLUTNA LAKE ELDRED ROCK ELMENDORF FAIRBANKS FAREHELL FIVE FINGER FLAT FORT YUKON GALENA GUSTAVUS HOMER HUGHES | NS 51 53N 176 38W 1-1 CAA 61 13N 149 50W 13-1 CAA 61 10N 149 59W 101 A 57 31N 159 32W 9 HBAS 55 02N 131 34W 112 HBAS 71 08N 156 47W 3 HBAS 60 47M 161 48W 51 LBAS 60 47M 161 48W 13 CAA 66 55N 151 31W 672 CAA 64 00N 145 44W 127 | 1 | 12 12 12 | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | 12
12
12
12 | 2533 12 2570 2640 2645 2531 2651 2531 2651 2740 2661 2663 2641 2631 2641 2631 2641 2641 2531 2551 2642 2640 2640 2641 2631 2750 2750 2750 2750 2750 2750 2750 2750 | 49106821535571332616 40735277 811890310527 | | ALAS | KA | | NUMBER OF | MONTHS IN | | |--|--|---|--|----------------------------------|---| | | | HOURLY RECORDS BY MONTH | /4//2 | | MBAN NUMBER | | | | 1 = 24 OBS PER DAY | | | WBAN NUMBER | | YEAR NAME | TYPE LAT. LONG. EL | LEV. J F M A M J J A S O N D | | E / E E / 2 E / | NUMBER - | | ILIAMNA INDIAN MTN JUNEAU KEMAI KETCHIKAN KIMG SALMON KODIAK KOTZEBUE LADD LINCOLN ROCK MANLEY HOT S MANLEY HOT S MCGRATHY MCGRATH MIDDLETON IS MORETHANY NINGES PORTHANY PORT ALEXAND PORT HOLLER PORT MOLLER PORT MOLLER PORT MOLLER PORT MOLLER PORT MOLLER PORT MOLLER PUNTILLA SENTINEL IS SELMAND SHEEP MTN SHEMYA SISTER IS SITKA SKAGHAY SKHENTNA SLEETMUTE SPARREVOHN ST POUL IS SUMMIT TALKEETNA TANANA TATALINA TELLER TIN CITY TREE POINT UMIAK UNALAKLEET UPPER RUSSIA VALDEZ WALDLEZ WALDLEZ WALDLEZ WALDLEZ WARINIRIGHT HALES WARNELL YAKATAGA | CAA 59 45N 154 45W AFS 66 03N 153 45W AFS 66 03N 153 45W AFS 66 03N 153 34W AFS 66 03N 151 15W SAWR 55 20N 131 34W AFS 66 52N 162 38W AFS 66 52N 162 38W AFS 66 52N 162 38W AFS 66 52N 162 38W AFS 66 52N 162 38W AFS 66 52N 162 38W AFS 67 02N 132 46W AFS 69 20N 146 18W AFS 69 20N 146 18W AFS 69 20N 146 18W AFS 69 20N 165 45W AFS 60 23N 166 12W AFS 62 55N 166 47W AFS 67 160 159 59W 152 57W 155 34W AFS 67 160 155 34W AFS 67 160 155 54W AFS 67 160 155 54W AFS 67 160 155 06W AFS 67 160 150 06W AFS 67 160 150
06W AFS 67 160 150 06W AFS 67 160 150 06W AFS 67 160 150 06W AFS 67 160 02W | LEV. J F R A H J J A R S O N D J 1076 7 77 77 77 77 77 77 77 77 77 77 77 77 | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | 2 03 03 | 25506 26535 25508 26523 25503 25501 26616 26616 26616 26616 26616 26524 26524 26524 26524 26524 26524 26526 26617 26620 26621 26622 26622 26622 26622 26622 26622 26622 26526 26617 26624 25331 25528 25633 27506 26624 25338 26624 25338 26626 26634 25338 26536 26634 25713 26414 26528 26528 26526 26634 25713 26626 26634 25713 26414 26528 | | ADAK ANCHBRAGE ANGOBN ANIAK ANNETTE BARROW BARTER IS BETHEL BETTLES BIG DELTA BIG LAKE CAPE DECISIE CAPE HINCHIN CAPE LISBURN CAPE NEWENHE CAPE ROMANZE CAPE SARICHE CAPE THOMPSO CLEAR COLD BAY CORDODA CRAIG | NS 51 53N 176 39W WBAS 61 10N 149 59W A 57 31N 134 35W FAA 61 35N 159 32W WBAS 71 18N 156 47W WBAS 70 08N 131 34W WBAS 70 08N 143 38W WBAS 60 47N 161 48W FAA 66 55N 151 31W FAA 66 55N 151 31W FAA 66 50N 134 95W CG 50 00N 134 95W CG 50 14N 146 39W AFS 68 52N 166 08W AFS 68 52N 166 08W AFS 68 52N 166 08W AFS 68 52N 165 08W AFS 68 52N 165 52W CG 58 12N 136 38W AFS 68 58 12N 136 38W AFS 68 58 12N 136 38W AFS 68 08N 164 56W CG 58 12N 136 38W AFS 68 08N 164 36W 30W AFS 68 08N 164 30W AFS 68 08N 164 30W AFS 68 08N 164 30W AFS 68 08N 164 30W AFS 68 08N 164 30W AFS 68 08 | 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 12
12
12 | 12 12 12 | 12 25704
26451
25310
26516
25308
27502
27401
26615
26533
26415
25315
26417
26631
25623
26633
25622
25316
25401
26836 | | PGINT LAY PGRT ALEXAND PGRT HEIDEN PGRT HEIDEN PGRT MGLLER PT RETREAT PUNTILLA SENTINEL IS SEHARD SHEEP MTN SHEMYA SISTER IS SITKA SKAGHAY SKHENTNA SLEETMUTE SPARREVGHN ST PAUL IS SUMMIT TALKEETNA TANANA TATALINA TELLER TIN CITY TREE PGINT UMIAT UMHAKLEET UPPER RUSSIA WALDEZ WAINHRIGHT WALDEZ WAINHRIGHT WALTES HRANGELL YAKATAGA ANCHBRAGE ANGBRAGE CAPE DECISIE CAPE HINCHIN CAPE LISBURN CAPE RUMAND CAPE REWENHE CAPE SARICHE CAPE SPENCER SARICHE CAPE TÜRMPSE CLEAR CBLD BAY CRRDWA | A 69 45N 163 03W A 56 15N 134 38W A 56 57N 158 37W A 56 50N 150 31W CG 58 25M 134 55W A 61 48N 147 41W A 61 48N 147 41W A 61 48N 147 41W A 61 48N 147 41W A 61 48N 147 41W A 61 48N 157 15W A 61 48N 157 15W A 61 48N 157 15W A 61 48N 157 11W A 61 58N 151 12W A 61 58N 151 12W A 61 48N 157 11W A 61 48N 157 11W A 61 48N 157 11W A 61 48N 157 11W A 61 48N 157 11W A 61 48N 157 11W A 61 48N 150 06W CAA 65 10N 152 150 C | 12 | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | 10
05
12
12
12
11 | 26: 25: 25: 25: 25: 25: 25: 25: 25: 25: 25 | | | ALAS | KΑ | .,_ | | 1,,, | | *** | *** | . , | ٠٠. | | | • | • | | | NU | MBER | 0F | MONT | 4S II | N YE | AR W | I TH | |------|-----------------------------|--------------|------------------|--------------------|------------------------|------------|------------|---------------------|-------------------|-------------------|----------------|-------------|--------------|---------|----|---|--------|--|---------------|--|--|---|--|-------------------------| | | | | | | | HOL | JRLI | R | EC | DRD | SE | ΒY | 10N | TH | | / | /
c | / , | /2 | The state of s | / _ | / _ | / | | | | | | | | | 1 | * | 24 | 01 | 8S (| PEF | t D | YF | | / | 8 | ž /. | | Second Second | | 75% | | \$ \$ \ | & HBAN | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | 기 | F | A | H | د ا د | ı a | s | 0 | ם | /6 | • | | THE STATE OF S | / 🔻 | 1 2 |) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0 | 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | HBAN
NUMBER | | 1960 | DUTCH HARBOR
EAGLE | SAHR | 53 53N
54 46N | | | 5 | 5 5 | 5 | 5 | 5 ! | 5 5 | 5 | 5 | 5 5 | | | | | | | | | | 25614 | | | EIELSON
EKLUTNA LAKE | AFB
COSP | 64 41N | 147 05W | 569
880 | | ī | | | | 1 1 | | | 1 1 | | | | 12 | | | 12 | ١., | | 26422
26407 | | | ELDRED RBCK
ELMENDORF | CG
AFB | | 135 13W | 54
258 | 5 | 5 5 | | | 5 | 5 5 | 5 | | 5 5 | 1 | | | | | | | 12 | | 25318 | | | FRIRBANKS
FAREHELL | IABAS
FRA | 64 49N
62 32N | 147 52W | 440 | 1 | 1 1 | 1 | 1 | 1 : | 1 1 | 1 | 1 | 1 1 | | - | | 12 | 12 | | | | 1 | 26401
26411 | | | FIVE FINGER | CG | 57 16N | 133 37₩ | 1503
30 | 5 | 1 1
5 5 | l 51 | 5 | 5 5 | 1 1
5 5 | 1
5
3 | 5 ! | 1 1 5 5 | 1 | ĺ | | 12 | | | | ŀ | | 26519
25319 | | | FORT YUKON | FAA | 66 35N | 158 00W | 326
425 | 6 | 3 3
6 6 | 6 | 3 | 6 6 | 5 6 | 6 | | 6 6 | | - | | 12 | | | | | | 26520
26413 | | | GALENA
GUARD ISLAND | AF5
CG | 55 27N | | 125
20 | 5 | 1 1
5 5 | 5 | 5 | 5 5 | 1 1
5 5 | 5 | 5 9 | 1 1 | | | | 12 | | | | | 1 | 25501
25320 | | | GULKANA
GUSTAVUS | FAA | | 135 42H | 157 9
29 | 1 | 1 1 | 1 | 1 | 1 1 | 1 1
1 1 | 1 | | 1 1 | | - | | 12
12 | | | | | | 26425
25322 | | | HOMER
HUGHES | FAA
A | 66 D4N | 151 30H
154 14H | 73
545 | | 1 1
5 5 | 5 | 5 | 1 1
5 5
1 1 | 5 5 | 5 | | 1 1 | | - | | 12 | | | | | | 25507
26522 | | | ILIAMNA
Indian mth | FAA
AFS | 50 45N
66 03N | | 152
1075 | 7 | 1 1 | 7 | 1 7 | 뷔 | | 爿 | | 1 1 7 | ŀ | | | 12 | | | | | | 25506
26535 | | | JUNEAU
KENAI | ⊩BAS
FRA | 58 22N
60 34N | 151 15H | 20
91 | | 1 1 | 1 | 3 | 1 1 | | 1 1 | | 1 1 | ŀ | l | | 12 | 12 | | 12 | | | 25309
26523 | | | KETCHIKAN
KING SALMON | SAWR | | 131 34H
156 39H | 49 | | 5 5 | 5 | 5 | 5 5 | | | 5 5
1 3 | 5 5 | | | | 12 | | | 11 | | | 25325
25503 | | | KODIAK
KOTZEBUE | NAF
MBAS |
57 45N
56 52N | 152 30H
152 38H | 116
20 | 1 | 1 1 | 1 | 1 | 1 1 | լ յ | 1 | 1 : | 1 1 | | 1 | | 12
12 | | | 12 | 12 | | 25501
26616 | | | LADD
LINCOLN ROCK | AAB
CG | 64 51N
56 03N | 147 35H
132 46H | 484
25 | 1 | 1 1
5 5 | 1 | 1 | 1 1 | | 1 | 1 | 5 5 | | ı | | 10 | | | 10 | | | 26403
25326 | | | MANLEY HOT S
MCCARTHY | A
SAMR | 65 00N
61 26N | 150 39H
142 55H | 265
1600 | 5 | 5 5 | | 5 | 5 5 | 5 | 5 | 5 9 | 5 | | 1 | | | | | | | | 26524 | | | MCGRATH
MIDDLETON IS | HBAS
AFS | 62 58N
59 27N | 155 37W | 341
121 | 1 | 1 1 | | 1
1 | 3 1
1 1 | | | | 1 1 | | 1 | | 12
12 | | | | | | 26510
25403 | | | MINCHUMINA
MOSES POINT | FAA
FAA | 63 53N
64 42N | 152 17H
162 03H | 701
21 | 1 | 1 1
1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 3 | | | | | 11 | | | | | | 26512
26620 | | | MT VILLAGE
NENANA | SA
FAA | 62 07N
64 33N | 163 43W | 44
364 | 3 | 3 3 | 3 | 3 | 3 3 | 3 | 3 | | 3 3 | 1 | 2 | | 12 | | | | | | 26621
26435 | | | NIKOLSKI
NOME | AFS
WBAS | 52 55N
64 30N | 168 47µ
165 26₩ | 705
18 | 1 | 1 1
1 1 | 1 | 11 | 1 1
1 1 | 1 | 1 | | 1 | | Î | | 12 | 12 | ŀ | | | | 25626
26617 | | | NORTHEAST CA | AFS
FRA | 63 19N
62 57N | 158 55H
141 56H | 33
1718 | 1 | 1 1
1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 1 | | ١ | | 12 | |] | | | | 26632
26412 | | | NUNIVAK
NYAC | SA
SAHR | 60 23N
61 00N | 166 12W
159 59W | 45
450 | 3 | 3 3 | 3 | 3 | 3 3
3 3 | 3 3 | | 3 3 | 1 | 0 | 7 | | iD | | | | | | 26622
26525 | | | PALMER
PETERSBURG | 2 4 | 51 36N
56 49N | 149 07H
132 57H | 230
50 | 3 | 3 3 | 3 | 3 | 3 3 | 3 | 3 | 3 3
5 5 | 3 | | | | ĺ | | ł | | | | 25331
25329 | | İ | PLATINUM
PGINT BARROW | A
AFS | 59 D1N
71 18N | 151 47W
156 47W | 20
6 | 5 ! | 5 5 | 5 | 5 | | 5 | | 5 5 | | | İ | | 12 | | | | | | 25613
27506 | | ļ | PORT ALEXAND
PORT HEIDEN | A | 56 15N
56 57N | 134 39W
158 37W | 18 | 5 9 | 5 5 | 5 | 5 | 5
5
5 | 5 | | 5 5 | | | | | | | l | | | | 25348 | | l | PORT MOLLER
PT RETREAT | AFS
CG | 56 DON
58 25N | 160 31H
134 57H | 1038 | | 5 5 | 5 | 5 | 5 5
5 5 | 6 | 6 | 5 5 | 5 | | | | I | | [| I | | | 25508
25625 | | | PUNTILLA .
SENTINEL IS | A
CG | 62 06N
58 33N | 152 45H | 1837 | 5 | 5 5 | 5 | 5 | 5 5 | 5 | 5 | 5 5 | 5 | | | | | | - 1 | | | | 25330
26526 | | İ | SEMARD
SHEEP MTN | A A | 60 07N
61 48N | 149 27H
147 41H | 76
2260 | 6 (
5 (| 5 6 | 6 | 6 (| 6 6
5 5 | 6 | 5 | 6 6
5 5 | 6 | | ı | | 12 | ł | : | | | | 26438
26439 | | ļ | SHEMYA
SISTER IS | HBAS | | 174 06E
135 15H | 125
35 | 1 | 1 1 | 1 | 1 | 1 1 | | 1 | 1 1 | 1 1 | | | | 12 | | | 12 | | | 45715 | | | SITKA
SITKINAK | | 57 04N
56 33N | 135 21H
154 08H | 66
53 | 1 | | 1 | | 1 1 | | | 1 5 | 1 | | | İ | 12 | | | | | | 25341
25333 | | | SKAGWAY
SKWENTNA | A | 59 27N | 135 19W
151 12W | 18
158 | 5 5 | 5 5 | 5 | 5 ! | 5
1 1 | 5 | 5 | 5 5 | 5 | | | | 02 | | | | | | 25335
26514 | | | SLEETMUTE
SPARREVOHN | я | 61 42N | | 285
1729 | 5 1 | 15 | 5 | 5 9 | 5 5 | 5 | 5 | 5 5 | 5 | | | | 12 | | | | | | 26534 | | | ST PAUL IS
SUMMIT | WBAS | | 170 13H | 28
2410 | 5 5 | 5 | 5 | 5 9 | 5 5 | 5 | 5 | 5 5 | 5 | | ĺ | | 12 | | 1 | | | | 25713 | | | TALKEETNA
TANANA | | 62 18N
65 10N | 150 06M | 351
240 | 1 1 | 1 1 | 1 | 1 : | 1 1 | 11 | 1 | 1 1 | 1 | | | | 12 | | | | | | 26414
26528 | | | TATAL INA
TELLER | | 62 54N
65 16N | 155 59W | 939 | 7 5 | 7 | 7 | 71: | 7 7 | 7 | 7 | 7 5 | 7 | | | | 12 | | l | - 1 | | | 26529
26536
26626 | | | TIN CITY
TREE POINT | | | 167 55H
130 56H | 271
36 | 7 5 | 7 | 7 | 7 3 | 1 1 | 1 | 1 | 1 1 | | | | | 12 | İ | | | | | 26634
25337 | | Ì | UMIAK | | | 152 08W | 337
130 | 3 3 | 3 3 | 3 : | 3 4 | 4 4 | 4
5
1 | 4 | 4 5 | 4 | | | | | | | İ | | | 26508
25621 | | | UNALAKLEET
UPPER RUSSIA | | 63 53N
60 21N | 160 48H | 21
700 | 1 1
3 3 | 1 | | 1 1 | 1 1 | 1 | | 1 3 | | | | | 12 | | i | | | | 26627 | | | VALDEZ
WAINWRIGHT | A | 61 D7N
70 37N | 150 04W | 15
29 | 5 5 | | | 5 S | 5 5 | | 5 | 5 | | | | | | | | | | | 26442
27503 | | | HALES
HRANGELL | SAHR
A | 65 37N
56 28N | 168 03H | 18
43 | 3 3 | 3 | 3 3 | 3 2 | યો ગો | 3 | | 3 | 3 | 07 | ' | | 07 | | | | | l | 26618
25338 | | | YAKATAGA
YAKUTAT | | 60 D5N
59 31N | | 33 | | 1 | | 1 2 | l 1
l 1 | 1 | 1 . | 1 1 | 1 | | | | 12 | | 1 | | | | 25445
25339 | | 1961 | ADAK | NS - | 51 53N | 176 39H | 16 | | 1 | - | , ا، | 1 | 1 | 3 | i |] | | | ŀ | 12 | 12 | | 12 | 10 | | 25338 | | | ANCHORAGE
ANCHORAGE | HBAS | 61 13N
61 10N | 149 59W | 134
105 | 1 1 | 1 | 1 | 1 1 | 1 1 | 1 | 1 | 1 | 1 1 | | 1 | | 12 | 12 | | 12 | | ĺ | 26409
26451 | | | ANGOON
ANIAK | FAA | 57 31N
61 35N | 159 32H | 14
91 | 5 5 | 1 | 5 5 | 5 6 | 5 5 | 5 | 5 | 5 | 1 | | | | 12 | | | | | | 25310
26516 | | | ANNETTE
ATTU | CG | 52 50N | | 70 | 5 5 | 5 | 11 | 111 | 5 | 5 | 1
5 | 5 | 5 | | | | 10 | | | 12 | | | 25308
45712 | | | BARROW
BARTER IS | WBAS | 70 OBN | 156 47W | 31
50 | 1 1 | 1 1 | 1 3 | 5 5
1 1
1 1 | 1 | 1 | 1 | 1 | 1 | | | | 12 | 12 | | | | | 27502
27401 | | | BETHEL
BETTLES | FAA | 66 55N | 161 48W | 131
672 | 1 1 | 1 1 | 5 1 1 1 1 1 1 1 1 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 1 | | | - | 12
12 | | | | | - 1 | 26615
26533 | | 1 | BIG DELTA | FAA | D4 DON | 145 44W | 1275 | 1 1 | 1 | 1 1 | 1 1 | 11 | 1 | 1 2 | 1 | 1 | | | | 12 | - | | | | | 26415 | ALASK | (A | | | | | | | | | | | | | | | NUN | | OF M | ONTH | | | R HITH | | |------|--|---------------------|----------------------------|------------------------------------|-------------------|--------|-------------------|-------------------|-------------------|-------------------|--------------------------|-------------------|-------------------|------------|-------------|---|--------|----------------|---------------|--|---------------------------------------
--|--------------------------|-------------------| | | | | | | | | | | | | S B | | | TH | | /2 | ,
, | | <i>#</i> / | TRIPLE OF THE STATE STAT | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | THE PROPERTY OF THE PARTY TH | | | | | | | | امسما | ELEV. | | | _ | | | PER
ila | | | u I n | , | S. S. M. S. | | | | 12.5 | | | HBR
NUMB | | | YEAR | NAME
TREE POINT | TYPE | LAT.
54 48N | | 36 | 5 | \vdash | ' ''
5 5 | H | | 5 5 | ₩ | - | 5 9 | | Ť | | | $\overline{}$ | | | | 2533 | | | | UMIAT | SAHR | 69 22N
53 23N | | 337
130 | 3 | 3 | 3 3
5 5 | 5 | 3 | 3
5 5 | 3 | 5 | 3 3
5 5 | 5 | | | | | | | | 2650i
2562
2662 | 1 | | | UNALAKLEET
VALDEZ | FAA
A | 63 53N
61 07N
70 37N | 160 48H
146 16H
160 04H | 21
15
29 | 5
5 | 5 | 1 1
5 5
5 5 | 5 | 5 | 1 1
5 5
5 5 | 5 | 5 | 1 1
5 5 | ١, | | | 12 | | | | j | 2644
2750 | 13 | | | HAINHRIGHT
HALES
HRANGELL | 5AHR | 70 37N
65 37N
56 28N | 168 03H | 18
43 | 3 | 3 | 3 3 | 3 | 3 | 3 3
5 5 | 3 | 3 | 3 3
5 5 | 3 | | | | | | | | 2661
2533 | 88 | | | YAKATAGA
YAKUTAT | FAA
WBAS | 80 05N | 142 30W | 33
31 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | | 1 3 | | | | 11 | | İ | | | 26 44
2533 | | | 1962 | ADAK | NS
LOUD | 51 53N
51 13N | | 16
134 | 1 | | 1 1 | | | 1 1 | | | 1 : | - 1 | | | 12 | 12 | | 12 | 01 | 2570
2640 | 9 | | | ANCHORAGE
ANCHORAGE
ANGOON | LAWR
WBAS | 61 13N
61 10M
57 31N | 149 59H | 105 | 1 5 | 1 | 1 2 | 1 1 | 1 | 1 1 5 5 | 1 1 | 1 | 1 : | | | | 12 | 12 | | 12 | | 2645
2631 | 10 | | | ANIAK
ANNETTE | FAA
MBAS | 61 35N
55 02N | 159 324 | 91
113 | 1 | 1 1 | 1 1 | 1 1 | 1 | 1 1 | 1 | 1 | 1 | | | | 10 | | | 12 | | 2651
2530
4671 | 18 | | | ATTU
BARRGH | CG
MBAS | | 158 47H | 70
31 | 1 | 1 | 5 5 | 1 1 | 1 | 5 5
1 1
1 1 | 1 | 1 | | 1 | | | 12
12 | 12 | | | | 2750
2740 | 12 | | | BARTER IS
BETHEL
BETTLES | WBAS
WBAS
FAA | 70 08N
80 47N
86 55N | 161 48W | 50
131
672 | 1 1 | 1 | 1 3 | 1 1 | 1 | 1 1 1 | 1 1 | 1 | 1 | 1 | | | 12 | ļ | | | | 2661
2653 | 33 | | | BIG DELTA
CAPE DECISIO | FAA | 64 DON | 145 44W | 1275
50 | 1
5 | 5 | 5 9 | 1 1 | 1 | 5 5 | 5 5 | 5 | 5 | 5 | 12 | | 12 | | | | | 2541
2531
2641 | 15 | | | CAPE HINCHIN
CAPE LISBURN | CG
AFS | 60 14N | 166 084 | 185 | 7 | 기기 | 7 | 7 7 | 7 | 5 9
7 7
1 1 | 7 7 | 기 | 7 | 5
7
1 | | | 12
12 | | | | | 2683
2582 | 31 | | | CAPE NEWENHA | AFS
CG | 58 39N
61 47N
54 36N | 166 02W | 543
434
176 | 1 1 5 | 1 | 1 | 1 1 5 5 | 1 | 1 1 | | 1 | 1 | | | | 12 | | | | | 2663
2562 | 22 | | | CAPE SARICHE
CAPE SPENCER
CAPE ST ELIA | CG | 58 12N | | 88
50 | 6 | [6] | 6 0 | 5 5 | 8
6 | 6 6 | 5 6
5 6 | 6 | 6 | 6 | 12 | | 12 | | | | | 2531
2540
2663 | 01 | | | CAPE THOMPSO | SPL | 68 06N | 185 46H | 36
935 | | Ш | | ı | 3 | 11 | 3 3 | П | 3 | 3 | | | 12 | 01 | | 12 | | 2641
2562 | 19 | | | COLD BAY
CORDOVA | WBAS
WBAS | 60 301 | 145 30W | 99
44
13 | 1 | 1 1 | 1 | 1 1
1 1
5 5 | 1 2 | 1 : | 1 1
1 1
5 5 | . i | 1 | 1 5 | | | 12 | | | | | 2641
2531 | 17 | | | CRAIS
DILLINGHAM
DRIFTWOOD BY | SAHI
AFS | 59 031 | 133 09W
158 27W
166 51W | 50
1277 | 5 | 5 5 | 5 | 5 5 | 5 | 5 ! | 5 5 | | 5 | 5 | | | | | | | | 255 1
255 1 | 15 | | | DUTCH HARBOR | SAHI
A | 63 531 | 165 32W | 13
821 | 2 | 3 3 | 5 | 3 5
6 5 | 5 | 5 | 5 S | 5 | 5 | 5 | | | 12 | | | 12 | | 255:
264:
264: | 22 | | | EIELSON
EKLUTNA LAKE | AFB
COO | | 1 149 09W | 569
880
54 | 1 | | | 1 1
5 5 | ı | H | 1 1 | ļ | 5 | 5 | | | 12 | | | | 12 | 253 | 18 | | | ELDRED ROCK
ELMENDORF
FAIRBANKS | CG
AFB
FAA | 58 581
61 151
64 511 | 149 484 | 176
43a | : | | | 1 1 | | | 1 2 | ιļı | 1 | 1 | | | 12 | | | 12 | | 2640
264 | | | | FAIRBANKS
FAREHELL | HBA: | | 147 52W
153 54W | | : : | 1 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 1 | 1 | 1 | | | 10 | 12 | | | | 265
263 | 19 | | | FIVE FINGER
FORT YUKON | FAA | 57 161
66 358 | 145 18H | 30
425
125 | ؛ ١ | 5 5
5 5 | 5 | 5 5
5 5 | 5 | 5 | 5 5
5 5 | 5 5 | 5 | 5 | | | 12 | | | | | 264
265 | 13 | | | GILMORE CREK
GUARD ISLAND | CBG | | 147 25H | 973 | ١ | 5 5 | П | | 1 | ١, | l | 5 5 | | 5 | | | 04 | 03 | 94 | | | 253 | | | | GULKANA
GUSTAVUS | FAA
FAA | 62 09
68 25 | N 145 274
N 135 424 | 29 | • | 1 1 | 1 | 5 5
1 1
1 1 | 1 1 | 11 | 1 : | 1 1 | 1 | 1 | | | 12 | | | | | 264
253
255 | 122 | | | HOMER
HOOPER | FAA | | N 166 06H | 80 |) : | 1 1
3 3
5 5 | 4 | 1 1
3 5 5 | 3 | 3 | 3 : | 1 1
3 3
5 5 | 3 | | | | 1.2 | | | | | 265 | | | | HUGHES
ILIAMNA
INDIAN MTN | FAA
AFS | 55 04
59 45
66 00 | N 154 55L | 152 | 2 | 1 1 | 1 11 | 1 3 | 1 1 | 1 | 1 . | 1 1 | 11 | 1 | | | 12 | | | | | 255
265 | 35 | | | JUNEAU
KENAI | | 56 22
60 34 | N 134 354
N 151 154 | 9: | ı I | 1 1 | 1 1 | 1 1 | 1 1 | 11 | 1 | 1 1 | 1 | 1 | | | 12 | 12 | | 12 | | 263
265
253 | 23 | | | KETCHIKAN
KING SALMON | SAH | | N 156 391 | 4 | 7 | 5 5
1 1
1 1 | 1 | 5 9 | 5 5
1 1
1 1 | 1 | 1 | 5 5
1 1
1 1 | 1 | 1 | | | 12 | | | 11 | | 255
255 | 503
501 | | | KODIAK
KOTZEBUE
LINCOLN ROCK | MAF
MBA
CG | | N 152 384 | 1 2 | ا د | 1 1 | 1 1 | 5 | 1 1
5 9 | 1 5 | 5 | 1 1 | 5 | 1 5 | | | 12 | | | | | 265
253 | 326 | | | MANLEY HOT S
MCGRATH | A | 65 00
5 62 58 | N 155 371 | 34 | 1 | 5 5 | 1 | 5 ! | 5 5 | 비비 | 1 | 5 5
1 1 | 1 1 | 1 | | | 12 | ĺ | | | | 265
265
254 | 510 | | | MIDDLETON IS
MINCHUMINA | AFS
FAA | 63 53 | N 152 171 | 70 | 1 | | 1 1 | 1 | 1 1 | 1 1 | 1 | 1 1 | 1 | 1 | | | 12
12
12 | | | | | 265
266 | 512 | | | MOSES POINT
MT VILLAGE
NENANA | FAF
SA
FAF | 62 07 | N 163 431 | 4 | 9 j | | 3 3 | 3 | | 3 3 | 1 | 3 3 | | 3 | 11 | ۱ ا | 11 | | | | | 265
264 | 435 | | | NIKOLSKI
NOME | AFS | 52 55
S 64 30 | N 188 47 | 70 | 5 | 5 5
1 3 | 5 | 5 | 5 5 | 5 5 | 5 | 5 ! | 5 | | | | 12 | | | | | 266 | 626
617
632 | | | NORTHEAST CA | AFS | 63 19 | N 168 56 | 4 3 | 3 | | | 1 | | 1 1 | 1 1 | | 1 1 | | İ | | 03
09
12 | 1 | | | | 266 | 632
412 | | | NORTHWAY
NUNIVAK | FAF
SA | 60 23 | N 141 56
IN 166 12
IN 159 59 | 4 4 | 5 | | 3 3 | 3 | 3 i : | 3 3 | 3 | 3 : | 3 3 | | 12 | 2 | 12 | | | | | 265 | 622
525 | | | PALMER
PALMER | A A | 61 36 | | 19
4 27 | 8
5 | 3 | 3 3 | 3 | ر اد | 3 3 | 3 | 3 | 3 3 | 3 | | | | | | | | 253 | 331
331
329 | | | PETERSBURG
PLATINUM | A | 58 49
59 01 | N 132 57 | µd 5
µ 2 | 0 | | 5 5
5 5 | 5 | 5 1 | 5 5 | 5 | 5 9 | 5 5 | 5 | | | 09 | | | | | 250 | 329
613
506 | | | POINT BARROW | AF: | 71 16 | | 비 | 8 | 5 | | | ı | 5 5 | iΙ | | 5 5 | 5 | | | | | | | | 279 | 506
348 | | | PORT ALEXAND
PORT CLARENC
PORT HEIDEN | G
G | 56 15
65 15
56 57 | N 166 52 | M 1 | 8 | | | | | | 1 | 5 | 5 5 | 5 | QI | Б | 06 | 1 | | | | | 508 | | | PORT MOLLER
PT RETREAT | AF: | 56 DG
58 29 | ON 160 31
ON 134 57 | 비 103
비 2 | 0 | 5 | 5 5
5 5 | 5 | 5 | 1 1
5 5
6 5
6 5 | 5 | 5 | 5 5 | 5 | | | 01 | | | | - | 25: | 625
330
526 | | | PUNTILLA | A | 62 00 | 5N 152 45 | ₩ 183 | 7 | 5 | 5 5 | 5 | 7 | ء اء | | " | 5 5 | 5 | ļ | | | 1 | | 1 | ļ | 1 1 20 | - | | | ALAS | KA | | | | | | | | | | | | | | NUM | IBER | 0F | MONTI | 15 II | N YER | AR WI | тн | |---
--|--|----------------------------|---|------------------|---|---|---|--|--|---|---|--|--|----------|---------|--|----------|--|-------------------|----------|----------
--| | | | | | | | HOU | RLY | RE | CO | RDS | В | M | ONT | Н | , | / / | <i>'</i> . / | /20 | / £2/ | // | / • / | 40/ | / 🐉 / | | | | | | | | | | | | - | ER | | | | Š | Z /~ . | | § / [| | , 5 /s | | | HBAN | | | NAME | TYPE | LAT. | LONG. | ELEV. | J | F | ++ | | 1/7 | A S | 3 0 | N | P | 5 | 5/ \$ 3 | <u> </u> | <u> </u> | / R 6 | 9/3°4 | <u> </u> | <u> </u> | NUMBER | | | NAME BIG LAKE CAPE DECISIB CAPE DECISIB CAPE HINCHIN CAPE LISBURN CAPE LISBURN CAPE NEMENHA CAPE REMANZB CAPE SPENCER CAPE SELICHE CAPE SARICHE CAPE SENCER CAPE ST ELIA CAPE THOMPSB CLEAR COBLD BAY CORDODA | HE SUBSTITUTE AND BEEN AND BEEN AND SECTION OF THE STATE AND SECTION OF A O | 20 | 134 9 50H 134 08H 136 52H 136 38H 137 38H 137 38H 138 38H 139 13H 131 33H | | J 3657 11 5653311555351 51115 5 15111 517 1151115511113151113 | M 557 11 5653 11555351 51115 6 151111 617 11611115511111 1511133355 566555356 51515151553575111 | A 356 71 15653 11555351 51115351 5111 51 71151115611111 1511133 | H 356 71 15653 11555361 61115551 61111 51 7115111555111 151111333555555555 356 8151353757511 | J 355 71 1 555 331 1555 351 51115 51 5111 51 7115111551111 1511133355555555 356 515155357511 | A 365 71 15653 11565351 51115 51 51 11 51 711 | 0 0 0 71 16653 111555551 511115 51 51111 51 71151111551111331511113315555555555 | N 55 71 1556351 511115351 51111351 71151111511113355555555 356 51515535711 | 55 71 15653 11556351 51115351 5111351 7115111551111315111335555555 563515155357111 | 12 12 12 | | 12 000 000 000 000 000 000 000 000 000 0 | 12 02 | Subject of the state sta | 12 12 12 12 12 12 | 12 | | NUMBER 25315 26631 25623 26631 25623 26631 25623 26633 26632 26633 26632 26633 26632 26633 26632 26633 26632 26633 26632 26633 26632 26633 26632 26633 26632 26633 26632 26633 26632 26640 266410 2664 | | j | TATALINA
TELLER
TIN CITY | A | 62 53N
65 16N
65 34N | | 939
10
271 | 5 5 | 5 | 7 7
5 5
1 1 | 5 | 7
5
1 | 7 7
5 5
1 1 | 5 | 7
5 | | | | 12 | | | | | | 26536
26626
26634 | | 1 | | | | | -/1 | -1 - | | ٠١, | ' ' | | 111 | 1 | + | 1 | 1 | - | 12 | | 1 | } | | İ | 26634 | | | ALAS | KA | | | | | | | | | | | | | | NUI | MBER | OF I | MONTH | IS IN | | AR WI | | |-------|--|--|---|---|--|--|---------------------------------|---|----------------------------|---------------------------|---------------------------------------|---|----------------------------|--|--|------|--|--|---------------|---|---|-------
--| | | | | | | | HOU | RLY | R | ECQ. | RD | S (| BY | HOI | NTH | , | /s / | / _/ | The state of s | Series Series | | /
\$/ | | \s* | | venal | NOME | TURE | احمنا | , aug. I | = | | | 24
[a] | | | | | | | Ž. | | | | | 1 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | MBAN | | YEAR | NAME
SOND BOINT | TYPE | | LONG. | · · · · · · · · · · · · · · · · · · · | | | ↤ | _ | | | 4-4 | - | | <u>/ </u> | 7 | / ° | _~ | <u> </u> | 7 | /*` | 7 * | | | 1962 | SAND PGINT SELDOVIA SENTINEL IS SEMARD SHEEP MTN SHEEP MTN SHEMYA SISTER IS SITKA SITKINAK SKAGWAY SKWENTNA SLEETMUTE SOLDBINA SPARREVBHN ST PAUL IS SUMMIT TALKEETNA TATAL INA TETAL INA TETAL INA TELLER TIN CITY TREE PGINT UMTAT UMTAK UNALA XLEET VALDEZ WAINWRIGHT HALES WALDEZ WAINWRIGHT HALES WALDEZ WAINWRIGHT HALES | | 60 07N
61 48N
58 14N
56 104N
56 33N
56 27N
60 27N
61 08N
62 10N
63 10N
65 16N
65 16N
65 16N
65 16N
65 16N
65 25N
65 25N
65 25N
65 25N
66 22N
66 25N
66 27N
67 27N
67 27N | 134 55H
148 27H
148 27H
147 26E
135 15H
135 15H
135 25H
135 25H
154 12H
157 11H
157 11H
157 12H
156 25H
150 05H
150 05H | 50
19
19
2280
125
35
66
53
18
153
245
1729
2410
251
240
939
136
271
337
337
130
215
29 | 1
5
1
5
5
3
5
7
1
1
1
7
5
1
5
3
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1 | 6 8
5 5
1 1 | 3 5 6 5 1 5 5 3 5 3 7 1 1 1 1 7 5 1 5 5 1 5 5 | 35851515535371111751535155 | 3565151553547111751536155 | 5651515535471111751535155 | 5 5 6 5 5 5 5 5 5 5 5 5 7 1 1 1 1 1 7 7 5 1 5 5 5 5 | 56515155355711117515 51553 | 5 5651515535557111117515351553 | | | 12
12
12
12
12
12
11
12
12 | | | 03 | | | 26438
26439
45715
25333
25335
26514
26534
25713
26414
26529
26534
25529
26534
25537
26534
25337
26534
25337
26521
26624
25337
26521
26627
26442
27503
26618 | | | WRANGELL
YAKATAGA
YAKUTAT | A
FAA | 56 28N | 132 23H
142 30H | 43
33
31 | 5 | 5 5
1 1 | | 5 | 5 | 5 5 | 5 5 | 5 | 5 5 1 1 1 | | | 12
12 | | | | | | 25338
26445
25339 | | 1963 | ADAK
ANCHORAGE
ANCHORAGE
ANGOON
ANIAK
ANNETTE | NS
WBAS
LAWR
A
FAA
WBAS | 51 53N
61 10N
61 13N
61 33N
61 35N
55 02N | 176 39W
149 59W
149 50W
134 35W
158 32W
131 34W | 16
105
134
14
91 | 1
1
1
5 | 1 1 1 1 5 5 5 1 1 1 1 | 1
1
1
5 | 1
1
1
5 | 1 1 5 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 5 5 1 1 1 | 1
1
1 | 1 1
1 1
1 3
5
1 1 | | | 12
12
12 | 12 | | 12 | | | 25704
26451
26409
25310
26516
25308 | | | ARCTIC VILAG
ATTU
BARROW
BARTER IS
BETHEL
BETTLES
BIG DELTA
CANYON VILAG | COOP
CG
HBAS
HBAS
HBAS
FAA
FAA
COOP | 52 50N
71 18N
70 08N | 173 11E
156 47W
143 38W
161 48W
151 31W
145 44W | 2250
70
31
50
131
672
1275
990 | 1 | 1 1 | 1 1 | 1 1 | 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 | 5 5
1 1
1 1
1 1
1 1 | 1 1 1 1 | 5 5
1 1
1 1
1 1
1 1
1 1 | | | 12
12
12
12
12 | 07
12 | 01 | | | | 45712
27502
27401
26615
26533
26415 | | | CAPE DECISIO CAPE HINCHIN CAPE LISBURN CAPE RUBENHA CAPE ROMANZO CAPE SARICHE CAPE SPENCER CAPE ST ELIA CAPE THOMPSO CENTRAL CHALKYITSIK | CG
CG
AFS
AFS
CG
CG
CG
SPL
COOP | 56 DON
80 14N
68 53N
58 39N
61 47N
54 36N
58 12N
59 48N
68 06N | 134 08W
146 39W
166 08W
162 04W
164 56W
136 38W
144 46W
144 49W | 50
185
52
235
434
176
88
50
36 | 5
7
1
1
5 | 6 E | 5
7
1 | 5
7
1
1
5
5 | 7
1
1
5 | 5 9 1 1 1 1 1 1 5 5 6 6 | 5 5
1 1
1 1
1 5
5 6 | 5
1
1
5
6 | 5 6 5 1 1 1 1 5 5 6 6 6 | | | 11
12
12
12
12
11
12 | | | | | | 25315
25417
26631
25623
25623
25622
25316
25401
26636 | | | CHENA HOT SP
CIRCLE HOT S
CLEAR | COOP
SAWR | 65 03N | | 1200
935 | 3 | | | | | | | | 3 3 5 5 | | | | 07 | | | | | 26419 | | | COLD BAY COLLEEN CORDOVA CCRAIG DILLINGHAM DRIFTHOOD BY DUTCH HARBOR EAGLE EAGLE | | 55 12N
67 44N
60 30N
55 29N
59 03N
53 59N | 162 43H
142 28H
145 30H
133 09H
158 27H
166 51H
166 32H
141 12H | | 5 | 1 1
5 5
5 5
5 5 | 5 | 1 5 5 5 | 5 | 1 1
5 5
5 5 | 1 1 5 5 5 5 5 5 3 3 | 1
5
5 | 1 1 1 5 5 5 5 4 4 | | | 12 | 05 | | 12 | | | 25624
25410
25317
25513
25515
25614
26422
26422 | | | EJELSØN
EKLUTNA LAKE
ELDRED RØCK | AFB
COOP
CG | 64 41N
61 24N
58 58N | 147 05W
149 09W | 569
880
54 | 1 | 1 1 5 | 1 | 1 | 5 | | 1 1
5 5 | 1 | 1 1 5 5 | | | 12 | | | 12 | 12 | | 26407
25316 | | | ELMENDORF
FAIRBANKS
FAIRBANKS | AFB
WBAS
FAA | 61 15N
64 49N
64 51N | 149 48W
147 52W | | 1 1 | 1 1
1 1
5 5 | 1 1 | 1 | 1 | 1 2 | 1 1 | 1 | 1 1 1 | | | 12
12 | 12 | | 11 | | | 26401
26411 | | | FAREWELL
FIVE FINGER
FORT YUKON
GALENA
GILMORE CREK | FAA
CG
A
AFS
COOP | 62 32N
57 16N
56 35N
64 44N
64 59N | | 1503
30
425
125
973 | 5 | 1 1
5 5
5 5
1 1 | 5 5 | 5 | 5 | 5 9
5 9 | i 1
5 5
5 5
1 1 | 5 | 1 1
5 5
5 5
1 1 | | | 12
12
12
04 | 04 | | 08 | | | 26519
25319
26413
26501 | | | GUARD ISLAND
GULKANA
GUSTAVUS
HAINES
HOMER
HOGPER | CG
FAA
FAA
A
FAA
SAWR | 55 27N
62 09N
58 25N
59 14N
59 38N
61 30N | 131 53W
145 27W
135 42W
135 27W
151 30W
166 06W | 20
1579
29
70
73
e0 | 1 1 3 | 5 5
1 1
1 1
3 2 | 1 1 1 3 3 | 1 1 3 | 1 1 3 | 1 2 2 3 3 | 5 5
1 1
1 1
5
1 1
3 3 | 1
5
1
3 | 1 1
5 5
1 1
3 3 | | | 12
12 | | | | | | 25320
26425
25322
25323
25507 | | | HUGHES ILIAMNA INDIAN MTN JUNEAU KENAI KETCHIKAN | A
FAA
AFS
HBAS
FAA
SAWR | 60 34N | 154 14W
154 55W
153 42W
134 35W
151 15W
131 34W | 20
91 | 1
7
1 | 5 5
1 1
7 7
1 1
5 5 | 1 1 7 7 1 1 1 1 | 1 7 1 1 | 1 7 1 | 1 :
7 :
1 : | 5 5
1 1
1 1
1 1
5 5 | 1 1 1 1 | 5 5
1 1
1 1
1 1
5 5 | | | 12
12
12 | 12 | | - 11 | | | 26522
25506
26535
26309
26523
25325 | | Ω | L | ۵ | S | ĸ | C | |---|---|---|---|---|---| | м | ı | н | ה | n | • | | | HLHS | VН | | | | | | | | | | | | | | NUI | 1BER | OF | MONT | HS II | N ÝEI | AR H | I TH | |------|------------------------------|--------------|------------------|--------------------|-------------|--------|-----|--------------------------|------|---|------------|-----|------------|------------|-----|------|--------------|--
--|--------|--|------|-----------------------------| | | | | | | | но | URL | YF | REC | ORD | 8 8 | Y I | MON | ith | | / / | / | / - | Service Servic | / - | / | / | / & / | | | | | | | | | 1 - | . 2/ | ı n | BS I | DEB | • n | ۵v | | | | */ | To the state of th | § / | | | | 3/ | | YEAR | l nome |) | | خبيد ا | | | | | | | | | | ı | /\$ | # /2 | E / d | § / ; | \$ /\$ | 5/s | . S. | | g ^e / WBAN | | TEME | NAME | TYPE | LAT. | LONG. | ELEV. | l | F | M A | M | J. | ۱þ٩ | 8 | 0 | סןא | 154 | Z/₹% | / & | / ~ | /** | K/ 2 4 | */** | ₹/ ₹ | NUMBER | | 1963 | KING SALMON | HBAS | | | 47 | Ţ | 1 | 1 1 | 1 1 | 1 | 1 1
1 1 | 1 | 1 | 1 1 | | | 12 | | | 1 11 | } | | 25503 | | | KODIAK
KOTZEBUE | NAF
HBAS | 66 52N | 152 30H
162 38H | 116
20 | | | 1 1 | | 1 | 1 1 | | | 1 1 | | 1 1 | 12 | 01 | | 12 | 12 | Ì | 25501
26616 | | | LINCOLN ROCK | CGGP | 67 30N
56 03N | 148 30H
132 48H | 1900 | | اءا | | | 1 | 1 | H | ļ | - | ľ | | | 07 | İ | | | | ŀ | | | LIVENGGGD | COOP | 65 32N | 148 31W | 580 | 5 | | 5 5 | 11 | | 5 5 | 5 | 5 | 5 5 | | | | 07 | į | 1 | | | 25326 | | | MANLEY HOT S | A
HBAS | 65 00N | 150 39H | 265
341 | 5 | 5 | 5 5 | 5 | 5 | 5 5
1 1 | 5 | 5 | | | 1 1 | 12 | | Ì | | | 1 | 26524 | | | MIDDLETON IS | AFS | 59 27N | 146 19H | 121 | 1 | 11 | 1 1 | 1 | 7 | 1 | | | | | 1 1 | 06 | | | | | Ì | 26510
25403 | | | MINCHUMINA
MOSES POINT | FAA
FAA | 63 53N
64 42N | 152 17W | 701
21 | 1 | | 1 1 | 1 1 | 1 1 3 | 1 1 | 1 | | 1 1 | | | 12 | | | | | l | 26512
26620 | | | MT VILLAGE
NENANA | SA
FAA | 62 07N
84 33N | 163 43H | 49 | 3 | 3 | 3 3 | 3 | 3 | 3 3 | 3 | 3 | 3 3 | 12 | | 12 | | 1 | | | | 26621 | | | NIKOLSKI | AFS | 52 55N | 149 05W | 364
705 | 5 | | 1 1 | 5 | 5 | 1 1 | | 5 | | | | 12 | | Ì | | | | 26435
25626 | | | NOME
NORTHEAST CA | HBAS
AFS | 64 30N | 165 26W | 18
33 | 1 | 1 | 1 2 | | 3 1 1 1 1 1 | 1 1 | 1 | 1 | 1 1 | | | 12 | 12 | | 03 | | İ | 26617 | | | NORTHHAY | FAA | 62 57N | 141 56H | 1718 | 1 | 1 | 1 1 | 1 11 | 1] 3 | 1 1 | 1 | | 1 1 | | | 12 | | | | | | 26632
26412 | | | NUNIVAK
NYAC | SA
SAHR | 60 23N | 166 12H | 450
450 | 3 | 3 | 3 3 | 3 | 3 3 | 3 3 | 3 | 3 | 3 3 | 11 | | 12 | | | | | | 26622
26525 | | | PALMER
PETERSBURG | A | 61 36N | 149 05H | 198 | 3 | 31 | 3 3 | 131 | 3 3 | 3 | 3 | | 4 | | | - 1 | | | | | | 25331 | | | PLATINUM | Ä | 56 49N | 132 57W | 50
20 | 5 | 5 | 5 5
5 5 | | 5 5 | 5 5 | 5 | | 5 5 | | | 12 | | | | | | 25329
25513 | | | POINT BARROW
PORT ALEXAND | AFS
A | 71 20N
56 15N | 156 39H | 8
16 | 5 | 5 | 5 5
5 5 | 15 | 5 5 | | | | 5 5 | | | | | | l i | | | 27506 | | | PORT CLARENC | CG | 65 15N | 166 52H | 18 | ı | 1 | 1 1 | 1 | 1 1 | ı 5 | 5 | | 5 5 | 11 | | 11 | | | | | | 25348 | | | PORT HEIDEN
PORT MOLLER | A
AFS | 56 57N
56 00N | 158 37H | 1038 | 5 | 5 | 5 5
5 5 | 5 | 5 5 | 5 | 5 | | 5 5 | | | | | | | | | 25508
25625 | | | PT RETREAT
PUNTILLA | CG
A | 58 25N
62 06N | 134 57H | 50 | 5 | 5 9 | 5 5 | 5 | 5 5 | i 5 | 5 i | 5 9 | 5 5 | | | | | | | | İ | 25330 | | | RAMPART | COSP | 65 30N | 150 08H | 1837
400 | 7 | 5 | 5 5 | 1 1 | 5 5 | i i | 1 1 | 5 ! | 5 5 | | | | 07 | | | | | 26526 | | | SAND POINT
SENTINEL IS | SAHR
CG | 55 20N
56 33N | 180 30H | 50
60 | 5 | 5 | 5 4
5 5 | 5 | 5 5 5 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5 | 5 | | 5 5 | | | ŀ | _ | | | | | 25617 | | | SEHARD | A | 60 D7N | 149 27H | 76 | 6 | 6 | 5 5 | 6 | 6 € | 6 | 5 | 5 0 | 6 6 | | | 12 | | | | | } | 26438 | | | SHEEP MTN
SHEMYR | A
MBAS | 61 48N | 147 41W | 2260
125 | 5 | 5 ! | 5 5
1 1 | 5 | 5 5 | 5 | 5 | | 5 5 | | | 12 | | | | | | 26439
45715 | | | SISTER IS
SITKA | A
FAA | 58 10N
57 04N | 135 15H | 35 | 5 | 5 9 | 5 5 | 5 | 5 5 | 5 | 5 | 5 5 | 5 5 | | | | | | | | | 25341 | | | SITKINAK | CG | 56 33N | 154 OBH | 56
53 | 5 | 5 | 1 1
5 5 | 5 | 6 6 6 1 1 5 5 5 5 | 5 | 1 | | 1 1 | | | 12 | | | | | | 25333 | | | SKAGHAY
SKHENTNA | A | 58 27N
61 58N | 135 19H
151 12H | 18
153 | 5
3 | 5 5 | 5 5
5 5
3 3
5 5 | 3 | 5 5
3 3
5 5 | 5 | | 5 9
3 3 | 5 5 | | | | | | İ | | | 25335
36614 | | | SLEETMUTE
SOLDOTNA | A
SAUR | 61 42N | 157 11H | 285 | 5 | 5 | 5 5 | 5 | 5 5 | 5 | 5 | 5 5 | 5 5 | | | - 1 | | | | | | 26514 | | | SPARREVOHN | AFS | 61 06N | | 115 | 7 | 5 1 | 5 5
7 7 | 5 | 5 5 | | 1 | 1 1 | 5 5 | | | 11 | | | | | | 26534 | | | ST PAUL IS
SUMMIT | | 57 09N
63 20N | 170 13H
148 08H | 28
2410 | 1 | 1 : | 1 1 | 1 | 1 1 | 11 | 1 | 1 1 | 1 2 | | | 12 | | | | | | 25713 | | | TALKEETNA | FAA | 82 1BN | 150 06W | 351 | 1 | 1 : | 1 1 | 1 | 1 1 | 1 | 1 | | l 1
l 1 | | | 12 | | | - 1 | | | 26414
26528 | | | TANANA
TATAL INA | | | 152 06W | 240
939 | 7 | 7 | 1 1 | 1 7 | 뷔 | 1 | 1 7 | | 1 1 | | | 12 | | | | | | 26529
26536 | | | TELLER
TIN CITY | A . | 65 16N | 166 21W
167 55W | 10 | 5 | 5 5 | 5 | il | 1 | П | 1 | 1 | | | | - 1 | | | l | | | 26626 | | | TREE POINT | CG | 54 4BN | 130 55H | 271
35 | 5 | 5 5 | | 5 | 1 1
5 5 | | | 1 1
5 5 | 5 5 | | | 12 | | ı | 1 | | | 26634
25337 | | - 1 | UMIAT
UMNAK | | | 152 08W | 130 | 3 | 3 5 | | 5 | 5 5 | 5 | 5 | | 5 5 | l | | | | | | | | 26508 | | - [| UNALAKLEET | FAR | 63 53N | 160 48H | 51 | 1 | 1 2 | 5 5 | 1 | 1 1 | 1 | 1 | 1 1 | 1 1 | - 1 | 1 | 12 | | .] | - 1 | | | 25621
26627 | | | VENETIE VALDEZ | | 61 07N
67 00N | | 15
620 | 5 | 5 5 | 15 | 5 | 5 5 | 5 | 5 | 5 5 | 5 | - 1 | | - 1 | 07 | | | | | 26442 | | - | HAINHRIGHT
HALES | SAWR | | 160 04H | 29
18 | | 5 5 | | 5 | 5
3 3 | 5 | 5 | , , | 3 | - 1 | Ì | . [| | | | | | 27503 | | | WIDE BAY | SAHR | 57 22N | 158 25H | 20 | ٦ | 1 | | 3 | | 3 | 3 | 3 | ו"ו | | | 05 | | | | | | 26618 | | - 1 | HILD LAKE 2 | A | 67 33N
56 28N | 132 234 | 1180 | 5 | 5 5 | , 5 | 5 | 5 5 | 5 | 5 | 5 5 | 5 | ļ | - 1 | - 1 | 02 | | - | | | 25338 | | I | YAKATAGA
YAKUTAT | FAA | 80 05N | 142 30H | 33 | 1 | 1 1 | 1 1 | 1 | 1 1 | 11 | 1 | 1 1 | 1 1 | - 1 | | 12 | | | İ | - | | 26475 | | | | | 1 | | 31 | | - | 1 1 | | 1 1 | П | - 1 | 1 | 1 1 | 1 | | 12 | | | | I | ļ | 25339 | | 1964 | ADAK
ANCHURAGE | FAA | 61 13N | 176 39W | 15
134 | 1 | 1 1 | 1 | 1 1 | 1 1 | 1 1 | 1 | 1 1 | 11 | | | 12 | 12 | | 12 | ļ | | 25704
26409 | | | ANCHBRAGE
ANCHBRAGE | | | 149 59H | 105 | 1 | 1 1 | 4 | | 1 | 11 | | 1 | 1 1 | | | 03 | 03 | ļ | 03 | | | 26451 | | - 1 | ANCHORAGE PS | COOP | 51 13N | 149 52H | 147
85 | - | | 11 | 1 | 1 1 | Ιſ | - 1 | 1 1 | 11 | | | 09 | 15 | i | 09 | | I | 26451 | | i | ANGOON
ANIAK | | | 134 35H | 14
91 | 5 | 5 5 | 5 | 5 | 5 5
1 1 | 5 | 5 1 | 5 S
6 8 | | | | | | | | 1 | | 25310 | | | ANNETTE | MBAS | 55 O2N | 131 34H | 113 | ī | î i | i | 1 | i i | 1 | | 1 1 | | Ì | | 12 | 02 | | 11 | Ì | | 26516
25308 | | | ARCTIC VILAG | CG | 58 08N | 173 11E | 2250
70 | 5 | 5 5 | 5 5 | 5 | 5 5 | 5 | 5 | 5 5 | 5 | - | | | 09 | | | | | 45712 | | - | BARROH
BARTER IS | HBAS
HBAS | 71 18N | 156 47W | 31
50 | 1 | 1 1 | [1 | 1 | 1 1 | | 1 : | 1 1 | 1 1 | ŀ | | 12 | 06 | - 1 | | | | 27502 | | l | BETHEL | 2884 | 60 47N | 161 48H | 131 | 1 | 1 1 | 1 | | 1 1 | 1 | 1 | | | İ | | 12 | | - 1 | - 1 | | | 27 4 01
26615 | | | BETTLES
BIG DELTA | FAA | 64 DON | 151 31W | 672
1275 | | 1 1 | | | 1 1 | 1 1 | 1 | 1 1 | | | | 15 | | | | ĺ | ļ | 26533
26415 | | | CANYON VILAG | COOP | 67 D9N | | 990
50 | - 1 | | 1 1 | | | | | | 1 | | | - 1 | 12 | | - | l | - 1 | | | İ | CAPE HINCHIN | CG | 60 14N | 146 384 | 185 | 5 | 5 5 | 5 | 5 | | 5 | 5 9 | 5 5
5 5 | | 12 | İ | 11 | | - | - 1 | | | 25315
26417 | | | CAPE LISBURN | | 68 53N
58 38N | 166 08H | 53
235 | | 1 7 | | | 7 7
7 7 | | | 7 1
1 6 | 7 8 | | | 03 | | - } | | - | ľ | 56621 | | ļ | CAPE ROMANZO
CAPE SARICHE | AFS | 61 47N | 156 02H | 405 | 1 | 1 1 | 1 | 기 | 7 7 | 기 | 7 3 | 7 7 | 7 | | | 03 |
 l | | - | 1 | 25623
26633 | | į | CAPE SPENCER | CG | 54 36N
58 12N | 136 38H | 176
88 | 5 | 6 6 | 6 | 6 | 5 5
5 6 | 6 | 6 8 | 5 6 | 5 | 12 | 1 | 12 | | | - 1 | | 1 | 25622
25316 | | | CAPE ST ELIA | | 59 48N
65 33N | | 50
1000 | 5 | 6 6 | 6 | 6 | 6 6 | 6 | 6 1 | 5 6 | 6 | 12 | | 12 | 11 | | | | | 25401 | | Ì | CHALKYITSIK
CHENA HOT SP | COOP | 66 38N | 143 43W | 560 | | | | | | | | | | - 1 | | | 12 | - | } | j | | | | | CIRCLE HOT S | | | 146 D3W | 1200
935 | 3 | 3 3 | 3 | 3 | 3 3 | 3 | 3 : | 3 3 | 3 | | | - [| 12 | 1 | - [| | | 26419 | | - 1 | i | 1 | 1 | | ı | I | 1 | 1 1 | 1 | 1 | ıl | 1 | 1 | 1 1 | - 1 | | į | - 1 | - 1 | - 1 | - 1 | - 1 | | | | ALASI | KA | | | | | | | | | | | | | | | NU | MBER | OF I | MONT | 45 IN | I YEF | AR WI | TH | |------|--|---------------------|----------------------------|--------------------|-----------------------|-------------|----|-----|-----|----------------|-------------------|-----|----|-----|-------------------|-----|------|--|--|------|-------------|---------------------|-------|---------------------------------| | | | | | | | но | UR | LY | RE | CO | RDS | 3 B | Y | 10N | ТН | | , | , | | | | | | \ \s \ \ | | | | | | | | | 1 | - : | 24 | DBS | 5 P | ER | DF | łΥ | | Ś | Z /~ | | The state of s | | , \$\
\$ | | | HBAN | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | ر | F | m | A I | 1 J | ר ו | A | s | 0 | 0 | 2.4 | | To the last of | 1.3 | 186 | | Lange of the second | | NUMBER | | 1964 | CLEAR
COLD BAY | SAHR | | 149 09H
162 43H | 546
99 | 1 | 5 | | | | 5 5
1 1 | | | | 5 5
1 1 | | | 12 | | | 12 | | | 25624 | | | COLLEEN
CORDOVA | COOP
HBAS | | 142 28W
145 30W | 900
4 5 | ١, | , | 1 | 1 | 1 2 | 1 1 | 1 | 1 | 1 | 1 1 | | | 12 | 80 | | | | | 26410 | | | CRAIG
DILLINGHAM | A
SAWR | 55 29N
59 03N | 133 D9W
158 27W | 13
50 | 5 | | | | 5 5 | 5 5
5 5 | 5 | | | 5 5
5 5 | | | | | | | | | 25317
25513 | | | DRIFTHOOD BY
DRIFTHOOD BY | AFS
AFS | 53 59N
53 58N | 166 51W | 1277
1298 | 5 | 5 | 5 | 5 | 5 5 | 5 5 | 1 1 | 5 | 5 | 5 5 | | | | | | | | | 25515
25515 | | | DUTCH HARBOR
EAGLE | SAWR
A | 53 53N
64 47N | | 13
840 | 5 | 3 | | 4 |]: | 3 4 | 3 | | 3 : | 3 3 | | | | | | | | | 25614
26422 | | | EIELSON
EKLUTNA LAKE | AFB
COGP | 64 41N
61 24N | 147 05W
149 09W | 569
860 | 1 | 1 | 1 | 1 | 1 2 | 1 1 | 1 | 2 | 1 | 1 1 | | | 03 | | | 12 | 12 | | 26 4 07 | | | ELDRED ROCK
ELMENDORF | ÇG
AFB | 58 58N
61 15N | 149 48H | 54
176 | 1 | 1 | 1 | 1 | 1 : | 5 5
1 1 | . 1 | 1 | 1 | 5 5 | | | 03 | | | 07 | | | 25318
25401 | | | FAIRBANKS
FAREWELL | HBAS
FAA | 62 32N | 147 52H
153 54H | 440
1503 | 1 | 1 | 1 1 | 1 | 1 1 | 1 1
1 1 | 5 | 5 | 5 | 1 1 | | | 12 | 06 | | | | | 26411
26519 | | İ | FIVE FINGER
FORT YUKON | e
CG | 66 35N | | 30
425 | 5 | 5 | 5 | 5 | 5 5 | 5 5
5 5 | 5 | | 6 | 5 5
5 5 | | | 12 | | | | | | 25318
26413 | | | GALENA
GUARD ISLAND | AFS
CG | 55 27N | | 149
20 | 5 | 5 | 5 | 5 | 5 5 | 1 1
5 5 | 5 | 5 | 5 | 1 1 | | | 03 | | | 12 | | | 26501
25320 | | - | GULKANA
GUSTAVUS | FAA
FAA | 62 09N
58 25N | 135 42H | 1579
29 | 1 | 1 | 1 | 1 | | 1 1 | 1 | 1 | 7 | 1 1 7 | | | 12 | | | | | | 26425
25322 | | | HAINES
HOMER | A
FAA | 59 3BN | | 70
73 | 1 | 1 | 1 | | 1 : | 5 5
1 1 | 1 | 1 | 1 | 5 5 | | | 12 | | | | | | 25323
25507 | | | HOGPER
HUGHES | SAUR | 66 04N | | 60
545 | 5 | | 5 | 5 | 5 5 | 3 3
5 5 | 5 | 5 | 5 | 3 3 | | | | | | | | | 26522 | | | ILIAMNA
INDIAN MTN | FAA
AFS | 66 00N | | 152
946 | 1 | 1 | 1 | 1 | 7 7 | 1 1 | 7 | 7 | 1 | 6 6 | | | 03 | ne. | | | | | 25506
26535
25309 | | | KENAI
KETCHIKAN | HBAS
FAA
SAHR | 58 22N
60 34N
55 20N | 151 15H | 20
91
0 | 1 5 | 1 | 1 5 | | 1 1 | 1 1
1 1
5 5 | 1 | | 1 | 1 1
1 1
5 5 | | | 12 | 06 | | 12 | | | 26523
26325 | | | KING SALMON | HBAS
NAF | 58 41N
57 45N | 156 39⊭ | 47
116 | 1 | 1. | | | 1 1 | 1 1 | | | 1 | 1 1 | | | 12
12 | 05 | | 10
12 | 12 | | 25503
25501 | | | KOTZEBUE
LAKE CHANDAL | WBAS
COOP | 66 52N | 162 38H | 20
1900 | î | | 1 | | | | 1 | | | i i | | | 15 | 12 | | | •• | | 26616 | | | LINCOLN ROCK | CG
COOP | 56 03N
65 32N | | 25
580 | 5 | 5 | 5 | 5 | 5 5 | 5 5 | 5 | 5 | 5 9 | 5 5 | | | | 12 | | | | | 25326 | | | MANLEY HOT S
MCGRATH | A
WBAS | 65 00N
62 58N | 150 39W
155 37W | 265
341 | 5 | | | 5 | | | 5 | 5 | | 5 5 ;
1 1 . | | | 12 | | | | | | 26524
26510 | | | MINCHUMINA
MOSES POINT | FAA
FAA | 63 53N
64 42N | 152 17H | 701
21 | 1 | 1 | 1 | | 1 1 | 1 1 | | 1 | 6 0 | 6 6
6 6 | | | 12
12 | | | | | | 26512
26620 | | | MT VILLAGE
NENANA | SA
FAA | 62 07N
64 33N | | 49
354 | 3 | | 1 | 1 | , , | 1 1 | 1 | 1 | 1 | 1 1 | 01 | | 01 | | | | | | 26621
26435 | | | NIKOLSKI
NOME | AFS
HBAS | 52 55N
64 30N | 168 47H
165 26H | 705
18 | 5 | | | 1 | 5 9
1 1 | 1 1 | | | | 5 5 | | | 12 | 05 | | 02 | | | 25626
26617 | | | NORTHEAST CA
NORTHWAY | AFS
FAA | 63 19N
62 57N | | 30
1718 | 1 1 | 1 | 1 | 1 | 7 7 | 1 1 | 1 | 1 | 1 | 1 7
1 1 | | | 03 | | | | | | 26632
26412 | | | NUNIVAK
PALMER | SA
A | 60 23N
51 36N | 149 D5W | 45
198 | 5 | 5 | | 5 | 5 5 | 5 5 | | | 5 4 | 3 3
4 5 | 12 | | 12 | | | | | | 26622
25331 | | | PETERSBURG
PLATINUM | A | 56 49N
59 D1N | 161 47W | 50
20 | 5 | 5 | 5 | 5 | 5 5 | | | | | 5 5 | | | 06 | | | | | | 25329
25613 | | | POINT BARROW | AFS
CG
A | 71 20N
65 15N | 156 39H | 19 | 5 | 5 | 5 | 5 | 5 5 | 5 5 | | 5 | 5 9 | 3 3
5 5 | 12 | | 12 | | | | | | 27506 | | | PORT HELDEN
PORT MOLLER
PT RETREAT | AFS
CG | 56 57N
56 00N
58 25N | | 92
1038
20 | 5 5 | 5 | 5 | 5 | 5
5 | 5 5
5 5
5 5 | 5 | 5 | 5 3 | 5 5 5
5 5 | | | | | | | | | 25508
25625
25330 | | | PUNTILLA
RAMPART | A
C00P | 62 Q6N | 152 45W | 1837
400 | 5 | | | | | 5 5 | | | | 5 5 | | | | 12 | | | | . | 26526 | | | SAND POINT
SENTINEL IS | SAHR | | 160 30H | 50
60 | 5 | 5 | | | | | 5 | | | 5
5
5 | | | | 12 | | | | | 25617 | | | SEWARD
SHEEP MTN | A | 60 07N | 149 27H
147 41H | 76
2280 | 5 | 6 | 6 | 6 | 6 6 | 5 6 | 6 | 6 | 6 0 | 5 6 | | | 12 | | | | | | 26438
26439 | | | SHEMYA
SISTER IS | ⊌BAS
A | 52 43N | 174 06E
135 15H | 125
35 | 5 | 1 | 1 | | 1 1 | 1 1 | 1 | | 1 | 1 1 | | | 12 | | | | | | 45715
25341 | | | SITKA
SITKINAK | FAA
CG | 57 04N | 135 21H
154 08H | 66
53 | 1 5 | 1 | 1 | 1 | 1 1
5 5 | 1 1
5 5 | 1 | 1 | 1 . | 1 1 | | | 12 | | | | | | 25333 | | | SKAGHAY
SKHENTNA | A | 59 27N
61 58N | 135 19W | 18
153 | 3 | | | | 5 9 | 5 5 | 5 | | 3 ! | 5 5 | | | | | | | | | 25335
26514 | | | SLEETMUTE
SOLDOTNA | A
SAHR | 61 42M
60 28M | | 285
115 | 5 | | li | 4 | | 4 | 4 | | | 4 4 | | | | | | | | | | | | SPARREVOHN
ST PAUL IS | AFS
WBAS | 61 06N
57 09N | 170 13⊯ | 1735
28 | 7 | 1 | | 1 | 1 1 | 1 7
1 1 | 1 | 7 | 1 | 7 7 | | | 03
12 | | | | | | 2653 4
25713 | | | SUMMIT
SUNSHINE LAK | FAA
COOP | 62 10N | 149 08H | 300 | 1 | Н | 1 | | 1 | 1 1 | | 1 | Į | 1 1 | | | 12 | 02 | | | | | 26414 | | | TALKEETNA
TANANA | FAA | 65 10N | | 351
240 | 1 | 1 | 1 | 1 | | 1 1 | 1 | 1 | 1 | 1 1 | | | 12 | | | | | | 26528
26529 | | | TATALINA
TIN CITY | AFB
AFS | 55 34N | 155 57H | 897
273 | 7 | 1 | 7 | 1 | | 7 1 | 1 | | 7 | 1 1 7 1 | | | 03 | | | | | | 26536
26634 | | | TREE POINT | CG
SAMR | 69 22N | 130 56W | 36
337 | 5 | 5 | | 5 | 5 5 | | 5 | 5 | 5 5 | 5 5 | | | | | | | | | 25337
26508 | | | UMNAK
UNALAKLEET
VALDEZ | SAHR
FAA
A | 53 23N
63 53N
61 07N | | 130
21
15 | 5
1
5 | 1 | 3 | 1 | 5 5 | 5
1 1 | | 6 | | 5 6 | | | 12 | | | | | | 25621
26627
26 442 | | | VALUEZ
VENETIE | H
B
C00P | 61 DBN
67 DQN | 146 15H | 75
620 | | | 2 | | 5 5 | 5 5 | 5 | 5 | 5 9 | 5 5 | | | | 12 | | | | | 26442 | | | WALES | SAHR | 65 37N
67 33N | 168 03H | 180 | 3 | 3 | 3 | 3 | 3 3 | 3 3 | 3 | 3 | 3 | 3 3 | | | | 12 | | | | | 26618 | | | WRANGELL
YAKATAGA | A
FAA | 56 28N | 132 23H | 43
33 | 5 | | | | 5 S | 5
1 1 | | | | 5 6 | | ! | 12 | •• | | | | | 25338
264 45 | | | YAKUTAT | MBAS | | 139 40W | 31 | Ī | | | 1 | i | Ī | Ī | | | 1 1 | | | 12 | | | 07 | | | 25339 | | | ALAS | KA | | | | | | | | | | | | | | NU | MBER | OF | MONTE | 4S 11 | N YEF | R M | IТН | |------|------------------------------|--------------|------------------|--------------------|-------------|------------|------------|------------|-----|------------|----------|-------------|----------|------------|-------|-----|--|---------------|---|-------|-------|---|------------------------| | | | | | | | HO | URL | ΥF | REC | ORD | SI | BY I | HON | ATH. | | , | | /_ | _ | | | | | | | | | | | | | | | | BS : | | | | • • • • | / | 2 / | <u>*</u> | | §*/ | , &/ | \ &/. | ``&\ | / § / | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | | | | | | | | | مايد | | | ************************************** | Second Second | To la | | | 1. (C. (D. (C. (C. (C. (C. (C. (C. (C. (C. (C. (C | HBAN | | | | | | 201101 | LELV. | Ľ | - | 1 | " | | <u> </u> | | 4 | " " | ريم / | 7 | <u>/ °</u> | <u> </u> | /~ ° | /** | -/** | _ | NUMBER | | 1965 | ADAK | NS | 51 53N | | | 1 | 1 | 1 , | | | ١, | | | 1 1 | | | 12 | 12 | | 12 | | | 25704 | | | AMCHITKA IS
ANCHORAGE | AFB
FAA | 51 23M
61 13M | | 220
134 | 1 | 1 | 1 1 | 6 | | 5 E | 5 | | 6
1 1 | | | | | İ | | | | 45702
26409 | | | ANCHORAGE
ANCHORAGE PS | WBAS
COOP | | | 158
85 | 1 | | 1 1 | | | 1 | | | 1 1 | i | | 12 | | | 11 | | | 26451 | | | ANGOON
ANIAK | A | 57 31N | 134 35W | 14 | 5 | | 5 5 | | | 5 5 | | | 5 5 | | | | 12 | | | | ' | 25310 | | | ANNETTE | FAA
HBAS | 61 35N
55 02N | 131 34W | 91
113 | 5 | | 1 1
9 6 | | 6 (| 1 6 | | | 5 5
1 1 | i | | 11 | 04 | | 12 | | | 26516
25308 | | | ARCTIC VILAG | COGP | 68 08N
52 50N | | 2250
70 | 5 | 5 | 5 5 | 5 | 5 5 | 5 | 5 | 5 | 5 5 | | | '- | 09 | | | | | 45712 | | | BARROW
BARTER IS | HBAS
WBAS | 71 18N | | 31
50 | 1 | 1 | 1 1 | 1 | 1 1 | 1 1 | 1 | 1 | 1 1 | 1 | | 12 | | | | | | 27502 | | | BETHEL | WBAS | 60 47N | 161 48H | 131 | 1 | 1 | 1 i | 1 | 1 1 | 1 | 1 | 1 | 1 1 |] | | 12 | | | | | | 27401
26615 | | | BETTLES
BIG DELTA | FAA
FAA | 64 00N | | 672
1275 | | 1 | 1 1 | 1 | 1 1 | 1 | | | 1 1 | ļ | | 12 | | | | | | 26533
26415 | | | CANYON VILAG | COOP
CB | 67 09N
56 00N | 141 45H
134 08H | 990
50 | | 1 | | ΙI | 6 6 | 1 | Ιİ | - | 1 | | | | 10 | | | | | | | | CAPE HINCHIN | CG | 60 14N | 146 39W | 185 | 5 | 5 ! | 5 5 | 5 | 5 5 | 5 | 5 | 5 | 6 6
5 5 | 12 | | 11 | | | | | | 25315
26417 | | | CAPE NEWENHA | AFS
AFS | 68 53N
58 39N | 162 044 | 53
235 | | | 7 7 | | 7 7 | | | | 1 1 | | | | | - 1 | | | | 26631
25623 | | | CAPE ROMANZO
CAPE SARICHE | AFS
CG | | 166 02W | 405
176 | | 7 5 | | | 7 7
5 5 | 1 | 1 | 1 | 7 1 | | | | | - | | | | 26633 | | | CAPE SPENCER | CG
CG | 58 12N
59 48N | 136 38H | 88 | 6 | 6 8 | 5 6 | 6 | 6 6 | 6 | 8 | 6 (| 6 8 | 12 | | 12 | | i | | ĺ | | 25522
25316 | | l | CENTRAL | COGP | 65 33N | 144 49W | 50
1000 | 6 | 6 | 16 | 6 | 6 6 | 6 | 6 | 6 1 | 6 | 12 | | 11 | 12 | | | | | 25401 | | | CHALKYITSIK
CHENA HOT SP | COOP | 66 38N
65 03N | | 560
1200 | | | | | | | П | | | 1 | | | 11 | | Ì | - 1 | | | | ĺ | CIRCLE HOT S | SAHR
SAHR | | 144 36H
149 09H | 935
546 | | 3 :
5 : | | | 3 3
6 5 | | | | 3 3 | | | | - 1 | - | | | | 26419 | | | COLD BAY | HBAS
COOP | 55 12N | 162 43H
142 28H | 800
88 | | ī į | | | 1 1 | | | | 1 1 | | | 12 | 01 | İ | 12 | - 1 | | 25624 | | - | CBRDGVA
CRAIG | FAA | 60 30N | 145 3DH | 45 | | 1 1 | | | 1 1 | | 1 | | 1 1 | | | 12 | 90 | | | İ | | 26410 | | l | DILLINGHAM | A
SAWR | | 133 09W
158 27W | 13
50 | 5 | 5 5 | | 5 | 5 5
5 5 | | 5 | | 5 5 | | | | Ì | ŀ | 1 | - | | 25317
25513 | | | DRIFTWOOD BY | AFS
SAUR | 53 58N | 166 51H
166 32H | 1298
13 | | 5 5
3 3 | | 5 | 5 5
3 3 | | | | 5 | | | İ | | | İ | İ | | 25515 | | 1 | EAGLE . | A
AFB | 64 47N
64 41N | 141 12H | 840 | 4 | 4 4 | 1 4 | | 4 4 | 4 | | 4 | | | | | İ | | , | | i | 25614
26422 | | | EKLUTNA LAKE | COOP | 51 24N | 147 05H
149 09H | 569
880 | | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | | | | | ŀ | 12 | 12 | | 26407 | | - 1 | ELDRED ROCK
ELMENDORF | CG
AFB | 58 58N
61 15N | 135 13H
149 48H | 54
176 | 5 | 5 5
1 1 | | 1 | 5 5 | 5 | 5 | | 5 | | | | ĺ | | 11 | | | 25318
26401 | | i | FAIRBANKS
FAREWELL | HBAS
FAA | 64 49N
62 32N | 147 52W
153 54W | 440
1503 | 1 | 1 1 | | | 1 1 | 1 | 1 | 1 1 | 1 | | | 12 | | 1 | | ļ | l | 26411 | |] | FIVE FINGER
FORT YUKON | CG
SAHR | 57 16N | 133 37W | 30 | 5 1 | 5 5 | 5 | 5 | 5 5 | 5 | 5 9 | 5 5 | 5 | | | 12 | 12 | - 1 | - 1 | İ | | 26519
25319 | | ĺ | GALENA | AFS | 64 44N | 145 18H
156 56H | 422
149 | | 5 5 | | 5 | 5 5
1 1 | 5 | | 5 5 | | | | 08 | | - 1 | 12 | | ł | 26413
26501 | | | GAMBELL
GUARD ISLAND | SAMR | 53 46N
55 27N | 171 45W | 25 | 6 | 5 5 | 5 | 5 | 5 5 | 5 | 5 4 | ,
5 | 3 | | | l | | | | | | 25320 | | ŀ | GULKANA
GUSTAVUS | FAA
FAA | 62 09N
58 25N | 145 27H
135 42H | 1579
28 | 1 | 1 1
5 6 | | | 1 1 | | 1 : | 1 1 | 11 | | - | 12 | İ | | - 1 | | l | 26425 | | İ | HAINES
HOMER | A
FAA | | 135 27W | 70 | 5 | 5 | 5 | 5 | 5 5 | 5 | | 1 | 5 | | - 1 | 12 | | | | | | 25322
25323 | | | HØ9PER | SAUR | 61 30N | 151 30W | 73
80 | 3 : | 1 1 | 3 | 3 | 1 1 | 1 | 3 ; | 1 1 | | İ | Ī | 12 | 1 | ļ | | - | | 25507 | | İ | HUGHES
IL IAMMA | A
FAA | 66 D4N | 154 14⊬
154 55⊬ | 545
152 | 5 !
6 (| 5 5
5 6 | 5 | 5 | 5 5
6 6 | 5 | | 5 6 | | | | 12 | | } | 1 | | | 26522
25506 | | l | NTM NAIDNI | | | 153 42H | 946 | 1 | 7 7 | 1 | 7 | 7 1 | 7 | 기기 | | 11 | ļ | 1 | 12 |] | - 1 | | - 1 | | 26535 | | | KENAI
KETCHIKAN | | 60 34N | 151 15W
131 34W | 91
0 | 1 : | 1 1 | 1 | 1 | 1 1 | 1 | 1 1 | ı 1 | 1 | i | - 1 | 15 | i | | 12 | İ | i | 25309
26523 | | | KING SALMON | HBA5 | 58 41N | 156 39W | 47 | 5 5 | 1 1 | 1 | 1 | 5 5
1 1 | 1 | 1 1 | 5 | |] | | 12 | | | 12 | | | 25325
25503 | | | KOTZEBUE | HBAS | | 162 38W | 111 | 1 3 | | | 1 | 1 1
1 1 | 1 1 | 1 3 | 1 | 1 1 | 1 | | 12 | 12 | | 12 | 03 | 1 | 25501
26616 | | | LAKE CHANDAL | | 67 30N
56 03N | | 1900 | 5 | , 5 | Ιí | | 5 5 | 5 | | 5 5 | 1 1 | | | | 09 | - 1 | | | | 25326 | | | LIVENGOOD
MANLEY HOT S | | 65 32N | | 580
265 | 5 5 | | 11 | - | 5 5 | - 1 | 5 5 | 1 | | 1 | | 1 | 12 | ļ | | | | | | | MCGRATH
MINCHUMINA | HBAS | 62 56N | | 340
701 | 1 : | 1 | 1 | 1 | 1 1 | 1 | 1 2 | 1 1 | 1 | | | 12 | İ | Ì | | Ì | | 2652 4
26510 | | | MOSES POINT | FAA | 64 42N | 162 Q3W | 21 | 6 6 | 6 | 6 | 6 6 | 5 6
5 6 | 6 | 6 E | 6 6 | 6 | | | 12 | | | | | | 26512
26620 | | ł | NIKOLSKI | AFS | | 149 05W | 364
705 | 5 5 | | | | 1 1
5 5 | 5 | 1 1
5 \$ | | | | - 1 | 12 | | |] | ı | | 26435
25626 | | - 1 | NOME
NORTHEAST CA | | | 165 28W | 18
30 | 1 1 7 | l 1 | 1 | 1 : | 1 1 | 1 | 1 1 | 1 | 1 | | İ | 12 | 1 | | | | | 26617 | | | NORTHWAY
NUNIVAK | | 62 57N
60 23N | 141 55H
166 12H | 1718
45 | 1 1 | 1 | 1 | 1 : | 1 1 | 1 | 1 1 | 1 | 1 1 | | | 12 | | | | | | 26632
26412 | | | PALMER | А | 61 36N | 149 05W | 198 | 5 3 | 1 4 | 4 | 4 4 | 3 3 | 4 | 4 4 | 3 | 5 | 12 | | 11 | - 1 | | | | | 26622
25331 | | i | PETERSOURG
POINT BARROW | AFS | 56 49N
71 20N | 132 57H
156 39H | 50
19 | 5 5
3 3 | 3
3 | | | 5 5 | | 5 5
3 3 | | 3 | | | | | | İ | | | 25329
27506 | | | PORT CLARENC PORT HEIDEN | | | 166 52W | 18
92 | 5 5
5 5 | 5 5 | 5 | 5 5 | 5 5 | | 5 5 | 5 | 5 | 12 | | 12 | | | | | | | | | PORT MOLLER
PT RETREAT | AFS | 56 OON | 160 31H
134 57H | 1063 | 5 5 | 5 | 5 | 5 5 | 5 5 | 5 | 5 5 | 5 | 5 | ŀ | | - | | | | | | 25508
25625 | | 1 | PUNTILLA
RAMPART | A | 62 06N | 152 45µ | 1837 | 5 5 | | | 5 5 | | | 5 5
5 5 | | 5 | | | | | | | l | | 25330
26526 | | | SAND POINT | SAWR | 55 20N | 150 08H | 400
50 | 5 5 | 5 | 5 | 5 5 | , 5 | 5 | 5 5 | 5 | 5 | 1 | | 1 | 12 | | | - | | 25617 | | - 1 | SAVOONGA
SENTINEL IS | | | 170 28W | 45
60 | 5 5 | 5 | | 5 5 | 1 | | 5 | | 3 | | | | | İ | | |] | | | | SEMARD
SHEEP MIN | | 60 07N | 149 27W | 76 | 6 6 | | 6 | 5 5 | 5 6 | 6 | 6 6 | | 5 | - 1 | | 12 | | | | | | 26438 | | - 1 | SHEMYA
SISTER IS | MBAS. | 52 43N | 174 DEE | 125 | 1 1 | 1 | 1 | 1 1 | 1 1 | 1 | 5 5 | 1 | 1 | | | 12 | | - | 04 | | | 25439
45715 | | | -10'rw 10 | A | 58 10N | 135 15W | 35 | 5 5 | 5 | 5 | 5 5 | 5 | 5 | 5 5 | 5 | 5 | | | 1 | | | | į | | 25341 | • | • | • | • | , | | | | ALAS | SKA | | | | | | | | | | | | | | | | | | NU | MBER | OF | MON | THS | IN Y | EAR | ші | ТН | |------|---|--|---|--|--|--|---|---|--|---------------------------------|----------------------------|---------------------------------------|---|----------------------------|---|---|-----------------------------------|-----|--|-----|--|--|-----------|-----|------|----------------------------|--|---| | | | | | | | | н | OUF | łL Y | R | EC | ORI | DS | BY | н | ON' | TH | | / | | / | / | | | | | | | | | | | | | | | | 1 | - | 24 | 0 | BS | PE | R | DA | Y | | , | \\$\\\{\sigma}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | <i>\$</i> / | | | 45 | | 15 | ۶/۵ | \$ | | YEAR | | TYP | E LA | | LONG. | ELEV. | ا ا | F | Ħ | A | н | J | ا د | A S | s c | N | 0 | /3 | | 1 | | Substantial Substa | Te Monday | | | * (1.00)
1.00)
1.00) | a de la companya l | NUMBER | | 1966 | MCGRATH MINCHUMINA MGOSE RUN MGSES PGINT NENANA NIKOLSKI NOME MGRTHEAST CA NGRTHHAY NUNIVAK PALMER PETERSBURG PGINT BARROW PORT CLARENC PORT HEIDEN PORT HEIDEN PUNTILLA GUINHAGGAK RAMPAGT | WBA: FAR COOR FAR FAR AFS WARS FAR AFS CG A S CG A USA | 63 5 64 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 58N 1
53N 1
15N 1 | 55 37H
52 17H
52 17H
68 40H
68 47H
66 56H
66 56H
41 56H
41 56H
32 57H
36 32H
56 32H
56 31H
34 57H
56 34H
56 34H
56 54H | 340
701
395
21
364
705
18
30
1718
52
198
19
18
92
1083
20
1837 | 6 1 1 1 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1 | 15 61 5 5 5 5 5 5 5 5 5 | 16 615113553855 | 16 61511135535555 | 16 615171355355 | 16 6151113553555 | 1
6
1
5
1
1 | 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1 1 1 5 6 6 6 6 1 1 7 7 1 1 1 1 7 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1 6 6 1 5 1 7 1 3 5 5 3 5 5 5 5 5 | 111 | | | 12
12
12
07
12
12
12
01 | 03 | | | 4 | | | 26510
26512
26620
26435
25626
26617
26632
26412
26622
25331
25329
27506
25508
25508
25525
25330
26526 | | | SAGHUN
SAND POINT
SAVUENGA
SEHARD
SHEEP MTN
SHEMYA
SISTER IS
SITKA
SITKA
SITKINAK
SKAGHAY | SAWR
SAWR
A
A | 59 2
55 2
63 4
60 0
61 4
52 4
58 1
57 0
56 3 | 2N 1
ON 16
2N 1
7N 1
8N 1
3N 1
ON 1
4N 1
3N 1
7N 1 | 48 42W
50 30H
70 28H
49 27H
47 41W
74 06E
35 15H
35 21H
34 08H | 400
650
50
45
70
2280
128
35
66
53
18 | 5 1 5 1 5 | 5 1 5 5 | 36515155 | 3 6 5 1 5 1 5 | 365155 | 5
1
5
1
5
5
5 | 5 5 5 | 5 5 | 5 3 6 1 5 1 5 5 | 5 3 6 1 5 1 5 5 | 5 | | | | 12
11
12
05 | 12 | | 12 | 2 | | | 25617
25438
25439
45715
25341
25333
25335 | | İ | SNGWSHGE LAK SGLOGTHA SPARREVGHN ST MICHAEL ST PAUL IS STONY RIVER SUMMIT SUSIC 1 TALKEETHA TATHANA TIN CITY | AFS
SAUR
UBAS
A
FAA
SAUR
FAA
FAA
AFB
AFS | 62 0
61 0
63 3
57 0
61 4
63 2
69 3
62 1
65 1
62 5
65 3 | 2N 14
8N 15
6N 15
6N 16
6N 15
6N 15
6N 15
6N 15
8N 15
8N 15
8N 15 | 46 40H
51 02H
55 34H
62 00H
70 13H
66 38H
49 08H
88 53H
60 06H
62 06H
63 57H | 2295
115
1736
35
28
221
2410
500
351
240
897
273 | 6 | 1
3
1
6
6
6 | 4
1
3
1
6
6 | 3 1 1 5 6 7 | 3
1
3
1 | 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 1 | 1 1 5 5 1 | 3
4
7
3
1 | 3
4
7
1
3
1
6
6
7 | 3 4 7 | | | | 12
11
12
12 | 05
05
06 | | | | | | 26514
26534
25713
26414
26528
26529
26536
26534 | | | TBKSOOK TREE POINT TRINITY-UGAS UMMAK UNAL RKLEET VALDEZ VENETIE HALES WILD LAKE 2 WARNGELL YAKATAGA YAKUTAT | CG
SAMR
SAMR
FAA
A
COOP
SAMR
COOP
A | 53 23
63 53
61 06
67 00
65 37
67 33 | 3N 13
5N 15
5N 16
5N 16
5N 14
7N 16
5N 15
5N 13 | 0 56H
7 44H
7 54H
0 48H
6 15H
6 34H
8 03H
1 33H
2 23H
2 30H | 15
36
132
130
21
75
620
18
1180
43
33
31 | 365 3 56 | 5 3 5 5 | 5 3 6 5 3 5 6 | 5 | 5 5 5 5 5 5 5 5 | 5 5 5 5 5 5 5 5 5 5 5 5 | 5 5 5 6 5 3 5 6 | 5 5 6 | 3 5 5 5 3 5 6 | 3 5 5 5 5 5 6 | 3 5 5 5 3 5 | | | | 11 11 12 | 07
08 | | 12 | | | | 25337
25521
25627
26442
26618
25338
26445
25339 | | 1967 | ADAK AMCHITKA IS ANAKTUVUK ANCHBRAGE ANCHBRAGE ANCHBRAGE ANCHBRAGE PS ANDREAFSKY | COOP
FAA
WBAS
COOP | 51 53
51 23
68 10
61 13
61 10
61 13
62 04 | N 17
N 15
N 14
N 15
N 14 | 9 15E
1 46H
9 50H
0 01H | | 1 | 1 1 1 | 1 | 1 | 1 1 | 1 1 | 1 | 1
6
1
1 | 1 1 | 5
1 | , | | | | 12 | 05
12
04 | | 12 | | | | 25704
26409
26451 | | | ANGOON ANIAK ANNETTE ATTU BARROH BARTER IS BETHEL BETTLES BIG DELTA BIRCH ROAD CANYON VILAG | A
FAA
HBAS
CG
HBAS
HBAS
HBAS
FAA
FAA
CGGP | 57 31
61 35
55 02
52 50
71 18
70 08
60 47
66 55
64 00
61 08 | N 13
N 15
N 13
N 17
N 15
N 16
N 16
N 15
N 14
N 14 | 4 35W
9 32W
1 34W
3 11E
6 47W
3 38W
1 48W
1 31W
5 44W
9 46W | 14
91
113
70
38
50
131
672
1275
460 | 5 1 1 1 1 | 6
1
5 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5 6
1 1
5 5
1 1
1 1 | 5 6 6 1 1 1 1 1 1 1 | 5 1 5 1 1 1 1 | 5
1
5
1
1 | 5
6
1
5
1 | 5
6
1
5
1
1 | 5 1 1 1 1 1 1 | 5
1
5
1
1 | | | | 12
12
12
12
12
12 | 06 | | 12 | | | | 253.0
26516
25308
45712
27502
27401
26615
26533
26415 | | | CAPE DECISIO
CAPE HINCHIN
CAPE LISBURN
CAPE REWENHA
CAPE ROMANZO
CAPE SARICHE
CAPE SPENCER
CAPE ST ELIA
CENTRAL | CG
CG
AFS
AFS
CG
CG
CG | 57 09
56 00
60 14
68 53
58 39
61 47
54 36
58 12
59 48
65 33
66 38 | N 13-
N 146
N 166
N 166
N 166
N 166
N 136
N 136
N 136
N 136
N 136 | 4 08H
5 39H
5 08H
2 04H
5 02H
4 56H
4 36H | 185
53
235
405
176
88 | 5
7
1
7
5 | 5 5 5 5 5 6 6 | 5 5
7 1
1 1
7 1
5 5
6 6 | 1 1 7 5 6 | 5
1
1
7
5
6 | 5
1
1
5
6 | 5
1
1 | 7
1
5 | 5
7
7
7
5 | 5 5
7 7
7 5 | 5
7
7
5 | 12 | | | 12 12 12 12 | 12 | | ca | | | | 25315
26417
26631
25623
25623
25622
25316
25401 | | | CHENA HOT SP
CIRCLE HOT S
CLEAR
COLD BAY
COLLEEN
CORDOVA
CRAIG
DAHL CREEK | COUP (
SAHR (
SAHR (
HBAS (
COUP (
FAA (
A | 65 031
65 291 | 146
149
149
162
142
143 | 03H
36H
10H
243H
28H
30H | 935
542
99
900
45 | 1 : | 1 1 1 5 5 5 | 1 5 | 1 1 5 | 5 | 5
1 | 1 5 | 1 1 5 | 5 1 | 1 1 | 1 | | | - 1 | 12 | 12
11
08 | | 12 | | | : | 26419
25624
26410
25317 | | | ALASI | KA | | | | | | | | | | | | | | | | NI | UMBE | R O | FM | ONT | 45 IN | ı YE | AR WI | | |------|--|----------------------|----------------------------|-------------------------------|--------------------|-------------|-----|------------|-------------------|-----|--------|---|-----|-------------------------|----------|----------------------|---|------------|------|--|----------------|-------|----------|---------|----------|-------------------------| | | | | | | | HOI | JRL | Υ | REC | ORI | DS | В | / H | ON | H | | / | ر
ن | / , | / 4 | e / | 14/4/ | / æ/ | /
& | 1281 | | | YEAR | NAME | TYPE | LAT. | LONG. | lerev | | | | 4 0
.lm | | | | | | ln. | | | | | A STOCK OF THE STO | | | | <i></i> | | WBAN
NUMBER | | 1985 | SITKA | FAA | 57 04N | | 66 | 13 | + | 4 | 1 1 | Н | 1 | 1 | 4 | 1 N | \vdash | $\stackrel{\sim}{-}$ | ~ | <u>/ ₹</u> | 7 | _ | - { | / ` ` | 7 | / - | 7 | 25333 | | | SITKINAK
SKAGWAY | CG
A | 56 33N
59 27N | 154 08µ
135 19µ | 53
18 | 5
5 | 5 | 5 | 5 5
5 5 | 5 | 5 | 5 | 5 | | 5 | | | | 0 | | 1 | | | | 1 | 25335 | | | SKHENTNA
SOLDOTNA | SAUR | | 151 02W | 153
115 | 3 | 4 | 4 | 3 3 | 4 | | | | | 4 | | ŀ | | | | | | | | - | 26514 | | | SPARREVOHN
ST PAUL IS
SUMMIT | AFS
WBAS
FAA | 61 06N
57 09N
63 20N | 170 13H | 1736
28
2410 | 1 | 1 | i | 1 1
1 1
1 1 | 1 | 1 1 1 | 1 | 1 | 7 :
1 : | 1 | | Ī | | 1. | | İ | | | | 1 | 26534
25713
26414 | | | TALKEETNA
TANANA | FAA
FAA | 62 18N
65 10N | 150 06W | 351
240 | 1 1 | 1 | 1 | 1 1 | 6 | 5 | 6 | 6 | 6 6
6 6 | 6 | | | | 1 | 2 | 04 | | | | | 26528
26529 | | | TATALINA
TIN CITY | AFB
AFS | 62 53N
65 34N | 155 57W | 897
273 | 1 | 1 | 1 ' | 7 1
1 1 | 1 | 7 | 7 | 7 | 7 | 1 | | | | | | | | | | | 26536
26634 | | | TREE POINT | CG
SAWR | 69 22N | | 38
337 | 5 | 5 | 5 9 | 5 5
5 5 | 5 | 5 | 5 | 5 | 5 5 | 5 | | | | | | | | | | | 25337
26508 | | | UMNAK
UNALAKLEET
VALDEZ | SAHR
FAA
A | 53 23N
63 53N
61 08N | 160 48W | 130
21
75 | 5
5 | 6 | 5 (| 5 5
6 6
5 5 | 5 | 5 | 6 | 6 | 5
6 6
5 9 | | | ł | | 1: | 2 | | | | | | 25621
26627
26442 | | | VENETIE
WALES | COGP | 67 DON | 146 34H | 620
18 | 3 | | ŀ | 3 3 | 11 | 3 | П | | 3 3 | 1 1 | | | | | | 12 | | | | | 26618 | | | WILD LAKE 2
WRANGELL | C88P | 67 33N
56 2BN | 151 33W
132 23W | 1180
43 | 5 | 5 | 5 ! | 5 5 | 5 | 5 | Н | | 1 | 5 | | | | | ŀ | 11 | | | | | 25338 | | | YAKATAGA
YAKUTAT | FAA
WBAS | 60 05N
59 31N | | 33
31 | 6
1 | | | 6 6
1 1 | | 6 | | 6 | 6 6
1 2 | 5 | | | | 11 | | | | 12 | | | 26445
25339 | | 1966 | ADAK
ANAKTUVUK | NS
COBP | 51 53N
68 10N | | 16
2100 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 2 | 1 | | | | 1: | | 12 | | 12 | | | 25704 | | | ANCHORAGE
ANCHORAGE | FAA
WBAS | 61 13N
61 10N | 149 50W | 134 | 1 1 | | | 1 1 | | 1 | | 1 | 1 1
1 1 | 1 1 | | | | 1 | | 02 | | 12 | | | 26409
26451 | | | ANCHORAGE PS
ANDREAFSKY | COOP
SAUR | 51 13N
62 04N | 163 18W | 85
290 | | | 3 : | 3 3 | 3 | 3 | 3 | | 1 | 3 | | | | | | 09 | | | | | | | | ANGGGN
ANIAK
ANMETTE | FRA
HBAS | 57 31N
61 35N
55 02N | 159 32H | 14
91
113 | 5
6
1 | 5 | 6 0 | 5 5
5 6
1 1 | 6 | 6 | 6 | 6 | 5 E | 5 | | | | 1: | | | | | • | 1 | 25310
25516
25308 | | | ARCTIC VILAG | COOP | 58 DBN
52 50N | 145 32W | 2250
70 | 5 | | | 1 1
5 5 | | 5 | Н | ļ | 1 1
5 9 | 5 | | | | 1; | | 04 | | 11 | | | 45712 | | | BARROW
BARTER IS | ₩BAS
₩BAS | 71 18N
70 08N | 156 47W
143 38W | 31
50 | 1 | 1 | 1 . | 1 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | | | | 1; | | | | | | | 27502
27401 | | | BETTLES
BIG DELTA | FAA
FAA | 66 55N | 151 31H | 131
672 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | 1 | 2 | | | | | | 26615
26533 | | | CANYON VILAG | COGP | 64 00N
67 09N
56 00N | 141 45H | 1275
990
50 | 6 | | | 1 1
5 6 | П | 1 | Н | 6 | 1 1 | 1
5 | ١, | 2 | | 1; | | 09 | | | | | 26415
25315 | | | CAPE HINCHIN | CG
AFS | 60 14N
68 53N | 146 39W | 185
53 | 5
7 | 5 | 5 9 | 5 5
1 1 | 5 | 5 | 5 | 5 | 5 6 | 5 | | - | | | | | | | | | 26417
26631 | | | CAPE NEWENHA | AFS
AFS | 58 39N
61 47N | 166 05M | 235
405 | 7 | 7 | 7 | 1 1
| 7 | 7 | 7 | 7 | 1 1 | 7 | | | | | | | | | | | 25623
26633 | | | CAPE SARICHE
CAPE SPENCER
CAPE ST ELIA | CG
CG | 54 36N
58 12N
59 48N | 136 38⊬ | 175
86
50 | 5
6 | 6 | 6 (| 5 5
6 6
6 6 | 6 | 5
6 | 6 | 6 | | 5
6 | | 0 | | 1: | 2 | | | | | | 25622
25316
25401 | | | CENTRAL
CHALKYITSIK | C00P | 65 33N
66 38N | 144 49W
143 43W | 1000
560 | | | | | | | | | | | | - | | - | | 12 | | | | | | | | CHENA HOT SP | COOP
SAWR | | 144 36H | 1200
935 | 3 | | | 3 3 | 3 | 3 | 3 | | 3 3 | | | | | • | | 11 | | | | | 26419 | | | CLEAR
COLD BAY
COLLEEN | SAHR
HBAS
COOP | 64 19N
55 12N
67 44N | 162 43W | 546
99
900 | 1 | | | 5 5
1 1 | | | | | 1 1 | | | | | 1 | 2 | 11 | | 12 | | | 25624 | | | CORDOVA
CRAIG | FAA | 60 30N
55 29N | 145 30W | 45
13 | 1 5 | | | 1 1 | | 1 | | | 1 1 | | | | | 1 | | * | | | | | 25410
25317 | | | DILL INGHAM
DILL INGHAM | | 59 D3N
59 D3N | 158 27H | 50 | 5 | 5 | | 5 5 | | | 5 | 5 | | 5 | | | | | | | | | | İ | 25512
25513 | | | DRIFTWOOD BY
DUTCH HARBOR
EIELSON | AFS
SAWR
AFB | 53 58N
53 53N
54 41N | 166 32H | 1298
13
569 | 5 | | | 5 5
1 1 | | 5 | Н | - 1 | 5 5
3 3
1 1 | 3 | | | | | ŀ | 1 | | 12 | | | 25515
25614
26407 | | | EKLUTNA LAKE
ELDRED ROCK | COOP | 61 24N
58 58N | 149 D9W | 980
54 | 5 | | | 5 5 | | 5 | Н | | 1 | 5 | | | | | | | | 12 | 12 | <u>:</u> | 25318 | | | ELMENDORF
FAIRBANKS | AFB
WBAS | | 147 52H | 440 | 1 | 1 | 1 1 | 1 1 | 1 1 | 1 | 1 | 1 | 1 1 | 1 1 | | | | 1 | | | | 12 | | | 26401
26411 | | | FAREWELL
FIVE FINGER
FORT YUKON | FAA
CG
A | | 153 54W | 1503
30
422 | 5 | 5 | 5 9 | 5 5 | 5 | 5 | | | 5 5
5 6 | 5 | | | | 00 | ŀ | 10 | | | | | 26519
25319 | | | FORT YUKON
GALENA | AC
AFS | 66 33N | 145 12H | 457
149 | 1 | | | 5 5
1 1 | | 5 | | | 5 5 | | | | | 01 | | 1 | | 12 | | | 26413
26413
26501 | | | GAMBELL
GUARD ISLAND | SAHR
CG | 55 27N | 131 53W | 25
20 | 3
5 | 5 | 3 :
5 : | 3
5 5 | 3 | 3 | 3 | 3 | 5 5 | 5 | | 1 | | | | | | | | 1 | 25320 | | | GULKANA
GUNSIGHT
GUSTAVUS | FAA
A
FAA | 62 09N
61 54N
50 25N | 147 18W | 1579
2960
29 | 6 | | | 1 1
6 6 | 3 | 3 | 3 | 3 | 3 3 | 3 | | | | 11 | 1 | | | | | | 26425 | | | HAINES
HOMER | A
FAA | 59 14N | 135 27W
151 30W | 60
73 | 5 | 5 | 5 9 | 5 5 | 5 | 5 | | 5 | 6 6
5 5
1 1 | 5 | | | | 1 | ł | | | | | | 25322
25323
25507 | | | HOGPER
HUGHES | SAWR
A | 61 30N
66 04N | 166 D6W
154 14W | 80
545 | 3 | 3 | 3 3 | 3 3
5 5 | 3 | 3
5 | 3 | 3 | 3 3
5 9 | 3 | | | | | | | | | | | 26522 | | | ILIAMNA
INDIAN MTN | FAA
AFS | 66 DON | 154 55H
153 42H | 152
946 | 6 | 1 | 1 | 6 6 | 1 | 1 | 1 | 1 | 7 7 | | | | | 1 | ĺ | | | | | | 25505
26535 | | | KENAI
KETCHIKAN
JUNEAU | HBAS
FAA
SAHR | 50 34N | 134 35H
151 15H
131 34H | 91
20 | 1 5 | 1 | 1 | 1 1
1 1
5 5 | 1 | 1 5 | 1 | 1 | 1 1
1 1
5 5 | 1 | | | | 1 | | | | 12 | | | 25309
26523
25325 | | | KING SALMON
KODIAK | HBAS
NAF | 58 41N
57 45N | 158 39H
152 30H | 47
111 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 1 | 1 2 | 1 1 | | | | 11 | 2 | 12 | | 12
12 | | | 25503
25501 | | | KOTZEBUE
LINCOLN ROCK | WBAS
CG | 56 03N | 132 46W | 20
25 | 5 | | | 5 5 | | 5 | | | 5 5 | | | | | 1 | | | | | | | 26516
25326 | | | MANLEY HOT S | C00P
A | | 148 31W
150 39W | 580
265 | 5 | 5 | 5 9 | 5 5 | 5 | 5 | 5 | 5 | 5 5 | 5 | | | | | | 02 | | | | | 26524 | | | | | • | • | | | • | • | • | | • | • | • | | | | • | | | • | • | | | | • | - | | | | | RE | CORDS | INDE | X | A | RF | RA | NG | E |) | B١ | 1 | Y Į | H | (| | | | | | | | |------|----------------------------|--------------|------------------|--------------------|-------------|--------|-----|----------------|-------|--------|-----|------|----------------|-------|--------|----------|----------|--------------|--|--|-----------|----------|-------|----------------------------| | | ALAS | KA | | | | | | | | | | | | | | | NL | MBER | OF | HONT | HS II | N YE | ar Hi | TH | | | | | | | | ная | URL | Υ 1 | REC | OR | DS. | В | , MC | ONT | н | | / | / | 1- | To the second se | / | / | / / | / & / | | | | | | | | | | . 2 | | | | | | | | | | / <u>♣</u> / | OM OF THE PROPERTY PROP | / 3 / | | | | \ \s \\$\ | | v=00 | | 1 | | | 1 | | | _ | | | | | | | | /3 | £ / 5 | | § / <u>;</u> | <i>\$</i> / 3 | `&\\$ | <i>§</i> | | HBAN | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | J | F | MA | M | J | J | A | S 0 | N | D | <u> </u> | ~~~ | જ/ જ | <u>/ </u> | | e / * · · | E/ 47 4 | e/ • | NUMBE | | 967 | DILL INGHAM
DILL INGHAM | SAHR
FSS | 59 03N
59 03N | | 50 | 5 | | 5 5 | 5 5 | | 5 | 5 | 5 5 | 5 | 5 | | | | | | | | | 25513
25512 | | i | ORIFTHEED BY | AFS | 53 58M | | | 5 | | 5 5 | 5 5 | 5 | 6 | 5 | 5 6 | | 5 | | | 1 | | | 1 | | | 25512 | | | DUTCH HARBOR
EIELSON | SAUR
AFB | 53 53N
64 41N | | | 3 | 3 | 3 3 | 3 3 | 3 | 3 | 3 | 3 3 | 3 3 | 3 | | | | | 1 | ١., | ŀ | | 25614
25407 | | | EKLUTNA LAKE | COOP | | | 569
880 | | 1 | 111 | ` ^ | | | 1 | 111 | ʻl *I | 1 | | | | | | 12 | 12 | 1 | 20707 | | | ELDRED ROCK
ELMENDORF | CG
AFB | 58 58N
61 15N | | 54
176 | 5 | 5 | | 5 5 | | | 5 | 5 5 | | 5 | | | i | 1 | 1 | | | | 25318
26401 | | | FAIRBANKS | HBAS | | | 440 | 1 | | | | | | | 1 1 | | 1 | | | 12 | | ł | 12 | 1 | [| 26411 | | | FAREWELL
FIVE FINGER | HBAS
CG | 62 32N
57 16N | | 1503 | 5 | | 5 5 | 5 5 | 5 | 5 | 5 | 5 9 | 5 5 | 5 | | i | 12 | 12 | 1 | | l | 1 1 | 26519 | | | FORT YUKON | AC | 66 33N | | 30
457 | 5 | 5 | 5 5 | 5 5 | | 5 | 5 | 5 5
5 5 | | 5 | | 1 | 12 | | Ì | | i | l l | 25319
26413 | | | GALENA | AFS | 64 44N | | 149 | | 1 | 1 1 | 1 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | | İ | | | | 12 | | 1 1 | 26501 | | |
GAMBELL
GUARD ISLAND | SAMR | 63 46N
55 27N | | 25
20 | 3 | 3 | 3 2 | 5 5 | 5 | 3 | 3 | 3 3
5 5 | | 3 | | | | | | | | 1 1 | 25320 | | | GULKANA | WBAS | 82 09N | 145 27H | 1579 | 1 | 1 | 1 1 | 1 1 | 1 | 1 | 1 | 1 1 | 1 1 | 1 | | | 12 | | | | | | 26425 | | | GUNSIGHT
GUSTAVUS | FAA | 61 54N
58 25N | 147 18H
135 42H | 2950
29 | 3 | | 3 3
6 6 | | 3
6 | 3 | 3 | 3 3
6 6 | | 5 | | | 12 | ł | | l | | | 25322 | | | HAINES | А | 59 14N | 135 27₩ | 60 | 5 | 5 | 5 5 | 5 5 | 5 | 5 | 5 | 5 5 | i 5 | 5 | | | 1 ** | 1 | | | | | 25323 | | | HOMER
HOOPER | SAHR | | | 73
60 | 3 | | 3 3 | | | 1 | | 1 1
3 3 | | 3 | | i | 12 | | | | | | 25507 | | | HUGHES | A | 65 D4N | 154 14W | 545 | 5 | 5 | 5 5 | 5 5 | 5 | 5 | 5 | 7 | 5 | 5 | | | | ì | | Ì | İ | 1 1 | 26522 | | | ILIAMNA
INDIAN MTN | MBAS
AFS | 59 45N
68 00N | 154 55H
153 42H | 190
946 | 6
7 | 5 | 9 5 | 6 | | | | 6 6 | 5 7 | 5
7 | | | 12 | 07 | 1 | ١., | | | 25506
26535 | | | JUNEAU | HBAS | 58 22N | 134 35H | 20 | í | 1 | 1 1 | 1 1 | | | 1 | 1 1 | | í | | ł | 12 | l | | 12 | l | | 25309 | | | KETCHIKAN | FAA | 50 34N
55 20N | | 106 | 5 | | 1 1 | | | | | 1 1 | | 1 | | 1 | 12 | i | | ł | | ! | 26523
25325 | | | KING SALMON | WBAS | | 156 39H | 47 | 1 | 5 | 5 5 | 5 | 5 | 5 | 5 | 5 5
1 1 | 1 | 5 | | | 12 | | İ | 12 | 1 | i i | 25503 | | | KODIAK
KOTZEBUE | NAF
UBAS | 57 45N
66 52N | | 111 | 1 | | 1 1 | 1 1 | | | 1 | 1 1 | | 1 | | | 12 | 12 | ł | 12 | ł | | 25501 | | | LINCOLN ROCK | CG | 56 03N | | 20
25 | 1 | | 1 1 | 5 | | 1 5 | | 1 1
5 5 | 1 | 5 | | ļ | 15 | | | | | | 26616
25326 | | | MANLEY HOT S | A | 65 00N | | 265 | 5 | 5 | 5 5 | 5 5 | 5 | 5 | 5 | 5 5
5 5 | 5 | 5 | | ŀ | | Į . | | | | 1 | 26524 | | | MCGRATH
MINCHUMINA | MBAS | 62 58N
63 53N | | 340
701 | | 5 | | 1 6 | 1 | 1 6 | 9 | 1 1 | 1 6 | 7 | | ŀ | 12 | i | | | | i l | 26510
26512 | | | MOOSE RUN | COSP | 61 15N | 149 404 | 395 | 1 | - [| | | Н | | | | П | | | | 1 | 90 | | | | 1 1 | | | | MOSES POINT
NENANA | AC
FRA | 64 42N
64 33N | 162 03H
149 05H | 21
354 | | 5 | 6 6
1 1 | | | | | 5 6
1 1 | | 5 | | | 12 | | ļ | | | | 26620
26435 | | | MIKBLSKI | AF5 | 52 55N | 168 47W | 705 | 5 | 5 | 5 5 | 5 5 | 5 | 5 | 5 | 5 5 | 5 | 5 | | l | | | | | | | 25626 | | | NOME
NORTHEAST CA | µBA5
AFS | 64 30N
63 19N | | 18
30 | 7 | 1 | 1 7 | 7 | | | | 1 1 | | 1 | | | 12 | | | 12 | | ll | 26617
26632 | |] | NORTHHAY | FAA | 62 57N | 141 56H | 1718 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | | | 12 | | | | | ll | 26412 | | 1 | NUNIVAK
PAINTERS CRK | SA
SAHR | 60 23N | | 52
545 | 3 | | 3 3
5 5 | 3 | | | 3 | 3 3 | 3 | 3 | 12 | | 12 | | | | | | 56655 | | | PALMER | FAA | 61 36N | 149 05W | 240 | 5 | 5 | 5 5 | 5 | 5 | 5 | 5 | 5 5 | | 5 | | | 11 | 04 | | | | l 1 | 25331 | | ı | PETERSBURG
POINT BARROW | A
AFS | 55 49N
71 20N | | 50
19 | 5 | | 5 5
3 3 | 5 | | | | 5 5
3 3 | | 5 | | | ŀ | | | | | i I | 25329
27506 | | ı | PORT CLARENC | CG | 65 15N | 166 52W | 18 | 5 | 5 | 5 5 | 5 | 5 | 5 | | 5 5 | 5 | 5 | 12 | | 12 | | | | | | 2/500 | | | PORT HEIDEN
PORT MOLLER | AFS | 56 57N | | 1083 | | | 5 5
5 5 | 5 | 5 | | | 5 5
5 5 | | 5 | | 1 | ļ | | | | | | 2550 8
25825 | | | PRUDHOE BAY | SAHR | 70 19N | | 10 | | "[| 7 6 | | | | 7 | 7 | 11 | 6 | | | | | | | | | 29029 | | | PT RETREAT
PUNTILLA | CG | 58 25N
62 06N | | 20
1837 | 5 | | 5 S | | | | | | | 5 | | | | | | | | | 25330 | | - 1 | GUINHAGAK | SAMR | | | 1037 | 4 | | 긲 | | 5 | 5 4 | 4 | 5 5 | 5 | 5 4 | | | | | | | | | 26526 | | - 1 | RAMPART | COOP | 65 30N | 150 08H | 400 | İ | | | | Н | H | - | 1. | Ы | | | İ | | 12 | | 1 | | | | | 1 | SAGHON
SAND POINT | SAHR
SAHR | 69 22N
55 20N | 146 42H
160 30H | 650
50 | 5 | | 4 4 | | | | 5 | 4 4
5 5 | | 5 | | | 1 | | | | | | 25617 | | | SAVBBNGA | A | 63 42N | 170 28W | 45 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 | 3 3 | 3 | 3 | | | | | | | | | | | • | SEHARD
SHEMYA | A
MBAS | 60 07N | 149 27W
174 06E | 70
128 | | | 6 6
1 1 | | | | | 6 6 | | 6 | | | 12 | 1 | | 12 | | | 26438
45715 | | | SISTER IS | A | 58 10N | 135 15₩ | 35 | 5 | 5 | 5 5 | 5 | 5 | 5 | | 5 5 | 5 | 5 | | } | 1 | 1 | | | | | 25341 | | 1 | SITKA
SITKINAK | FAA | 57 04N
56 33N | | 56
53 | 5 | | 1 1
5 5 | 1 | 5 | 1 5 | 5 | 1 1
5 5 | | 5 | | ļ | 12 | | ŀ | | | | 25333 | | | SKAGHAY | A | 59 27N | 135 19⊭ | 18 | 5 | 5 | s s | 5 | 5 | 5 | 5 6 | 5 5 | 5 | 5 | | | " | l | | | | | 25735 | | ı | SKHENTNA
SNOWSHOE LAK | A | | 151 12H | 153
2410 | | | 3 3
3 3 | 3 | 3 | ا ا | 31 : | 3 I 3 | | 3 | | | 12 | | | | | | 26514 | | | SBLDBTNA | | | 151 028 | 115 | 4 | 4 | 4 4 | 4 | 4 | 3 | الم | ہ اہ | | 41 | | | ۰° | I | 1 | | | | | | | EIELSON | AFB | | | 147 | | 569 | ļī | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 1 | 1 | İ | | | | | 12 | | | 26407 | |------|------------------------------|--------------|------------|------------|------------|------------|-------------|--------|-----|-------------|-------------------|------------|-------------|--------------|------------|------------|-------|-----|-----|----------|-----|-----|-----|-----|-----|----------------------------| | | EKLUTNA LAKE
ELDRED RØCK | COOP | 61
58 | | 149 | 13H | 880
54 | ۱. | 5 | 5 | 5 9 | 5 5 | 5 | | 5 | 5 5 | 5 | | . | | | | | 12 | | 25318 | | | ELMENDORF | AFB | 61 | | | 481 | 176 | 5 | | | | 1 1 | | | | 3 3 | | | | | | | 12 | | | 26401 | | | FAIRBANKS | HBAS | 64 | 49N | 147 | 52H | 440 | 1 | 1 | 1 | 1 3 | 1 1 | 1 | 1 | 1 | 1 1 | | | 1 | 12 | | 1 1 | | | | 26411 | | | FAREWELL
FIVE FINGER | MBAS
CG | 62
57 | | 153 | 54H | 1503 | 5 | | | 5 5 | | | | | 5 5 | | | | 12 | 12 | | | i | | 26519 | | | FORT YUKON | AC | | 33N | 133 | 37W | 30
457 | 5 | | | 5 5 | | | | | 5 5 | | | | 12 | | i i | | | i I | 25319
26413 | | | GALENA | AFS | 64 | | 156 | | 149 | 1 | | | ī : | | | | | 1 1 | | | | | | | 12 | | 1 1 | 26501 | | i | GAMBELL | SAHR | | | 171 | 45H | 25 | 3 | 3 | 3 | 3 : | 3 3 | 3 | | | 3 3 | | İ | li | | | | | | 1 1 | | | | GUARD ISLAND
GULKANA | CG
WBAS | 55
 62 | | | 53H
27H | 20
1579 | 5 | 5 | 5 | 5 5 | 5 5 | 3
5 | 5 | | 5 5
1 1 | | | ĺ | 12 | | l i | | | 1 1 | 25320
26425 | | | GUMS IGHT | A | 61 | | | 18H | 2960 | 3 | 3 | | 3 3 | | | | | 3 3 | | 1 | | ** | | | | | li | 20 123 | | | GUSTAVUS | FAA | 58 | | | 42H | 29 | 6 | Б | | 6 6 | 5 6 | 6 | 5 | 6 (| 5 6 | | | | 12 | | | l | | | 25322 | | | HAINES
HOMER | A
HBAS | 59
59 | | 135
151 | 27H
30H | 60
73 | 5 | 5 | 1 | 5 5 | | 1 | | | 5 5 | | | | 12 | | | 1 | | | 25323
25507 | | | HOOPER | SAHR | | | | 054 | éo | Ĵз | | | | 3 3 | | | | 3 3 | | | !] | | | 1 1 | 1 | | !! | 23307 | | | HUGHES | A | 65 | | | 144 | 545 | 5 | 5 | 5 | 5 5 | 5 5 | | 5 | 1 | 5 | | | | - 1 | | | | | | 26522 | | | ILIAMNA
INDIAN MTN | MBAS
AFS | 59
68 | | | 55H | 190
946 | 6 7 | | | 6 6
7 3 | 5 6
1 1 | | 6 | | 5 8 | | | | 12 | 07 | | 12 | | | 25506
26535 | | | JUNEAU | HBAS | | 22N | | 35H | 50 | i | | | 1 3 | | l il | | | i i | | | | 12 | | | 12 | | | 25309 | | | KENAI | FAA | 60 | | | 15₩ | 106 | 1 | | | 1 1 | 1 1 | 1 | 1 | 1 . | 1 3 | | | l | 12 | | |] | | | 26523 | | | KETCHIKAN
KING SALMON | SAHR
HBAS | | | | 34H | 0
47 | 5 | 5 | | 5 5 | 5 5 | 11 | 1 | | 5 5
1 1 | | | | 12 | | | 12 | | | 25325
25503 | | | KODIAK | NAF | | | | | 111 | ī | | | il i | | 1 | 1 | 1 | | | | | 12 | 12 | | 12 | | | 25501 | | | KOTZEBUE | HBAS | | 52N | | 38H | 20 | 1 | 1 | 1 | 1 1 | 1 1 | 11 | 1 | 1 : | 1 1 | | | ' I | 12 | | i | l | | | 26616 | | | LINCOLN ROCK
MANLEY HOT 5 | CG
A | | 00N | | 46H | 25
265 | 5 | 5 | 5 | 5 5 | 5 | 5 | | 5 ! | | | | | | | | | | | 25326
26524 | | | MCGRATH | HBAS | | | 155 | | 340 | 1 | 5 | 3 |]] | | 13 | | 5 ! | | 5 | | | 12 | | | | | | 26510 | | | MINCHUMINA | HBAS | 63 | 53N | 152 | 17W | 701 | 6 | | | 6 6 | 6 6 | 6 | 6 | | | 6 | | ' i | 12 | | | | | | 26512 | | | MOOSE RUN
MOSES POINT | COOP
AC | | | | 40H | 395 | ـ ا | اءا | . اے | ۔ ا۔ | ٦, | اءا | | . l | . _ | | | | | 08 | | | | i | 00000 | | | NENANA | FRA | | 42N | | 05H | 21
354 | 6 | | | 5 6 | | 5 | | | 5 6 | 5 | | | 06
12 | | | | | | 26620
26435 | | | NIKOLSKI | AF5 | 52 | 55N | 168 | 47H | 705 | 5 | 5 | 5 | 5 5 | | 5 | 5 | | 5 5 | | | | | | | | | | 25626 | | | NOME | HBAS | | | 165 | 26H | 18 | 1 | | | 1 1 | | 1 | 1 | 1 | | | | | 12 | | | 12 | | l | 26617 | | i | NORTHEAST CA | AFS
FAR | 63
62 | 19N
57N | 168
141 | 58H | 30
1718 | 7 | | | 7 7 | | | | 1 1 | | | | - 1 | 12 | | | 1 | | | 25632
26412 | | - 1 | NUNIVAK | SA | 60 | | | 124 | 52 | 3 | | | | slз | 3 | | | 3 3 | | 12 | - 1 | 12 | | | - 1 | | | 56655 | | | PAINTERS CRK | SAHR | | 10M | | | 545 | | 5 | 5 9 | 3 3
5 5
5 5 | 5 | 5 | 5 | 1 | 1 | | | - 1 | ļ | | l | 1 | | i | | | | PALMER
PETERSBURG | FAA
A | | 36N
49N | | 05H
57H | 240
50 | 5 | 5 | 5 | 5 S | 5 5 | 5 | 5 | 5 9 | | | | - 1 | 11 | 04 | | | | ı | 25331
25329 | | | POINT BARROW | AFS | 71 | | | 394 | 19 | 3 | | 3 | 5 5
3 3 | 5 3 | 5 | | 3 : | | | 1 | ŀ | | | | - 1 | | | 27506 | | | PORT CLARENC | CG | 65 | 15N | 166 | | 18 | 5 | 5 | 5 ! | 5 5 | 5 5 | 5 | 5 9 | 5 5 | 5 5 | 5 | 12 | | 12 | | | i | | 1 | | | | PORT HEIDEN
PORT MOLLER | A
AFS | 56 | 57N | 158
160 | | 1083 | 5 | 5 | 5 | 5 5
5 5 | 5 | 5 | | 5 9
5 9 | | 5 | | | | | | 1 | | | 2550 8
25625 | | | PRUDHOE BAY | SAHR | | 19N | | 33H | 1003 | 1 | " | | 6 | 7 | | 7 | 7 | 13 | 6 | | | l | | ŀ | | | | 29029 | | | PT RETREAT | CG | 58 | 25N | 134 | 57H | 20 | 5 | 5 | 5 9 | 5 5 | | | | 5 ! | | 5 | | | - 1 | | | l | | | 25330 | | ł | PUNTILLA
BUINHAGAK | A
SAHR | | 06N
45N | 152
151 | 45H | 1837 | 5 | | | 5 5 | | | | 5 5 | | | 1 | - 1 | | | | | | | 26526 | | - 1 | RAMPART | COOP | | 30N | | DOH | 10
400 | 4 | 4 | 1 | 11 | 4 | 11 | 1 | ı | 1 | * | l | | - 1 | 12 | | | | | | | - 1 | SAGHGN | SAHR | 69 | 22N |
146 | 42H | 650 | 4 | | | 4 4 | 1 4 | | | | 9 4 | | | | | | | | ı | | | | | SAND PBINT
SAVBØNGA | SAWR
A | | 20N | | 30H | 50
45 | 5 | | | 5 5 | | | | 5 5 | | | | | - 1 | | | I | | | 25617 | | 1 | SEMARD | Ä | | 07N | | 27W | 70 | 3
6 | | | 3 3
6 6 | | | | 3 3 | | | | - [| 12 | | | - 1 | | | 26438 | | - 1 | SHEMYA | HBAS | 52 | 43N | 174 | 06E | 128 | 1 | 1 | 1 | 1 1 | 1 3 | 1 | 1 | 1 : | 1 | 1 1 | | 1 | 12 | | | 12 | | 1 | 45715 | | - 1 | SISTER IS
SITKA | A
FAA | | 10N | | 15H
21H | 35 | 5 | | | 5 5 | 5 | 5 | | 5 5 | | | 1 | - 1 | | | | i | | 1 | 25341 | | ļ | SITKINAK | CG | 56 | 33N | | 08H | 56
53 | 5 | 5 | 5 9 | 1 1
5 5
5 6 | ś | 5 | واؤ | 1 5 | | | | - 1 | 12 | | | | | | 25333 | | | SKAGHAY | A | 59 | 27N | 135 | 19⊭ | 18 | 5 | 5 | 5 | 5 5 | 5 5 | 5 | 5 9 | 5 5 | 5 5 | 5 | | - 1 | | | | | ı | | 25735 | | İ | SKHENTNA
SNGWSHOE LAK | A | 61 | 58N | | 12H | 153
2410 | 3 | | 3 3 | 3 3 | | | | 3 3 | | | | | ا ي ا | | | - 1 | | | 26 ÷ 14 | | | 58LDOTNA | SAHR | | | | 024 | 115 | 4 | 4 | 3 3 | 4 4 | | 3 | 취 | 3 3 | 4 | 3 | ! | l | 75 | | | - 1 | | | | | ĺ | SPARREVOHN | AFS | | DBN | | 344 | 1736 | 7 | | | 1 1 | 1 | 1 | 1 | 1 1 | | | . | ı | l | | | 12 | - | | 26534 | | | ST PAUL IS
STONY RIVER | ₩8AS
A | 57
51 | 09N | 170
156 | 13H | 28
221 | 1 | | | 1 1
3 3 | | | 1 | 1 3 | 1 3 | | | i | 12 | 12 | | | - 1 | | 25713 | | ŀ | SUMMIT | FAA | 53 | 20N | | DBM | 2410 | 1 | 1 | | 1 1 | | | 1 | 1 1 | | | l | 1 | 12 | 12 | | i | j | - 1 | 26414 | | | SUMMIT LAKE | A | 63 | 084 | 145 | 32H | 3230 | | - 1 | 1 | 1 | ľ | | 1 | Τ | 4 | | J | - | | | | Ì | - 1 | | | | ŀ | SUSIE 1
TALKEETNA | SAUR
FAA | | 31N | 148
150 | 53H | 500
351 | 5 | | 6 | ۔ اے | ١. | أءا | اے | ١. | ١. | , | ļ | İ | 12 | | | | | İ | 26528 | | i | TANANA | | | 10N | | 06H | 240 | 6 | 5 | В | 5 e | 18 | 6 | S) (| i i | il é | اءًا | | | 12 | oe | | | | i | - 26529 | | | TATAL INA | AFB | 62 | 53N | 155 | 57W | 931 | 7 | 7 | 7] | 1 7 | 1 7 | 7 | 7] | 7 7 | 7 7 | 7 | Í | 1 | | | | 12 | | i | 26536 | | | TIN CITY
TOKSOOK | AFS
SAWR | | | 167 | | 273
15 | 3 | 7 | 713 | 7 1 | 1 1 | 1. | 113 | 1 1 | !!! | [2] | ł | | | | ٠ | - [| | - 1 | 28634 | | ŀ | TREE POINT | CG | | | 130 | | 36 | 5 | 5 | 5 | 5 5 | 5 | 3
5
5 | 5 | 5 6 | 5 5 | 5 | - 1 | - 1 | | | | l | | ŀ | 25337 | | ŀ | UMNAK | SAHR | 53 | 23N | 167 | 54H | 130 | 5 | 5 | 5 9 | 5 5 | 5 | 5 | 5 9 | 5 5 | 5 | 5 | | | | | | 1 | | | 25621 | | l | UNALAKLEET
VALDEZ | HBAS | | | 160
146 | | 21
75 | 6 | 5 | 6 <u>6</u> | 5 6 | 1 | 5 | <u>.</u>] : | 1 1 | 1 | | 1 | - 1 | 12 | | ľ | - 1 | 1 | į | 26627
26442 | | | HALES | SAHR | | | | | 18 | 3 | 3 | 3 : | 3 3 | 3 | 3 | وَ إِذَ | 3 3 | 3 3 | أوّا | | | [| | | | | | 26516 | | ļ | HEST FORK | COOP | | | | | 430 | | | - | 1 | 1 | | | | 1 | Ιl | | - 1 | 1 | 06 | | | - 1 | | | | Ì | HILD LAKE 2 | C00P
A | | | 151
132 | | 1180 | ايا | E | ا. | ۱. | اء ا | 5 | . اے | ١, | | ا ۽ ا | - 1 | - 1 | 1 | 07 | | | ŧ | | 25338 | | | YAKATAGA | FAA | 60 | 05N | 142 | 30H | 33 | | | | | | 6 | | | | | | | 11 | 1 | 1 | | ł | } | 25338
26445 | | | YAKUTAT | HBAS | | | | | 31 | 1 | 1 | 1 : | 1 1 | 1 | 1 | 1 : | 1 1 | 1 | 1 | | | 12 | - 1 | | 84 | | | 25339 | | 1968 | ADAK | NS | 51 | 53N | 176 | 394 | 15 | 1 | , | ,], | ١, | ١, | 1 | ٦, | ١. | ١, | ١, ا | l | 1 | 12 | 09 | 1 | 12 | | - 1 | 25704 | | | AMCHITKA IS | SAMR | | | | | 237 | | | | | | 6 | | | | | | - 1 | •• | V= | - 1 | •= | ļ | | 29/07 | | | ANAKTUVUK | COBP | 68 | 101 | 151 | 46H | 2100 | | | 1 | 1 | 1 | | | ı | i | | | | | 04 | | ļ | | - | | | | ANCHORAGE | FAA | 61 | 131 | 149 | PUP | 134 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 1 | 11 | 1 | l | | | - | | - 1 | | 1 | 26 4 09 | | | | | | | | | - | | | | | | | | | | - | - | | - | · | | • | | • | Α | L | A | S | Κ | A | |---|---|---|---|---|---| | | | | | | | | | ALASI | KA | | | | | | | | | | | | | | | NUI | 18ER | OF I | MONTH | IS IN | YE | R WI | ТН | |------|------------------------------|--------------|------------------|--------------------|--------------|-----|------------|-------------------|--------|-----|----------------|----------------|------|----|--------|----|--------------|-----------|-------------|---|----------|----------|---------------|----------------| | | | | | | | HOU | JR L | Y R | EC | ORI | 08 | B۲ | HO | NT | Н | , | /. / | / , | ر ج | 1 3 | / _ / | / | / / | 0,00 | | | | | | | | 1 | ı = | 24 | 0 | BS | PE | R (|)AY | , | | /ŝ | × / | <i>\$</i> | § ** | | | | \$ \$ | HBAN | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | د | F P | ı a | н | ادا | J F | a s | 0 | N | D | 1 | | §/ § | September 1 | I'm | | #3000 mm | | NUMBER | | 1968 | ANCHORAGE | HBAS | 61 10N | 150 Q1H | 158 | 1 | 1 | 1 1 | 1 | 1 | + | 1 1 | 1 | 1 | 1 | | \leftarrow | 12 | | \leftarrow | 12 | | $\overline{}$ | 26451 | | | ANDREAFSKY
ANGOON | A | 62 04N
57 31N | | 290
14 | 3 | 3 : | 3 3
5 5 | 3 | 3 | 3 | 5 5 | | | 5 | | | | | | | | | 25310 | | | ANIAK
ANNETTE | FAA
WBAS | 61 35N
55 02N | 159 32H
131 34H | 91
113 | 5 | Б (| Б 6
1 1 | 6 | 6 | 6 0 | 5 6
1 1 | 6 6 | 6 | 6 | | | 12 | | | 12 | | | 26516
25308 | | | ATTU
BARROW | CG
WBAS | 52 50N | 173 11E | 70 | 5 | 5 9 | 5 5 | 5 | 5 | 5 | 5 5 | i 5 | 5 | 5 | | | | | | | | | 45712 | | | BARTER IS | HBAS | 70 DBN | 143 38W | 38
50 | 1 | 1 | 1 1
1 1
1 1 | 1 | 1 | 1 | 1 1 | 1 1 | 1 | 1 | | | 12 | | | | | | 27502
27401 | | | BETHEL
BETTLES | ₩BAS
₩BAS | | 161 48W
151 31W | 131
652 | 1 | | | 1 | | | 1 1
1 1 | | | 1 1 | | | 12 | | | | | | 26615
26533 | | | BIG DELTA
BIRCH ROAD | FAA
CBBP | | 145 44H
149 46H | 1275
460 | | 1 | 1 1 | 1 | 1 | 1 | | | | 1 | | | 12 | 12 | | ļ | | | 26415 | | | CANYON VILAG | CGGb | 67 09N | 141 45W | 990 | | 1. | . _ | | ا ا | 1. | 1. | | ١. | | | | | 06 | | | | | | | | CAPE DECISIO | CG | | 146 39H | 50
185 | 5 | 5 ! | 5 6
5 5 | 5 | 5 | 5 ! | 5 5 | 5 | 5 | 5 | 12 | ŀ | 12 | : | | | | | 25315
26417 | | | CAPE LISBURN
CAPE NEWENHA | AFS
AFS | 58 53N
58 39N | 166 08W
162 04W | 53
235 | | 7 | 77 | | | | 1 7 | | | | | | | | | 12 | | | 26631
25623 | | | CAPE ROMANZO
CAPE SARICHE | AFS
CG | 61 47N
54 36N | | 405
176 | | | 7 7 | 7 | 7 | 7 | 7
5 5 | 7 | 7 | | | | 12 | | | | | | 26633
25622 | | | CAPE SPENCER | CG | 58 12N | 136 38W | 88 | 6 | 6 (| 6 6 | 6 | 6 | 6 8 | 6 6 | 6 | 6 | 6 | 12 | | 12 | | | | | | 25316 | | | CAPE ST ELIA
CENTRAL | CG
CGGP | 65 33N | 144 36H
144 49H | 1000 | 6 | | 6 | 6 | ٦ | 9 | ٦ | ٦ | ١ | 6 | 12 | | 12 | 10 | | | | | 25401 | | | CHALKYITSIK
CHENA HOT SP | COOP
COOP | | 143 43H
146 03H | 560
1200 | | ľ | | | | | | Ì | | | | | | 11 | | | | | | | | CIRCLE HOT 5
CLEAR | SAHR
SAHR | 65 29N | 144 35W | 935
542 | | 3 : | | 3 | 3 | 3 : | 3 3 | | | 3 | | | | | | | | | 25419 | | | COLD BAY | ₩BAS
COOP | 55 12N | 162 43H | 99 | | 1 | | 1 | | 1 | 1 1 | | | | | | 12 | | | 12 | | | 25624 | | | COLLEEN
CORDOVA | FAA | 60 30N | 142 28W
145 30W | 900
45 | 1 | | 1 1 | | | | 1 1 | | | | | | 12 | 11 | | | | | 26410 | | | CRAIG
CROOKED CREK | A
C00P | 55 29N
61 52N | 133 09H
158 15W | 13
130 | 5 | 5 ! | 5 5 | П | 1 | 5 5 | 5 5 | 5 | 5 | 5 | | | | 84 | | | | | 25317 | | | DAHL CREEK
DILLINGHAM | A
SAWR | 66 56N
59 03N | 156 524
158 274 | 270
50 | | 5 9 | 4 4 | | 4 | 4 | | l | | | | | | | | | | | 25513 | | | DILL INGHAM | FSS | 59 03N | 158 31₩ | 86 | | 5 5 | 5 5 | 5 | 5 | 5 9 | 5 5 | 5 | 5 | 5 | | | | | | | | } | 25512 | | , | DRIFT RIVER
DRIFTHOUD BY | SAUR
AFS | 60 35N
53 58N | 152 09W
166 51W | 35
1298 | 5 | 5 5 | | 5 | 5 | | | 5 | | 5 | | İ | | | | | | | 25515 | | | DUTCH HARBOR
EIELSON | SAWR | 53 53N
64 41N | 165 32W
147 05W | 13
569 | | | 3 3 | | | | 5 5 | | | | | | | | | 12 | | | 25514
26407 | | | EKLUTNA LAKE
ELDRED ROCK | COOP. | 61 24N
58 58N | 148 08H
135 13H | 660
54 | | 5 9 | | | Н | | ļ | 5 | Ι. | 5 | - | | | | | | 12 | | 25318 | | | ELMENDORF
EMMONAK | AFB
SAWR | 61 15N | 149 48W | 176 | 1 | 1 | | | | | 1 1 | | | 1 | | | | | | 12 | | | 26401 | | | FAIRBANKS | WBAS | 64 49N | 164 30W
147 52W | 440 | | 1 | | | | | 1 1 | | | | | | 12 | | | I | | | 26411 | | | FAREWELL
FIVE FINGER | µBA5
CG | 62 32N
57 16N | 153 54W
133 37W | 1503
30 | | 5 5 | 5 5 | 5 | 5 | | 5 5
5 5 | | | | | | 12 | 12 | | | | | 26519
25319 | | | FORT YUKON
FORT YUKON | AC
A | 66 33N | 145 12H
145 16W | 457
435 | 6 | 6 6 | 6
5 | 6 | | 5 5 | 5 5
3 3 | | | 5 | | | 12 | | | l | | | 26413 | | | GALENA
GAMBELL | AFS
SAWR | 64 44N | 156 56H
171 45H | 149
25 | | | 1 1 | 1 | 1 | 1 : | 1 1 | 1 | 1 | 1 | | ĺ | | | | 12 | | | 26501 | | | GUARD, ISLAND | CG | 55 27N | 131 53W | 20 | 5 | 5 5 | 5 5 | 5 | 5 | 5 5 | | 5 | 5 | 3
5 | | | | | | [| | | 25320 | | | GUNS IGHT | ₩BAS
A | 62 09N
61 54N | 145 27W | 1579
2950 | | 1 3
3 3 | 3 3 | | | | 1 1 | | | 3 | | | 12 | | | Ì | | | 25425 | | | GUSTAVUS
GUSTAVU3 | FAA
SAWR | 58 25N | 135 42H | 29
19 | 6 | 6 6 | 6 | 6 | 6 | 5 9 | 5 5 | 5 | 5 | 5 | | 1 | 06 | | | | | | 25322
25322 | | | HAINES
HØMER | A
WBAS | 59 14N | 135 27H
151 30H | 90
73 | | 5 5 | | 5
1 | | | 1 1 | | | | | | 12 | | j | | | | 25323
25507 | | | HOOPER | SAWR | 61 30N | 166 D6W | 80 | 3 | 3 3 | 3 3 | 3 | 3 | 3 5 | 3 3 | 3 | 3 | 3 | | 1 | 12 | | | | | | | | | ILIAMNA | A
HBAS | | 154 14W
154 55W | 545
190 | 5 | 5 5 | 5 6 | 6 | 5 | 6 (| 5 5 | 6 | 6 | 5 | İ | | 12 | 12 | | | | | 26522
25506 | | | UNDIAN MTN
URBNUL | AFS
WBAS | 66 DON | | 946
20 | | 7 3 | | 7 | | 7 1 | | 1 | | 1 1 | | | 12 | | | 10
12 | | | 26535
25309 | | | KAVIK RIVER
KENAI | SAWR
FAA | 69 41N
60 34N | 146 56W
151 15W | 517
106 | | , ; | | 11 | | 1 | | | | 1 1 |
 | 12 | | | | | | 26523 | | | KETCHIKAN
KING SALMON | SAUR | 55 20N | 131 34H
156 39H | 0
47 | 5 | 5 5 | 5 | 5 | 5 | | 6 6 | 6 | 6 | 6 | | | ł | | | | | | 25325 | | | KODIAK | NAF | 57 45N | 152 30W | 111 | 1 | 1 : | 1 1 | 1 | 1 | 1 : | 1 1 | 1 | 1 | 1 | | - | 12 | 12 | | 12
12 | | | 25503
25501 | | | KOTZEBUE
LAKE CHANDAL | MBAS
A | | 162 38W
148 30W | 20
1825 | 1 | 1 3 | 1 | 1 | 1 | 1 | 1 1 | 1 | | 1 4 | | | 12 | | | | | | 26616 | | | LAKE HOOD
LINCOLN ROCK | L AMR
CG | | 149 57H
132 46H | 148
25 | 5 | 5 4 | 5 | | | | | | 6 | 6 | | | | | | Ì | | | 25326 | | | MANLEY HOT S
MCGRATH | A | 65 DON | 150 39H
155 37H | 265
340 | 5 | | 5 5 | 5 | 5 | 5 5 | 5 5 | 5 | 5 | 5 | | | 12 | | | | | | 26524 | | | MINCHUMINA | HBA5 | 53 53N | 152 17W | 701 | | | 6 | | | | | | | | | 1 | 12 | 12 | | | | | 26510
26512 | | | MOOSE RUN
MOSES POINT | AC . | 64 42N | 149 40H
162 03H | 395
21 | | | 5 6 | | | | | | | 5 | | | - 1 | 09 | | į | | | 26620 | | | NENANA
NIKOLSKI | FAA
AFS | | 149 05H
168 47H | 364
705 | | 5 5 | 1 1 | | | 1 3
5 5 | | 5 | | 1 5 | | | 12 | | | [| | | 26435
25626 | | | NOME
NORTHEAST CA | | | 165 26W | 18
30 | 1 | 1 7 | 1 1 | 1 | 1 | | 1 1 | 1 | 1 | 1 7 | | | 12 | | | 12 | | | 26617
26632 | | | NORTHWAY | FAA | 62 57N | 141 56W | 1718 | 1 | 1 3 | 1 1 | 1 | 1 | 1 : | 1 1 | 1 | 1 | 1 | | | 12 | | | 1 | | | 26412 | | | NUNIVAK
PALMER | SA
FAA | 61 36N | 166 12W
149 05W | 52
240 | 5 | 5 5 | 5 5 | 5 | 5 | 5 5 | | 5 | 5 | 5 | 12 | 1 | 12 | | | 1 | | | 26622
25331 | | | PETERSBURG
POINT BARROW | A
AFS | | 132 57W
156 39W | 50
19 | 3 | 5 ! | 3 3 | 3 | 3 | 3 3 | 5 5
3 3 | | 3 | 5 | | | 1 | | | Ī | | | 25329
27506 | | | PORT CLARENC
PORT HEIDEN | CG
A | 55 15N
55 57N | | 18
92 | 5 | 5 5 | 5 5 | 5 | 5 | 5 5 | 5 5
5 5 | 5 | 5 | 5 | 12 | | 12 | | | 1 | | | 25508 | | | PORT MOLLER
PRUDHGE BAY | AF5 | 56 00N
70 19N | 160 314 | 1053 | 5 | 5 9 | 5 5 | 5 | 5 | 5 | 5 5 | 5 | | 5 | | | ļ | | |] | | ŀ | 25625 | | | PRUDHOE BAY | SAMR | 70 15N | 148 20W | 45 | Ιí | 1 | 1_ | | 6 | 5 6 | 6 6 | 6 | | | | | - 1 | | | | | | | | | PT RETREAT
PUNTILLA | ¢G
A | | 152 45W | 20
1837 | 5 | 5 9 | 5 5 | 5 | 5 | 5 9 | 5 5 | 5 | | 5 | | | - 1 | | | | | | 25330
26526 | | | GUINHAGAK | SAWR | 59 45N | 161 54W | 10 | 4 | 4 | 4 4 | 4 | 4 | 3 : | 3 3 | 1 | | | | | | | | - 1 | | | | | | ALASK | (A | ,,, | COMBO | 1.102 | . ^ | | | | _ | _ | _ | | | | | NI | UMBER | 0F 1 | 10NTH | IS IN | YEAR | WIT | Н | |------|---|---|---|--|--|--|-------------------|--|---|---|-----------------------------|-------------------|---------------------------|-------------------------------|-------------|--------|------|--|----------------|-------|-----------------|---|-------|--| | | 1121101 | ••• | | | | HOU | RLY | RE | COF | ₹D5 | В | YH | ON' | тн | | / | , | , | / æ / | | | / | ./ | § / | | | | | | | | 1 | = | 24 | 089 | S P | ER | DA | Υ | | | 3740p. | ÷ /. | | Land Sand | | | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 100 m | WBAN | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | JF | M | A | m J | J | A | s | N | 0 | / | | 1 | \$ 8 | / ž | 12.4 |]
 \$\\$\\$\ | [\$ E | - E. | NUMBER | | 1968 | RAMPART SAGMUN SAND PBINT SAVBUNGA SEWARD SHEMYA SISTER IS SITKA SITKINAK SKAGMAY SKMENTNA SKMENTNA SKMENTNA SPARREVUN ST MARYS ST PAUL IS STONY RIVER SUMMIT SUMMIT SUMMIT SUMMIT SAGMUN SUMMIT SUMMIT SAGMUN SAGMUN ST PAUL IS STONY RIVER SUMMIT SUMMIT SUMMIT SUMMIT SUMMIT | COURT SALIR SALIR A A SA CO A A CO A A CO A A A CO A A A A CO A A A A | 55 20N
63 42N
63 07N
52 43N
58 10N
57 03N
56 27N
62 28N
62 08N
62 08N
62 08N
63 04N
64 08N
657 08N
61 46N | 160 30W
170 28W
149 27W
174 06E
135 15W
135 21W
135 19W
151 12W
151 02W
155 34W
163 11W
170 13W
156 38W
149 08W | 3230 | 536151553357
1314 | 7 7 7 3 3 3 3 4 4 | 5
3
6
1
5
5
3
3
5
1
1
3
1
4 | 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 3 3 3 5 6 6 1 1 1 5 5 5 5 5 5 5 5 7 7 7 1 1 1 3 1 4 4 | 361515533 | 5361515533 1 1 4 | 536155533 | 4 4 | | | | 12 12 12 12 | 03
05
06 | | 10 | | | 25617
26438
45715
25341
25333
25335
26514
26534
25713
26414
26528 | | ! | TALKEETNA TANANA TANANA TIN CITY TOKSOBK TREE PGINT UMNAK UMNAK UNAL AKLEET VALDEZ WALES WEST FORK WILD LAKE 2 WARMSELL YAKATAGA YAKUTAT | HBABS HRAB RAP A SCORE A SCORE A HBABS CORE | 65 10N
62 53N
65 34N
60 32N
63 23N
63 53N
65 28N
65 28N
67 33N
56 28N
60 05N | 152 06H
155 57H
167 55H
165 07H
130 56H
167 54H
160 48H
146 15H
148 40H
151 33H
132 23H
132 20H | 240
931
258
15
36
130
21
75
18
430
1180
433
33 | 6
7
6
3
5
1
5
3
5
6
1
5
6
1 | 6 8 | 57 1355 153 561 | 661355153 561 | 3 3
5 5
6 4 | 657355153 | 777355153
541 | 67
73
55
15
3 | 5 5 1 1 5 3 3 5 5 4 1 1 | | | | 12 12 | 09
12
06 | | 12 | | | 26528
26536
26634
26634
25337
25621
26627
26442
26618
25338
25445
25339 | | 1969 | ADAK
AMCHITKA IS | NS
SAUR | 51 231 | 176 39W | 237 | | | l 1
5 6 | | 1 1
6 E | | | | 1 1
6 5 | | | | 11 | 12 | | 12 | | 1 | 29707 | | | ANAKTUVUK
ANCHORAGE
ANCHORAGE
ANDREAFSKY | COOF
WBAS
FAA | 61 10N
61 13N | 151 46
150 01
149 50
163 18 | 158
134 | 1 | 1 | 1 1 1 3 3 | 1 | 1 1 | 1 1 | | 1 | 1 1
1 1
3 3 | | | | 12 | 04 | | 12 | | | 26451
26409 | | | ANGBON ANIAK ANNETTE ATTU BARROW BARTER IS BETHEL BETTLES BIG DELTA | A
FAA
HBAS
CG
WBAS
WBAS
WBAS
HBAS | 57 31M
61 35M
55 02M
52 50M
71 16M
70 08M
60 47M | 1 134 354
1 159 324
1 131 344
1 173 116
1 156 474
1 143 364
1 151 464
1 151 314 | 14
91
113
70
38
50
131
652 | 5
6
1
5
1
1 | 5 1 1 1 1 1 | 5 5 5 1 1 1 1 1 1 1 1 1 1 1 | 5
1
1
1
1 | 1 1 1 1 1 1 1 1 | 5 5 5 1 1 1 1 1 1 1 1 1 1 1 | 1
5
1
1 | 1
5
1
1 | 6 6 5 5 5 1 1 1 1 1 1 1 1 1 1 | | | | 11
12
12
12
11
11
12 | | | 12 | | | 25310
26516
25308
45712
27502
27401
26615
26533
26415 | | | BIRCH ROAD CAPE DECISIO CAPE HINCHIN CAPE LISAURN CAPE NEWENHA CAPE ROMANZO CAPE SARICHE CAPE SPENCER CAPE ST ELIA CENTRAL | | 56 000
60 140
68 530
58 390
61 470
54 360
58 120
59 480
65 330 | 134 084
146 394
166 084
162 044
166 024
164 564 | 50
185
185
1235
1405
176
188
1000 | 5
7
1
7
5
6 | 567556 | 6 6
5 7
7 6
7 6
6 6 | 5
7
7
7
5
6 | 5 !
7 5 !
7 7 | 7
5
6 | 5 7 7 7 7 | 5
1
1
5
6 | 6 5 5 1 1 1 1 5 6 6 6 6 6 | 1 | 12 | | 12
12
12 | | | 12 | | |
25315
26417
26631
25623
26633
25622
25316
25401 | | | CHALKYITSIK
CHENA HØT SP
CIRCLE HØT S | | 65 .031 | N 146 031 | 4 1200 | | 3 | 3 3 | 3 | 3 | 3 : | 3 3 | 3 | 3 : | 3 | | ļ | | 11 | | | | | 26419 | | | CLEAR
COLD BAY
CORDOVA
CRAIG
CROOKED CREK | H8A
FAA
A
COO | 60 30
55 29
61 52 | N 162 431
N 145 301
N 133 091
N 158 151 | H 45
H 45
H 130 | 1 1 5 | 1 5 | 1 1 1 5 5 | 1 1 5 | 1 5 | 1 5 9 | 4 3 | 1
1
5 | 5 5 | 5 | | | 12 | | | 12 | | | 25624
26410
25317 | | | DEADHGRSE
DILLINGHAM
DRIFTWOOD BY
DUTCH HARBOR
EIELSON
EKLUTNA LAKE | AFB | 59 03
53 58
53 53
64 41 | N 158 31 | и 86
и 1296
и 13
и 569 | 5
5
5
1 | 5
5 | 1 1 5 5 5 5 5 1 1 | 5 5 | 6 | 5 | 1 1
6 6
5 5 | 5 | 5 | ı | | | | | | 12 | 11 | | 25512
25515
25614
26407 | | | ELDRED ROCK
ELMENDORF | CG | 58 58 | N 135 13 | µ 54 | 4 5 | | 5 5
1 1 | | | 5 | 5 S | | | 5 | | | | | | 12 | | | 25318
26401 | | | EMMONAK
FAIRBANKS
FAREWELL
FIVE FINGER
FORT YUKON | | R 62 46
5 64 49
5 62 32
57 16 | N 164 301
N 147 52
N 153 54 | H 44(
H 1503
H 30 | 3 3
3 5
5 5 | 1
6
5 | 3 3
1 1
6 6
5 9 | 1 1 5 5 | 5 | 5 | 5 5
5 | 5 | 5 | 1
5
5 | | | 12 | 12 | 2 | 02 | | | 26411
26519
25319
26413 | | | FORT YUKON
GALENA | A
AFS | 66 34
64 44 | N 145 16
N 156 56 | ₩ 435
₩ 145 | 9 1 | 1 | 3 : | 3 3 | 1 | 1 | 1 1 | 1 | 1 | 3 | | | | | | 12 | | | 26501 | | | GAMBELL
GUARD ISLAND | CG | 55 27 | N 171 45
N 131 53 |) 20 |) 5 | 5 | | 5 5 | 5 | 1 | | 3 | 3 | ı | | | 12 | , | | | | | 25320
26425 | | | GULKANA
GUNSIGHT
GUSTAVUS | A | 61 54 | IN 145 27
IN 147 18
IN 135 44 | и 2960
и 11 | 0 3
9 5 | 3 | 3 : | 3 3 | 3 | | 3 3 | 3 3 | 3 | | | | " | | | | | | 25322 | | | HEALY
HOMER | SAH
WBA | R 63 52
S 59 38 | N 148 57 | H 127:
H 7: | 3 1 | 1 | 5 ! | 5 5 | 5 | | 5 | | 1 | 1 | | | 12 | • | | 01 | | | 25507 | | | HOOPER
HUGHES | | R 61 30 | IN 166 06
IN 154 14 | H 61 | | | | 3
5 5 | 3 | 5 | 1 | 5 | | 3 5 | | | | | | | | | 26522 | | | 1 | I | 1 | ı | I | ı | ıl | 1 | Ţ | : 1 | 1 | 1 | ı | ı I | | | ' | 1 | Ŧ | 1 | ı | | • | • | | | HLHS | ĸн | | | | | | | | | | | | | | | | NŲ | MBER | OF | MONT | HS I | N YE | R H | TH . | |--------|------------------------------|--------------|----------------|----------------|------------------|--------------|-----|----------------|------------|-------|------------|--------|------------|------------|------------|--------|-----|---------|---------------|-------------|--|------|-------|--------|----------------------| | | | | | | | | HC | UR | LY | RE | COR | eos | BY | / H | ON' | tн | | / | / | /_ | / Chingonana | / | / | / | / به / | | | | | | | | | | | | | 085 | | | | | | / | | | September 1 | \ \ 3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | `\$\$\ | \\$\ | | w.c.a. | 1 | 1 | | | | | | | | | | | | | | | /\$ | \$ /× | & / & | § / ¿ | £ / 9 | 3/5 | § [\$ | | § [®] ∕WBAN | | YEAR | NAME | TYPE | LAI | · | LONG. | ELEV. | J | F | M O | 4 H | IJ | J | A I | s | 3 N | 0 | 150 | ە چە كۆ | 3/ 4 3 | / * | /* | ₩/₹ | #/# | ¥/ & | NUMBER | | 1969 | HULL | SAH | | | 48 57W | | Τ | П | \top | 1 | T | П | П | | | 5 6 | | | | ſ | | 1- | 1 | | | | | ILIAMNA
INDIAN MTN | HBAS
AFS | 59 4
66 D | | 54 55W
53 42W | 190
946 | 6 | | 6 | | 5 6
1 1 | 5
7 | 6 | 튀 | 5 6
1 7 | 5 5 | | | 12 | 12 | l | 04 | | | 25506 | | | JUNEAU | HBAS | 58 2 | 2N 1 | 34 35W | 20 | | | | | 1 1 | í | 1 | 1 | | (i | 1 | | 12 | İ | | 12 | | | 26535
25309 | | | KAD RIVER
KAVIK RIVER | SAHR | | 4N 1 | 47 43W
46 56W | 75
517 | Ι. | ١.١ | | | ! ! | 1 | 1 | | 1 | 1 | | | | | | l | | ŀ | | | | KENAI | FAA | | | 51 15W | 106 | 1 1 | | 1 1 | | 1 1 | 1 | 1 | | 1 , | 1 1 | l | | 11 | | i | - | | Ì | 26523 | | | KETCHIKAN
KETCHIKAN | SAHR
FSS | | | 31 344 | 0 | 6 | | | 6 6 | 3 | П | | -1 | 1 | 1 | İ | | | | | | | | 25325 | | | KING SALMON | MBAS | | | 31 40H
56 39H | 122
47 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | | 5 6
1 1 | 1 6 | | | 12 | | | 12 | | | 25325
25503 | | | KODIAK
KOTZEBUE | NAF | | | 52 30W | 111 | 1 | 1 | 1 | 1 1 | 1 3 | 1 | 1 | 1 | 1 1 | 1 | l | | 12 | 12 | i | 12 | | | 25501 | | | LAKE CHANDAL | HBAS | | | 62 38W
48 30W | 20
1825 | 1 4 | 1 | | | 1 4 | | | | 1 1 | | ľ | | 12 | | | | | | 26616 | | | LAKE HODD | | 61 1 | 1N 1 | 49 57H | 148 | 6 | 6 | 6 | 5 5 | 5 | 6 | 6 | 6 (| 5 6 | 6 | Į | | | | | | | | | | | MANLEY HOT S
MCGRATH | HBAS | 65 0 | | 50 38H
55 37H | 265
340 | 5 | | | 5 5 | 5 | 5
1 | | | 5 5 | | 1 | | 12 | | | | | | 26524 | | | HINCHUMINA | FAA | 63 5 | 3N 1 | 52 17W | 701 | 6 | | | 5 5 | 5 | 5 | | | 5 5 | | İ | | 06 | 04 | | 1 | | | 26510
26512 | | | MOOSE RUN
MOSES POINT | COOP
AC | | | 49 40W
62 03W | 395
21 | ۱. | 5 | 5 9 | 5 9 | 5 | | | | | | | | | 01 | | 1 | | | Acces | | | NENANA | FAA | 64 3 | 3N 1 | 49 05W | 364 | 1 | 1 | | 1 1 | 1 | 6 | 6 | 6 (| 5 e | 6 | | | 11 | | 1 | | | | 26820
26435 | | | NIKOLSKI
NOME | AFS
HBAS | | | 68 47µ
65 26µ | 705
18 | 5 | | | 5 5 | | ١.١ | | ١. | ١. | ١. | | | | | 1 | ١ | | | 25628 | | | NORA FEDERAL | SAMR | 69 3 | 4N 1 | 48 45M | 450 | 1 | | | 5 6 | | | | | 1 1
5 6 | | | | 12 | | | 12 | | | 26617 | | | NORTHEAST CA | AFS
FAA | | | 68 58W
41 58W | 30
1716 | 7 | | 7 | 7 1 | 1 1 | 7 | 6 | 1 | 1 | 1 1 | | | | | | l | | | 26632 | | | NUNIVAK | SA | 60 2 | | 56 12H | 52 | 3 | 3 | 3 : | 1 1 | 3 | | | | 1 4 | 14 | 12 | | 12 | | | İ | 1 | | 26412
26622 | | | PALMER
PETERSAURG | FAA | 61 3
55 4 | | 49 05H | 240 | | 5 | 5 5 | 5 5 | 5 | 5 | 5 ! | 5 5 | 5 5 | 5 | •- | | 11 | | | | | | 25331 | | | PINGO | SAUR | | | 32 57₩
47 43₩ | 50
100 | 5 | 5 | 5 ! | 1 5 | 5 | | | 5 5 | 5 | 5 | | | | | | ŀ | | | 25329 | | | POINT BARROW
PORT CLARENC | AFS | 71 2 | | 56 39µ | 19 | 3 | | | 3 3 | | 3 | 3 : | 3 : | 3 | | | | | | | Ì | | | 27508 | | | PORT HEIDEN | CG
A | | | 56 52₩
50 37₩ | 18 :
92 : | 5 | 5 | 5 5
5 6 | | 5 | 5 | 5 ! | 5 5 | 5 5 | | 12 | | 12 | | | | | | 25508 | | | PORT MOLLER | AFS | 56 D | DN 10 | BO 31⊯ | 1053 | 5 | 5 | 5 5 | 5 5 | 1 | | - [| | | | | | | | | | | | 25525 | | | PRUDHOE BAY
PT RETREAT | SAWR
CG | 70 19
58 29 | | 48 20W | 45
20 | 1 | 5 | 1 1
5 5 | 1 5 | | 1 | 1
5 | 1 1 | 5 | | | | 1 | | | | 1. | | 25##4 | | | PUNTILLA | A | 62 0 | 6N 19 | 52 45W | 1837 | 5 | | 5 5 | 5 | 5 | 5 | 5 : | 5 5 | 5 | 5 | | | Ī | | | | ÌΙ | | 25330
26526 | | | GUINHABAK
RAMPART | SAHR | | 5N 10
ON 19 | | 10
400 | | l | 1 | | П | 3 | 3 : | 3 3 | 3 | 3 | | | | | | | | | | | | SAGUON | SAMR | 69 2 | 2N 1- | 48 42W | 850 | | | 6 6 | | 6 | 6 | 6 6 | 5 1 | | 1 | | | | 12 | | | | | | | | SAND POINT
SAVOGNGA | SAHR | | DM 10
2N 13 | | 50
45 | 5 | 5 | 5 5 | 5 | 5 | 5 | 5 9 | 5 5 | | | | | ŀ | · | | 1 | 1 1 | | 25617 | | | SEWARD | A | 60 0 | 7N 14 | 19 27W | 70 | | | 6 6 | | | 6 | 6 6 | 5 E | 6 | 6 | | | 12 | | | | | - 1 | 26438 | | | SHEMYA
SISTER IS | HBA5 | | 3N 17 | 74 06E | 128 | 5 | | 1 1
5 5 | | | 5 | | 1 1
5 9 | | 5 | | | 12 | | | 12 | | | 45715 | | | SITKA | FAA | 57 04 | 4N 13 | 35 21W | 66 | 1 | 1 | 1 2 | 1 | 1 | 1 | | 1 1 | | | i | i | 12 | 12 | | | | | 25341
25333 | | | SITKINAK
SKAGHAY | CG
A | 56 33
59 27 | 3N 15
7N 13 | 54 08H | 53
18 | 5 | 5 | 5 5
5 5 | 5 | 5 | 5 | 5 9 | , s | L | 5 | | | 86
04 | | | | l i | | | | | SKHENTNA | R | 61 58 | 3N 15 | 51 12H | 153 | 3 | 3 | 3 3 | 13 | 3 | 3 | 3 3 | 3 3 | | 3 | | . | ۱ | | | ļ | | | 25335
26514 | | | SMOHSHOE LAK
SPARREVOHN | A
AFS | 62 02
61 06 | 2N 14
5N 15 | | 2410
1736 | 3 | 3 | 7 7 | 3 | 3 | 3 | | 3 3 | | 3 | | | 12 | | | | | l | | | - 1 | ST MARYS | COGP | 62 04 | 9N 18 | 53 11W | 30 | 1 | Ί | Ή΄ | ١. | | 1 | 1 | Ί. | • | | | | 7.0 | 11 | | 03 | | | 26534 | | | ST PAUL IS
SUMMIT | HBAS
HBAS | | 3N 17
3N 14 | | 26
2410 | 1 1 | | 1 1 | 1 | | | | 1 1 | | 1 1 | | į | 12 | | | | | | 25713 | | 1 | SUMMIT LAKE | A | 63 06 | 3N 14 | 15 32H | 3230 | 4 | 4 | 11 | 1 | 1 | * | 11 | 1 | 11 | | - 1 | | 12 | i | | | | - 1 | 26414 | | | TALKEETNA
TANANA | HBAS
HBAS | | 3N 15 | | 351
240 | | | 1 1 | 1 | 1 | 1 | 1 1 | | | | | - 1 | 12 | | | | | - 1 | 26526 | | | TATALINA | AFB | 62 53 | IN 15 | 5 57H | 931 | 5 | 5 | 1 1 | 7 | 7 | 1 7 1 | 6 7 | 6 | 7 | 6
7 | ŀ | - 1 | 12 | 05 | | 12 | } | | 26529
26536 | | i | TIN CITY
TOKSOOK | AFS
SAUR | 65 34
60 3a | | | 258
15 | 7 | 3 | 7 6
3 3 | | 1 | 3 | 7 7
3 2 | | | 3 | | | - 1 | l | | | | - 1 | 26634 | | | TREE POINT | CG | 54 48 | JN 13 | 10 56W | 36 | | | 5 5 | 5 | 5 | 5 | 5 5 | 5 | 5 | | ŀ | ı | | ı | • | i | | ı | 25337 | | | TYBNE LAKE | A
SAUD | 62 35
70 23 | | | 2371
48 | 6 | | 1 | | H | 4 | 9 1 | 4 | 11 | 4 | | - 1 | ļ | | | | | - 1 | | | - 1 | TAIMU | SAHR | 69 22 | N 15 | 2 08H | 337 | Ĭ | | 1 | | | 5 | | | 5 | 5 | | i | j | - 1 | | | | | 26508 | | İ | UMNAK
UNALAKLEET | SAHR | | | 7 54W | 130
21 | | 5 | 5 5 | | | 5 9 | 5 5
1 1 | 5 | | , | ŀ | | | | | l | | | 25621 | | | VALDEZ | A | 61 06 | IN 14 | 15 15W | 75 | 5 | 5 9 | 5 5 | 5 | 5 | 5 4 | 5 | 1 | 5 | 1 | | ı | 12 | 1 | | | i | | 26627
26442 | | ļ | HALES
HEST FORK | | | | 8 03H | 18
430 | 3 | 3 : | 3 3 | 3 | 3 | 3 : | 3 3 | 3 | 3 | 3 | 4 | 1 | l | | ļ | | | ĺ | 26618 | | ı | HEST KAVIK | SAMR | 70 03 | IN 14 | 7 424 | | | | | | li | | 1 | 6 | В | в | İ | - 1 | l | 12 | | | | - | | | | WEST KUPARUK | | | N 14 | 1 33H | 50
1180 | - | | 1 | 1 | 1 | 1 | 1 1 | | | | | | | | | | | ŀ | | | ŀ | HRANGELL | A | 56 26 | IN 13 | 2 23H | 43 | 5 | 5 9 | 5 5 | 5 | 5 | 5 9 | 5 5 | 5 | 5 | 5 | | | - 1 | 06 | | | İ | - 1 | 25338 | | | YAKATAGA
YAKUTAT | A | | | 2 30H | 33 | 7 | 1 | 1 1 | 1 | | | 1 | | | | - 1 | | | - 1 | - 1 | | | - 1 | 26445 | | - 1 | i | -573 | | | | 31 | 1 | 1 | ' * | 1 | 1 | 1 | 1 1 | 1
| 1 | 1 | 1 | 1 | 12 | | | | | | 25339 | | 1970 | ADAK
AMCHITKA IS | MS
SOUD | 51 53
51 23 | | | 16 | | | 1 1 | | 1 | | | | | 1 | | | 12 | 08 | l | 12 | | ı | 25704 | | - 1 | ANAKTUVUK | COOP | 68 10 | N 15 | 1 464 | 237 | 6 | ١, | " " | ١٩ | 6 | 비' | 기학 | 16 | ۱۹ | 6 | | | - 1 | 05 | | | i | - 1 | | | | ANCHBRAGE | | | | 0 014 | 158 | - 1 | | 1 | | | 1 : | | 1 | | | | | 12 | ا " | | 12 | | - 1 | 26461 | | | ANDREAFSKY | | 62 04 | | 8 50H | 134
290 | | | 1 3 | | 3 | 1 | 1 1 | 1 | 3 | | | | ļ | .] | | ĺ | | - 1 | 26409 | | - 1 | ANGOON
ANIAK | A | 57 31 | N 13 | 4 35H | 14 | | 5 8 | 5 | 5 | 5 | 5 9 | 5 5 | 5 | 5 | ı | İ | | | - 1 | | | | - 1 | 25310 | | | ANNETTE | | 55 02 | | 9 32H | 113 | 6 | 6 9
1 3 | 5 5 | | 5 | | 5 5 | | | 5 | - 1 | - 1 | 12 | | | 12 | | - 1 | 26516 | | İ | ARCTIC VILAG | COOP | 68 09 | N 14 | 5 32H | 2250 | 1 | Ţ | | ΙI | - 1 | 1 | 1 | 1 | | 1 | - 1 | - 1 | | 10 | | ** | - 1 | - 1 | 25308 | | | BARROW | | 52 50
71 18 | | | 70
38 | | 5 5 | 5 | 1 | 5 | | 5 5
1 1 | | | 5 | - | | 12 | - | ļ | | - 1 | - 1 | 45712
27502 | | | BARTER IS | MBAS | 70 08 | N 14 | 3 38H | 50 | 1 | 1 1 | 1 1 | 1 | 1 | 1 1 | 1 1 | 1 | 1 | 1 | | - | 12 | ļ | ł | | | | 27502
27401 | | | BETHEL
BETTLES | | | | 1 48H | 131
652 | 1 | 3 1
1 1 | 1 | 1 | 1 | 1 1 | 1 1 | 1 | 1 | 1 1 | 1 | | 12 | - 1 | Ì | | | | 26615 | | | BIG DELTA | FAA | 64 00 | N 14 | 5 444 | 1275 | | $i \mid i$ | | 1 | i | i | iji | i | i | î | - 1 | | 12 | - [| İ | | J | | 26533
26415 | | | BIRCH ROAD | COOP | 61 D8 | 7 14 | 9 46H | 460 | - 1 | | | | | | | | | | J | | | 12 | | | 1 | - [| | | | | | | | | • | • | , | - ' | ĺ | • | | • | | • | • | | ' | • | • | , | ' | ' | , | | | | ALASI | (A | | | | | | | | | | | | | | | NUMBER | | | | | | | |------|--|---------------------|----------------------------|-------------------------------|--------------------|--------|-----------|----------------|-------------------|-----|--------|-------------------|------------|------|--------|-------|---------------|--|---|--|----------|----|--| | | | | | | | ноц | JRL' | r R | ECC | 3RD | S I | BY 1 | MOR | ¢TH | ı | / | \ \ \ \ \ \ \ | / * / | TATE OF THE STATE | | Maniford | &/ | \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | | 1 | | | | | e. eu ' | | =
 - - | | | | | | | بايد | n | STOOP | | The state of s | Taile (| | | | HBAN
NUMBER | | YEAR | NAME
CAPE DECISIO | CG | LAT. | LONG - | ELEV. | Н | - | 9 6 | ₩ | | + | 6 6 | Н | 6 | | 12 | 12 | / | (7 | / | 7 | | 25315 | | 1970 | CAPE HINCHIN | CG
AFS | 50 14N
68 53N | 146 39W | 185
53 | 5 | 5 5 | 5 5 | 5 | 5 | 5 5 | 5 5 | 5 | | 5 | | | | | | | | 26417
26631 | | | CAPE NEWENHA
CAPE ROMANZO | AFS
AFS | 58 39N
61 47N | 162 04W
166 02W | 235
405 | 7 | | 7 7 | | | | 1 1 | | | 1 1 | | | | | 12 | | 1 | 25623
26633 | | | CAPE SARICHE
CAPE SPENCER | CG | 54 36N
58 12N | 154 56H
136 38H | 176
88 | 5
6 | 6 (| 5 6 | 6 | 6 | 6 0 | 5 5
6 6 | 6 | 6 | 5 | 12 | 12 | ļ | | | | | 25622
25316
25401 | | | CAPE ST ELIA
CENTRAL | CG
CGGP | | | 50
1000 | 6 | 5 1 | 5 6 | 6 | 6 | 6 | 6 6 | 6 | 5 | 5 | 12 | 12 | 12 | | 1 | | | 29701 | | | CHENA HOT SP | COOP | 65 03N | 146 03H | 560
1200 | | | | | | | | | | | | | 12 | | ŀ | | | 26419 | | | CIRCLE HOT S | SAUR | 64 1BN | 149 11W | 935
580 | 5 | | 5 6 | i 6 | | | 6 6 | | 6 | 6 | | 12 | | | 12 | | | 25624 | | | COLD BAY
COLLEGE
CORDOVA | HBAS
A
FAA | 55 12N
54 52N
60 30N | 162 43H
147 50H
145 30H | 99
621
45 | 1 | | 1 1 | 1 } | - 1 | ŀ | 5 | 5 | 5 | 5 | | 12 | | | | | ĺ | 26410 | | | CRAIG
CROOKED CREK | A
COOP | 55 29N | | 13
130 | ŝ | | 5 5 | 5 | 5 | | 5 5 | | | 5 | | | 08 | | - 1 | | | 25317 | | | DEADHORSE
DILLINGHAM | FSS
FSS | 70 12N
59 03N | 148 27W | 50
86 | 1
5 | | 1 1 | | | 1
6 | 1 6
6 6 | | | 6 | | | | | | ļ | | 26512 | | | DUTCH HARBOR
EIELSON | SAWR | | 165 32W | 13
569 | 5 | 5 9 | 5 5
1 1 | 15 | 5 | 5 9 | 5
1 1 | 5 | 5 | 5 | | | | | 12 | | | 25614
26407 | | | EKLUTNA LAKE
ELDRED ROCK | C00P | 61 24N
58 58N | | 860
54 | 5 | | 5 5 | | | | 5 5 | | | 5 | | | | | | 12 | | 25318
25401 | | | ELMENDØRF
FAIRBANKS | AFB
HBAS | 54 49N | 149 48H
147 52H | 175
455 | 1 | 1 | 1 1 | L 1 | 2 | 1 | 1 1
1 1 | 1 | 1 | 1 | | 12 | 1.5 | | 12 | | | 26411
26519 | | | FAREWELL
FIVE FINGER | ₩BAS
CG | 57 16N | 133 37W | 1503
30 | 5 | 5 1 | 5 5 | 5 5 | 5 | 5 | 5 5
5 5 | 5 | 5 | 5 | | 12 | 12 | | Ì | į | | 25319 | | | FORT YUKON
FORT YUKON | AC
AC | | 145 12H | 435
457
2665 | 5 | | 3 3
5 5 | | | | 3
5 5 | 5 | | 5 | | | | | ł | 04 | | 26413 | | | GALBRAITHE
GALENA | SAHR
AFS
SAHR | 64 44N | 148 29W
156 56W
171 45W | 149 | 1 3 | | 1 1 | 1 3 | | | 1 1
3 3 | | - 1 | 1 3 | | | | | 12 | - | | 26501 | | | GAMBELL
GULKANA
GUNSIGHT | WBAS | 62 09N | 145 27H | 1579 | 1 3 | 3 | 1 a | 1 1 | 1 | 1 | 1 1 | | 1 | 1 3 | | 12 | l | | | İ | | 26425 | | | GUSTAVUS
HOMER | SAHR | 58 25N | 135 444 | 19 | 5 | 6 | 6 E | 5 6 | 6 | 6 | | 6 | 6 | 5
1 | | 12 | | | | | | 25322
25507 | | | HUGHES
HULL | A
SAME | 66 D4N | 154 14H | 545 | 5 | | | | | | | | | | | | | | | | | 26522 | | | ILIAMNA
INDIAN MTN | WBAS
AFS | 66 00N | 153 42W | 946 | 5 | 7 | 7 : | 5 6
7 1 | 1 | 1 | 7 1 | | 1 | 1 | | 12 | 1.11 | | · 12 | | | 25505
26535
25309 | | | KENAI
JUNEAU | FAA | 60 34N | 151 151 | 106 | 1 | 1 | 1 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | | | 12 | | | 12 | ļ | | 26523
25325 | | | KETCHIKAN
KING SALMON | FSS
WBAS | | 156 394 | 47 | 1 1 | 1 | 1 : | | 1 | 1 | 6 6
1 1
1 1 | . 1 | 1 | 1 | | 12 | | | 12 | Ì | | 25503
25501 | | | KOTZEBUE
LAKE CHANDAL | HBAS | 57
45N
66 52N
67 30N | 162 384 | 20 | | 1 | 1 : | 1 1 | 1 | | 1 1 | | | 1 | | 12 | | | | | - | 26616 | | | LAKE CLARK | A
LAME | 60 17N | 154 174 | 271 | 6 | 6 | | 5 6 | 6 | | 6 6
6 8 | 6 | | 5 | | | 1 | ì | | | | | | | MANLEY HOT S
MCGRATH | A
MBAS | 65 00N | 150 394 | 265 | | | | 5 5
1 1 | 5 | 5 | 5 5 | 5 | IJ | 1 | | 12 | | | | | | 26524
26510 | | | MINCHUMINA
NENANA | FAA
FAA | 63 53N
64 33N | | | | | | 5 5
6 6 | | | 5
6 E | 6 | 6 | 6 | | 12 | | | | | | 26512
26435 | | | NIKOLAI
NOME | LOGE
WBAS | 64 30N | 165 264 | 18 | | | | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | | 12 | 04 | | 12 | 1 | | 26617 | | | NORA FEDERAL
NORTHWAY | FAA | 62 57N | 141 55 | 1718 | 1 | 1 | 1 | 1 1 | | | 1 1 | | | 1 | 12 | 12 | | | | | | 26412
26622 | | | NUNIVAK
PALMER | FAA | 60 23N | 149 05 | | | | | 3 3
5 5
5 5 | 5 | | | | | 5 | 12 | 12 | | | l. | | | 25331
25329 | | | PETERSBURG
POINT BARROW
PORT CLARENC | AFS
CG | | 132 574
156 394
166 524 | 19 | | | | 3 3 | 3 | 3 | 3 3 | 3 3 | 3 | 3 | 12 | 12 | | ļ | | | | 27506 | | | PORT HEIDEN
PRUDHOE BAY | A
SAHI | 56 57N | 158 374
148 204 | 92 | 1 | 5 | 5 | 5 5 | 5 | 5 | 5 5 | 5 5 | 5 | 5 | | | | ľ | | Ì | | 25508 | | | PT RETREAT | CG
A | 58 25N
62 06N | 134 57 | ı 20 | | 5 | 5 | 5 5
5 5 | 5 | 5 | | 5 5 | 5 | 5 | | | | | | | | 25330
26526 | | | DUINHAGAK
RAMPART | C001 | 8 59 45N
9 65 30N | 150 081 | 400 | | | ı | 3 3 | | | - | - | 3 | 1 | | | 05 | | | | | | | | SAGWON
SAND POINT | | | 160 30 | 50 | 5 | 5 | 5 | 1 1
5 5 | 5 | 5 | 5 5 | 5 5 | 5 | | | | | 1 | | | | 25617
26438 | | | SEWARD
SHEMYA | | | 174 056 | 128 | 1 | 1 | 1 | | 1 | 1 | 5 5 | 1 1 | 1 5 | | | 12 | | | 12 | | | 45715
25341 | | | SISTER IS | FAA | 58 10N | 135 211 | 66 | 1 | | 5 | 5 5
1 1
5 | 1 | 1 | 1 : | 1 1 | 1 | 1 1 | | 12 | | | | | | 25333 | | | SITKINAK
SKAGHAY
SKHENTNA | CG
A | 59 20N | | ا (30 | 5 | | 5 | | 5 | | 5 9 | 5 5 | 5 | 5 | | 12 | 1 | | | | | 25335
25514 | | | SNOWSHOE LAK | AFS | 62 021 | 146 40 | 2410 | 1 3 | 3 3 | 3 | | 3 7 | | 3 : | | 3 | 3 | | 12 | 2 | | 12 | | | 26534 | | | ST MARYS
ST PAUL IS | C00 | 62 04N | 163 11 | 4 30 |) | 1 1 | 1 | 1 | | 1 | 1 | 1 1 | 1 | 1 | | 12 | 2 | | | | | 25713 | | | SUMMIT
TALKEETNA | HBA | 5 63 201
5 62 181 | 149 08
150 06 | 4 2410
4 351 | | 1 1 | 1 | 1 1 | 1 1 | 1
6 | 1
6 | 1 1
6 6 | 6 | 5 | | 12 | 2 09 | | | | | 26414
25528 | | | TANANA
TATAL INA | FSS
AFB | 62 531 | 155 57 | 4 931 | 1 7 | 기 의 | | 7 7 | 7 7 | 6 | 1 | 1 1 | | 1 | | 112 | 2 0€ | ' | 12 | | | 26529
26536
26634 | | | TIN CITY
TOKSOOK | | R 60 321 | | 4 15 | ; : | 3 3 | 3 | 3 3 | 3 3 | | 3 | | 3 | | | | | | | | | 26634
25337 | | | TREE POINT | CG
A | 54 488
62 311 | 146 42 | J 2371 | ı 4 | 4 4 | 4 | 4 4 | 4 | 4 | | 4 | 4 | 4 | | | | | | | | 26508 | | | UMIAT | | | 152 06 | | | | 1 | 5 5 | 5 5 | 5 | 1 | 1 , | 1 | 1 | | 1 1: | ≥ | | | | | 26627 | | | 1 | • | , | • | • | | | ' | • | • | • ' | | • | • | • | - | • | - | | | | | | ALASKA NUMBER OF MONTHS IN YEAR WITH | | | | | | | HOU | RLY | RI | ECO | RDS | 8 8 | Y 1 | 401 | ΙTΗ | | /s | /. | 1 | æ / | 14 Le J. | / */ | / * | /200 | /8/ | |------|------------------------------|--------------|------------------|--------------------|-----------------|------------|-------|-------|------------|------------|-----|------|-------|------------|----|-------|-----|---------|-------------|----------|-------|---|------|-------------------| | | | | | • | | | | | | S P | | | | | | | | 84000 C | */ <u> </u> | 10 /2 · | | / 5 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 | | MBAN | | YEAR | NAME | TYPE | | LONG. | ELEV. | JF | H | A | н. | J | A | S | 0 | N D | /% | \$/\$ | 88/ | 8 / | / X* | 14.6 | 4/3.4 | 4/5 | £/ & | NUMBER | | 1970 | WALES
WEST FORK | SAWR
COOP | 65 28N | 148 40H | 18
430 | 3 | 3 3 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 3 | | | | | 08 | | | | | 26618 | | | WEST KAVIK
WILD LAKE 2 | SAUR
COOP | | | 1190 | 6 | 1 | П | | | | | | | | | | 4. | 04 | | | | | | | | HRANGELL
YAKATAGA | A | 56 28N
60 05N | | 43
33 | 5 9 | 5 5 | | | 5 5
4 4 | | | | 5 5
4 4 | | Ì | | | | | | | | 25338
26445 | | | YAKUTAT | WBAS | 59 31N | 139 40W | 31 | | 1 1 | | 1 | 1 1 | 1 | 1 | | 1 1 | | | 1 | 2 | | | | | | 25339 | | 1971 | ADAK
AMCHITKA IS | NS
SAUR | 51 53N
51 23N | | 16
237 | | 1 5 | | | 1 1 | | 1 5 | | 1 1 | | ' | 1 | 2 | 12 | | 12 | | 1 | 2570 4 | | | ANAKTUVUK
ANCHBRAGE | A
HBAS | 68 10N
61 10N | | 2100
158 | 1 1 | 1 | 1 | ł | 1 1 | H | | 5 | 5 5
1 1 | | | Ι, | 2 | 10 | | 12 | | | 26451 | | | ANCHORAGE
ANDREAFSKY | FAA | 61 13N
62 04N | | 134
290 | 1 1
3 3 | 1 1 | 1 | 1 | 1 1
3 3 | 1 | 1 | 1 | i i
3 3 | | | ' | - | | | | | | 26409 | | | ANGOGN
AN IAK | A
FAA | 57 31N
61 35N | 134 35H
159 32H | 14
91 | 5 9 | | | 5 9 | 5 5
5 5 | 5 | 5 | 5 | 5 5 | İ | | Ι, | 2 | | | | | | 25310
26516 | | | ANNETTE
ARCTIC VILAG | WBAS
COOP | | 131 34W
145 32W | 113
2250 | 1 1 | | | | 1 1 | | | | i | | | | 2 | 12 | | 12 | | , | 25308 | | | ATTU
BARROW | CG
MBAS | 52 50N | 173 11E
156 47H | 70
36 | 5 5 | 5 | | 5 ! | 5
1 1 | 5 | | | 5
1 1 | | | ١, | 2 | | | | | | 45712
27502 | | | BARTER IS
BETHEL | ₩BAS
WBAS | 70 08N
60 47N | 143 38H
161 48H | 50
131 | 1 1 | l 1 | 1 | 1 : | 1 1 | 1 | 1 | 1 | 1 1 | | | 1 | 2 | | | | | | 27401
26615 | | | BETTLES
BIG DELTA | ⊮BAS
FAA | 66 55N | 151 31W
145 44W | 652
1275 | 1 1 | լլյ | 1 | 1 . | 1 1 | 1 | 1 | 1 | 1 1 | | | 1 | 2 | | | | | | 26533
26415 | | | BIRCH ROAD
CAPE DECISIO | | 61 08N
56 00N | 149 46W
134 08W | 460
50 | 6 6 | 1 | 1 | | 5 6 | П | | | 6 6 | 12 | | - 1 | 2 | 12 | | | | | 25315 | | | CAPE HINGHIN | CG
AFS | 60 14N | 146 39W | 185
53 | 5 5 | 5 5 | 5 | 5 5 | 5 5 | 5 | 5 | 5 9 | 5 5 | ** | | 1 | ٦ | ļ | | | | | 26417
26631 | | | CAPE NEWENHA | AFS
AFS | 58 39N
61 47N | 162 04W
166 02W | 235
405 | 1 1 | 1 | 1 | 1 : | | 1 | 1 | 1 | 1 1 | ľ | | | | | | 12 | | | 25623
26633 | | İ | CAPE SARICHE
CAPE SPENCER | CG | 54 36N
58 12N | 164 56W
136 36W | 176
88 | 5 5 | 5 | 5 | 5 5 | 5 5 | 5 | | 5 ! | 5 5 | 12 | | | 2 | ĺ | - 1 | 1 | | | 25622
25316 | | | CAPE ST ELIA | CG
CGBP | 59 46N | 144 36W | 50
1000 | 6 6 | | | 6 6 | | | | | 5 6 | 12 | Ì | | Ž | 12 | i | İ | | | 25401 | | l | CHALKYITSIK
CHENA HOT SP | | 66 38N
65 03N | 143 43H
146 03W | 560
1200 | . | | İ | İ | | | - | | | | | | | 06 | | | | | | | ŀ | CIRCLE HOT S | SAHR
SAHR | 65 29N | 144 35H
149 11H | 935 | 3 3 | 3 | | 3 3 | 3 3 | | | | 3 3 | | | | İ | 12 | - | | | | 26419 | | į | COLD BAY | | 55 12N
64 52N | 162 43W
147 50W | 99
621 | 1 1 | | 1 | 1 1 3 | 1 1 | 1 | | | 1 1 | | | 1 | 2 | | ĺ | 12 | | | 25624 | | l | CORDOVA
CRAIG | | 60 30N
55 29N | 145 30H
133 09H | 45
13 | 1 1 | 1 | 1 | 1 1 | 1 1 | 1 | | | 1 1 | | | 1 | 2 | | | | | | 26410 | | ŀ | CROOKED CREK
DEADHORSE | | 61 52N
70 12N | 158 15W
148 27W | 130
50 | 6 6 | Н | ļ | 6 6 | 1 | | | | 3 6 | | | | | 12 | | | | | 25317 | | | DILLINGHAM
DUTCH HARBOR | FSS | 59 D3N
53 53N | 158 31W
186 32W | 86
13 | 6 6
5 5 | 6 | 6 | 6 6 | 5 6 | 6 | 6 | | 6 6 | | | | 1 | 1 | | | | | 25512
25614 | | | EIELSON
EKULTNA LAKE | AFB | 64 41N
61 24N | 147 05W
149 09W | 569
880 | 1 1 | | | 1 1 | | [[| | 1 | | | | | | - 1 | l | 12 | 12 | | 26407 | | | ELDRED RBCK
ELMENDØRF | CG | | 135 13H
149 48H | 54
176 | 5 5 | | | 5 5 | | 5 | 5 | 5 5 | | | | | | | | 12 | 12 | | 25318
26401 | | | FAIRBANKS
FAREWELL | HBAS | 64 49N | 147 52W
153 54W | 455
1503 | 1 1 | 1 | 1 | 1 1
5 5 | 1 1 | 1 | 1 | 1 : | ı ı | | ļ | 1 | | 12 | | • [| | | 26411
26519 | | | FIVE FINGER
FØRT YUKGN | CG | 57 16N | 133 37W | 30
435 | 5 5 | 5 | 5 | 5 5 | 5 5 | 5 | 5 | 5 5 | 5 | | | ' | - | '- | ĺ | 1 | | | 25318 | | | FORT YUKON GALBRAITHE | AC | 66 33N | 145 12W
149 29W | 457
2665 | 5 5 | | | 5 5 | | 5 | | 5 | | | | 1 | 0 | | | ŀ | 07 | | 25413 | | | GALENA
GAMBELL | AFS | 64 44N | 156 56W
171 45W | 149 | 1 1 3 3 | | | 1
3 | 1 | 1 | 1 | 1 3 | 1 3 | | | | ł | | | 12 | 0, | ŀ | 26501 | | | GULKANA
GUNSIGHT | WBA5 | 62 09N | 145 27W | 1579
2960 | 1 1 | 1 | 1 | 1 1 | | | | 1 1 | 1 | | | 1 | 2 | ł | | | | | 26425 | | | GUSTAVUS
HAYES RIVER | SAHR | | 135 444 | 19 | 5 5 | | 5 | 5 5 | 5 5 | 5 | 5 ! | 5 5 | 5 | | | Ì | | - | | | | | 25322 | | | HOMER
ILIAMNA | | 59 38N
59 45N | 151 30W | 59
190 | 1 1
5 5 | | | 1 1 | 1 1 | 11 | 1 | 1 3 | | | | 1 | | 12 | | | | i | 25507
25506 | | | NTM NAIDNI
UASNUL | | | 153 42H
134 35H | 946
20 | 1 1 | 6 | 6 1 | 5 5
1 1 | i 5 | 1 | 1 : | 1 6 | 6 | | | 1 | - | | | 12 | | | 26535
25309 | | ŀ | KENAI | | | 133 57H
151 15H | 30
106 | 1 1 | Н | - [| 1 1 | 1 [| | Į | 3 | 3 | | | 1 | | - | | | | | 26523 | | 1 | KETCHIKAN
KING SALMON | | 55 20N
58 41N | | 122
46 | 5 5 | 5 | 5 9 | 5 5
1 1 | 5 | | 5 9 | 5 5 | 5 | · | | 1 | 1 | | | 12 | | | 25325
25503 | | i | KODIAK
KOTZEBUE | | 57 45N
66 52N | | 111 | 1 1 | 1 | 1 | 1 1
1 1 | 1 | 1 | 1 | 1 2 | 1 | | | 1 | 2 | 12 | | 12 | | - 1 | 25501
26616 | | ŀ | LAKE CHANDAL | A | 67 30N
60 17N | 148 30W | 1825
271 | 5 5 | lł | - [! | 5 5 | <u>ا ا</u> | | | 3 3 | | | | 1 | | İ | 1 | - | | - 1 | 20010 | | | HEGRATH | LAMR | 61 11N
62 58N | 149 57W | 148
340 | 3 3 | 3 | 3 | 3 | | 3 | 3 : | 3 3 | | | | 1 | | | i | | | | 26510 | | | NENANA
NIKOLAI | | 64 33N
63 DIN | 149 05₩ | 364
425 | 6 6 | 6 | 6 | 5 6 | Б | 6 | 6 6 | 5 6 | | | | i | 2 | 12 | | İ | | | 26435 | | | NBME
NORTHWAY | WBAS | 64 30N | 165 26H
141 56H | 18
1718 | 1 1 | | 1 | | | 1 | 1 : | | 1 1 | | | 1 1 | ≥ | - | | 12 | | | 26617
26412 | | | NUNIVAK
PALMER | SA | 50 23N | 166 12H
149 05H | 52
240 | 4 4
5 5 | 4 | 4 .
 4 4 | 1 4 | | 4 4 | 4 | | 12 | | 01 | 5 | | Ì | | | | 26622
25331 | | - 1 | PETERSBURG
POINT BARROW | A
AFS | 55 49N
71 20N | 132 57W
156 39W | 50 | 5 5
3 3 | 5 | 5 9 | 5 5 | 5 | | 5 5 | 5 5 | 5 5 | | | 1 | | | | | | | 25329 | | | PORT ALSHORT
PORT CLARENC | A | 60 12N | 154 18H
166 52H | 26 6 | 5 5 | | | | 1-1 | | 5 9 | 5 5 | 5 5 | 12 | | 11 | | | | | | | 27506 | | | PORT HEIDEN
PRUDHOE BAY | A | 56 57N
70 15N | 158 37⊭ | 92
45 | 5 5
1 1 | 5 | 5 9 | 5 5 | 5 | 5 | | 5 5 | . | | | * | | | | | | | 25508 | | | PT RETREAT
PUNTILLA | CG | 58 25N
62 06N | 134 57W | 20
1837 | 5 5 | 5 | 5 5 | 5 5 | 5 | 5 | 5 5 | 5 6 | 5 | | | | | | | | | - 1 | 25330 | | | GUINHAGAK
SAGHON | SAWR | 59 45N | 161 54H
148 42H | 10 | 3 3 | 3 | 3 6 | 3 3 | | 3 | 3 3 | 3 3 | | | | | | | | | | | 26526 | | 1 | | | | | 330 | ٦, | ۱٦ | ٦١, | 1 | | 1 | | 1 | | | | 1 | 1 | 1 | - | | | İ | | | | ALASK | (A | | | | | | | | | | | | | | | NUN | | 0F 1 | IONTHS | | YEAR | | | |------|--------------------------------------|-------------------|----------------------------|--------------------|-----------------|-------------|---------|-------------------|------------|------|------------|-------------------|------------|------------|-----|--|--------------|---------------|----------|--|----------------|---------|-------------|-------------------------| | | | | | | | HOL | RLY | R | ECO | RD: | 5 E | 3Y | MON | ITH | | /. | ر
پا | Separate Land | * / | Telle Contraction of the Contrac | <i>&</i> / | # /3 | `&/ | 8007 | | | | | | | | | = | | | | | | | | | S. S | | | § / £ | 2 /3 3
3 3 | \
\&\ | TO SOL | | HBAN | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | J | FM | A | E | ا ا |) A | 8 | 0 | N C | | 154 | /* *® | <u> </u> | <u> </u> | [| *** | / ** ex | | | | 1971 | SAND PBINT
SEWARD | SAUR
A
UBAS | 55 20N
60 07N
52 43N | | 50
70
128 | 3
6
1 | | 6 | 6 | 6 0 | 3 3
6 6 | 5 6 | | 3 :
6 : | 6 | | | 12 | | | 12 | | | 25617
26438
45715 | | | SHEMYA
SISTER IS
SITKA | A
FAA | | 135 15H
135 21H | 35
56 | | 5 | 5 5 | 5 | 5 ! | 5 5 | 5 5 | 5 | 5 | | | | 12 | 12 | | | | l | 25341
25333 | | | SITKINAK
SKAGWAY | CG | 56 33N
58 28N | 154 08W | 53
30 | 5 | 1 : | 1 | 1 | 1 | | 1 1 | 1 | 1 | 1 | ĺ | | 12 | | | l | - 1 | | 25335 | | | SKWENTNA
SNOWSHOE LAK | A | 61 58N
62 02N | 151 12H | 153
2410 | 3 | 3 : | 3 3 | 3 | 3 | 3 3 | 3 3 | 3 | 3 | 3 | | | 12 | | | 1 | | | 26514 | | | SPARREVOHN | AFS
COOP | | 155 34W | 1736
30 | ī | | | 1 | | | i | | 1 | | | | 12 | 09 | 1 | 12 | 1 | ĺ | 26534 | | | ST MARYS
ST PAUL IS | HBAS
HBAS | 57 09N
63 20N | 170 13H | 28
2410 | 1 1 | | 1 1 | 1 | | | 1 1 | 1 | 1 | | | | 12 | | | | | | 25713
26414 | | | SUMMIT
TALKEETNA | WBAS
FSS | 62 18N | 150 06H | 351
240 | 5 | 6 (| 5 6 | 6 | 6 | 6 6 | 5 6
5 6 | 6 | 5 | 6 | | | 12
12 | 12 | | | | | 26528
26529 | | | TANANA
TATALINA | AFB
AFS | 62 53N | 155 574
167 55W | 931
258 | 1 | 1 | 6 | 6 | 6 | 6 (| 5 6
1 1 | 6 | 6 | 6 | | | | | | 12 | 1 | | 26536
26634 | | | TIN CITY TOKSOOK | SAHR | | | 15
2371 | 3 | | 3 3 | | | 3 : | 3 3 | 3 | 3 | | | | | | | | 1 | ł | | | | TYBNE LAKE | A
SAWR
WBAS | 69 22N | 152 DBW | 337 | 1 | | 1 1 | , | 5 | | 1 1 | 5 | 5 | , | | | 12 | | | | l | | 26508
26627 | | | UNALAKLEET
VALDEZ
HALES | A
SAHR | 61 08N | 146 15H | 49 | - | 5 3 | 5 5 | 5 | 5 | 5 ! | 5 5 | 5 | 5 | 5 | | | | | . 1 | | İ | | 26442
26618 | | | WEST FORK
WILD LAKE 2 | COGP | 65 28N | 148 40H | 430 | ٦ | | 7 | | | 1 |] | | 1 | | | | | 12
04 | | İ | ŀ | - | | | | HRANGELL | R | 56 26N | 132 23H | | 5 | | 5 5
4 4 | | | | 5
4 4 | | | 5 | | | | | | | . | İ | 25338
26445 | | | YAKATAGA
YAKUTAT | A
MBAS | 60 05N
58 31N | | 31 | ī | 1 | | 1 | | | 1 1 | | | 1 | | | 12 | | | 1 | - | ľ | 25339 | | 1972 | ADAK | CG | 51 35N | | | ١. | | .l. | | | | . . | 5 | | 5 | | | 12 | 12 | | 12 | | | 2570 4 | | | ADAK
AMCHITKA IS | NS
SAWR | | 179 158 | 237 | 3 | | 1 1
3 3 | | 3 | | 1 1
3 | | 3 | | | | 1- | | | | | | 45711 | | | AMCHITKA IS
ANAKTUVUK | NS
A | 51 24N
68 10N | 151 46W | | | | 5 5 | | | | 5 5 | | 5 | 5 | | | 12 | 11 | | 12 | | | 26451 | | | ANCHORAGE
ANCHORAGE
ANDREAFSKY | FAA
SAWR | 61 13N | 149 50W | 134 | 1 | 1 | 1 1
1 1
3 3 | 1 | 1 | 1 | 1 1
1 1
3 3 | 1 | 1 | 1 3 | | | | | | | | | 25409 | | | ANGOON
ANIAK | A
FAA | 57 31N
61 35N | 134 35W | 14 | 5 | 5 | 5 5
5 5 | 5 | 5 | 5 | 5 5
5 5 | | | 5 | | | 11 | | | | ļ | | 25310
26516 | | | ANNETTE
ARCTIC VILAG | WBAS
COOP | 55 D2N | 131 34W | 113 | 1 | 1 | 1 1 | | 1 | 1 | 1 1 | | | 1 | | | 12 | 06 | | 12 | 1 | | 25308 | | | ATTU
AUGUSTINE IS | CG | 52 50N
59 25N | 173 11E | 70 | 5 | | 5 5 | 5 | | | 5 5
3 | 5 | 5 | 5 | | | | | | | | | 45712 | | | BARROW
BARTER IS | HBAS
HBAS | 71 18N | 156 47H | 30 | 1 | | 1 1 | | 1 1 | 1 | 1 1 | | | 1 | | | 12 | | 1 | | | | 27502
27401 | | | BETHEL
BETTLES | HBAS
HBAS | 60 47N | 161 48H | 131 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | | | 12 | | } | | | | 26615
26533 | | | BIG DELTA
BIGRKA IS | FAA | 64 00N | 145 44 | 1275 | 1 | | i | 1 | | 6 | | 6 | 6 | 6 | | | 12 | | | | | | 26415 | | | BIRCH ROAD
CAPE DECISIO | COOF | | 149 466 | 460 | 1 | Б | 6 6 | . 6 | Б | 6 | | | 6 | | 11 | | 12 | 06 | | | | | 25315 | | | CAPE HINGHIN | CG
AF5 | 50 14h | 146 394 | 185 | 5 | 5 | 5 5 | 5 | 5 | 5 | 5 5 | 5 5 | 5 | 5 | | | | | 1 | | | | 26417
26631 | | | CAPE NEHENHA | AFS
AFS | 58 39N | 162 044 | 235 | 1 | 1 | 6 6 | 3 1 | 7 | 7 | 7 6 | 7 7 | 기기 | 7 | | | | | | 12 | | | 25623
26633 | | | CAPE SARICHE | CG | 54 36N
58 12N | 164 56 | 176 | 5 | 5 | | 5 5 | 5 | 5 | 5 5 | 5 5 | 5 | 5 | 12 | | 12 | İ | | | | | 25622
25316 | | | CAPE ST ELIA | CG | 59 481 | | i) 50 | 6 | 8 | 5 6 | 6 | 6 | 6 | | | | | 12 | 1 | 111 | 12 | | | | | 25401 | | | CHALKYITSIK
CHENA HOT SP | COOF | 68 381 | 143 434
146 034 | 550 | ı İ | $\ \ $ | | | П | | | | | | | | | 11 | | | | | | | | CIRCLE HOT 5 | SAH | 65 291 | 144 36 | 935 | 3 | | 5 ! | 3 3 | 3 | | - | | П | | | | | 1 | | | | | 26419 | | | COLD BAY | HBAS
FBA | | 162 43 | 1 88 | ı ۱ | 1 | 1 : | | 1 | 1 | | 1 1 | | 1 | | 1 | 12 | | | 12 | | | 25624
26410 | | | CRAIG
CROOKED CREK | A
C00 | 55 291 | 133 09 | 12 | s 5 | | | 5 5 | | 5 | | 5 5 | | 5 | | | | 10 | | | | | 25317 | | | DEADHORSE
DILLINGHAM | FSS
FSS | 70 121
59 031 | 148 27 | 4 50 |) E | | | 6 6
6 6 | | | | 6 6
6 6 | | 6 | | | 1 | ļ | i l | | | | 25512 | | | DUTCH HARBOR | SAHI | | 156 321 | 4 13 | 3 3 | 3 | 3 | 3 1 | | | | 1 1 | | 1 | | | | | | 12 | | | 25614
26407 | | | EKULTNA LAKE | COO | | 149 09 | 4 860 | 1 | 11 | | 5 5 | 1 | H | | 5 5 | | 5 | | | 1 | | | | 12 | | 25318 | | | ELMENDORF | AFB | 51 151
5 64 491 | 149 48 | d 176 | 3 1 | 1 | 1 | 1 1 | 1 | | 1 | 3 3
1 1 | 1 | 1 | ĺ | | 12 | | | 12 | | | 26401
26411 | | | FAIRBANKS
FAREWELL
FIVE FINGER | HBA: | | 153 541 | 1503 | 5 £ | 5 | 5 | 5 5 | 5 | 5 | 5 9 | 5 5 | 5 | 5 | | | 12 | | 1 | | | | 26519
25319 | | | FORT YUKON | A | 66 34
66 33 | 1 45 16 | 439 | 5 : | 3 3 | 3 | 3 3 | ا ا | 3 | | 3 3 | 3 3 | 3 | İ | | 11 | | | | | | 25413 | | | GALENA | AFS | 64 44 | N 156 561 | 시 149 | 3 : | | 1 | 1 3 | 1 | 1 | 1 | 1 1 3 | 1 1 | | ļ | | | | 1 1 | 12 | | | 26501 | | | GAMBELL
GULKANA | SAW
WBA | S 62 09 | N 145 271 | H 1579 | ∌ [:: | | 1 | 1 1 | 1 | 1 | 1 | 1 1 | 1 1 | | | | 12 | | | | | | 26425 | | | GUNSIGHT
GUSTAVUS | SAW | R 56 25 | N 135 44 | µ 19 | ə s | 5 5 | 5 | 5 5 | 5 | 5 | 5 | 5 5 | 1 | 1 | | | | | | | | | 25322 | | | HAYES RIVER | HBA
FAA | 51 59
59 30
59 45 | N 151 30 | W 51 | 3 3 | 1 1 | 1 | 1 1 | 1 1 | 1 | 1 | | 1 1 | 1 | | | 12 | | | | | | 25507
25506 | | | IL IAMMA | AFS |
66 00 | N 153 42 | 94 | 5 (| 5 1 | 1 | 1 1 | ll i | 11 | 1 | 1 : | | 1 | | | 12 | 1 | | 05
12 | | | 26535
25308 | | | JUNEAU
KAKE
KENAT | A
FAA | 56 58 | N 133 57 | µ 31 | 이 : | 3 3 | 3 | 3 | 3 | 3 | 3 | | 3l 3 | 3 | | | 12 | 1 | | | | | 26523 | | | KETCHIKAN | CG | | N 131 30 | | | 1 | | 1 | 1 | | | 1 | 5 5 | | | | | | | | 1 | | | | | • | • | • | , | • | • | • | ' | • | • | . ' | · | ٠ | | - | - | | | | , | | | | | | | | RECORDS INDEX ARRANGED BY YEAR | • | |------|--|--|--| | | ALAS | | IN YEAR WITH | | | | HOURLY RECORDS BY MONTH | <u> </u> | | YEAR | NAME | HOURLY RECORDS BY MONTH 1 = 24 085 PER DAY TYPE LAT. LONG. ELEV. J F M A M J J A S O N D | NUMBER | | 1972 | KETCHIKAN
KING SALMON
KODIAK
KOTZEBUE
LAKE CHANDAL
LAKE HOOD
LAKE LOUISE | F35 55 20N 131 40W 122 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 12 25325
12 25503
12 25501
26616 | | | MACLEGD HARB
MCGRATH
NENANA
NIKGLAI
NIKGLSKI | A 59 53N 147 45W 46 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 26510
26435 | | | NOME
NORTHWAY
NUNIVAK
GCEAN CAPE
PALMER | HBAS 64 3DN 165 26W 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 26617
26412
26622
29331 | | | PETERSBURG PGINT BARRGH PGRT ALSHGRT PGRT CLARENC PGRT HEIDEN PRUDHGE BAY | A 56 49N 132 57H 50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 25329
27506
25508 | | | PT RETREAT PUNTILLA BUINHABAK ROCK RIDGE SAND POINT | CG 58 25N 134 57H 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 25330
26526 | | | SEWARD
SHEMYA
SISTER IS
SITKA
SITKINAK
SKAGWAY | SAHR 55 20N 180 30H 50 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 25617
26438
45715
25341
25333 | | | SKWENTNA
SLEETMUTE
SNOWSHOE LAK
SPARREVOHN
SPRUCE CAPE | A 61 58N 151 12W 153 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 26514
12 26534 | | | ST MARYS ST PAUL IS SUMMIT TALKEETHA TANANA TATALINA TIN CITY TGKSBGK | CGBP 52 D4N 163 11W 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 25713
26414
26526
26529
26536
26634 | | | UMNAK
UNALAKLEET
VALDEZ
HALES
HEST FORK
HILD LAKE 2
HRANGELL
YAKATAGA | SANR 53 23N 167 54W 130 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 | 25621
26627
25442
26618
25338
26445 | | 1973 | YAKUTAT
ADAK
ADAK
AMCHITKA IS | HBAS 59 31N 139 40W 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 25339
25704 | | | ANAKTUVUK
ANCHBRAGE
ANCHBRAGE
ANDREAFSKY | A 68 10N 151 46W 2100 5 5 5 5 5 5 5 6 6 7 7 8 8 8 10N 150 01W 156 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 02 26451
26409 | | | ANGBON
ANIAK
ANNETTE
ATTU
ATTU
AUGUSTINE IS | A 57 31M 134 35M 14 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 25310
26516
25308
45712
45709 | | | BARROH
BARTER IS
BETHEL
BETTLES
BIG DELTA
BIGRKA IS | HS0 71 10N 156 47H 38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 27502
27401
26615
26533
26415 | | | CAPE DECISION CAPE HINGHIN CAPE LISBURN CAPE NEWENHA CAPE ROMANZO CAPE SARICHE CAPE SPENCER CAPE ST ELIA CENTRAL | CG | 25315
26417
26631
25623
26532
25522
25316
25401 | | | CHALKYITSIK CHENA HOT SP COLD BAY CORDBYA CRAIG CROCKED CREK DEADHORSE | C00P 65 03N 145 03H 1200 120 120 120 120 120 130 145 03H 145 03H 1200 120 130 145 03H 145 03H 1200 145 131 145 | 09 25624
26410
25317 | | | ALASI | KA | | | | | | | | | | | | | | NUI | 1BER | | | S IN | YER | R MI | тн | |------|---|--------------------|----------------------------|-------------------------------|---------------------|--------|-----|-------------------|-------------|-------------------|-------------------|-----|-------------------|-------------------|------|--------|---------------------------------------|------------|--|----------------|--------|------------------
-------------------------| | | | | | | | HOU | RLY | r R | ECOI | RDS | В | Y H | ONT | Н | / | /
/ | / ./ | / æ / | To Lot of the last | | m/ | · a-/ | \ \s | | | | | | | | 1 | = | 24 | 08 | S P | ER | DA | Y | | 1 | | | Same Salva | Salai | 5)
5). | TO SEE | | HBAN | | YEAR | NAME | TYPE | | | | Н | _ | + | - | +- | ₩ | - | + | 1-1 | /5 à | *** | * * * * * * * * * * * * * * * * * * * | <u> </u> | /~~ | / * e / | / R R | / * / | 25512 | | 1973 | DILLINGHAM
DUTCH HARBOR | F55
SAHR | 59 03N
53 53N | 156 31W | 96
13 | 6 | 2 | 3 3 | 3 : | 6 6
3 3
1 1 | 3 | 3 | 6 6
1 1 | 6 | | | | | | 01 | | | 25614
25407 | | | ETELSON
EKULTNA LAKE
ELDRED ROCK | AFB
COOP
CG | 64 41N
61 24N
58 58N | 147 05H
149 09H
135 13H | 589
880
54 | 5 | | 5 | | | П | | 5 5 | ΙI | | | | | | | 12 | | 25318 | | | ELMENDORF
FAIRBANKS | AF8
HSG | 61 15N
64 49N | 149 48H
147 52H | 176
455 | 1 | 1 1 | ı 1 | 1 | 1 1 | 1 | 1 | | 1 | | | 12 | | | | | | 26401
26411 | | | FAREWELL
FIVE FINGER | MSØ
CG | 62 32N
57 16N | 153 544
133 374 | 1503
30 | 5 | 5 5 | 5 | 5 9 | 5 5 | 5 | 5 | 5 5
5 5 | 5 | | | 12 | 12 | | | | 1 | 26519
25319 | | | FORT YUKON
FORT YUKON | AC
AC | | 145 16H
145 12H | 435
457 | 3 | 3 3 | s 3 | 3 : | 3 3 | 3 | | 3 | | | | 70 | | | 03 | | | 26413
26501 | | 1 | GALENA
GAMBELL
GULKANA | AFS
SAWR
WSO | | 156 56W
171 45W
145 27W | 149
25
1578 | 3 | 3 3 | sļa | 3 : | 1 1
3 3
1 6 | 3 | 3 | 1 1
3 3
6 6 | 3 | | | 12 | | | 55 | | | 26425 | | | GUNSIGHT
HAINES | A | 61 54N
59 14N | 147 18H
135 26H | 296D | | | 3 | 3 | 3 3 | 1 1 | | 3 3 | 3 | | | 07 | | | ł | ĺ | | 25232 | | | HAYES RIVER
HOMER | A
HS@ | 61 59N
59 38N | 152 05W | 1000 | | 1 2 | | 5 | 5 5
1 1 | 1 | 5 | 5 5
1 1 | 1 1 | | | 12 | | | | | | 25507 | | | ILIAMNA
INDIAN MTM | FAA
AFS | | 154 55W
153 42W | 190
846 | 6 | 7 | 1 1 | 1 | 7 7 | ' 7 | 7 | 5 5 | 7 7 | | | 12 | 12 | | 05
10 | | 1 | 26506
26535
25309 | | | JUNEAU
KAKE
KAVIK | HSO
A
SAHR | 58 22N
56 58N
69 41N | 134 35H
133 57H
146 56H | 20
30
517 | | | 1 1
3 3
5 6 | 3 : | | | | 3 3 | | | | 12 | | | | ļ | | 23355 | | Į | KENAI
KETCHIKAN | FAA
FSS | 50 34N | 151 15H
131 4DH | 106
122 | 1 | 1 3 | 1 1 | 1 | 1 1
5 5 | | | 1 1
6 6 | | | | 12 | | | | l | | 26523
25325 | | 1 | KETCHIKAN
KING SALMON | CG
MSD | 55 35N | 131 30W
156 39W | 46 | 5 | 5 5 | 5 | 5 | 5 1 | 5 | 5 | 5 5 | 1 1 | | | 12 | | | 12 | | | 25503 | | | KODIAK
KODIAK | MS0
MS0 | 57 45N
66 52N | 162 38H | 20 | 5 | 1 1 | 1 1 | 1 | 1 1
1 1 | 1 | 1 | 1 1 | 1 | | | 11 | | | 07
08 | 1 | | 25501
26616 | | | LAKE CHANDAL
LAKE HOOD
LAKE LOUISE | LAME | 67 30N
61 11N
62 18N | 148 30W
149 57W
146 35W | 1825
148
2450 | 3 | 3 : | 5 5 | : | 5 5
3 | 3 | | 5 5 | | | | | | | | ĺ | | | | | LEVEL ISLAND
MACLEBO HARB | A | 56 28M
58 53N | 133 D6W | 30 | 3 | - 1 | | 3 | 3 3 | 5 | | 5 5 | 5 | | | | | | | | | | | | MCBRATH
NENANA | ₩\$8
A | 62 58N
64 33N | 155 37W
149 05W | 340
352 | 1 5 | 1 : | 1 1 | 1 | 1 1 | 1 | | 1 1
5 5 | | | | 12
11 | | | | ļ | | 26510
26435 | | | NIKOLSKI
NIKOLSKI | P COOP | 63 01N
52 57N
64 30N | 168 52W | 425
24
18 | | | 3 3 | | 3 3 | 3 3 | | 3 3 | | | | 12 | 10 | | 12 | | | 26617 | | | NOME
NORTHWAY
NUNIVAK | FAA
SA | 62 57N
60 23N | 141 56H | 1718
52 | 1 4 | | 1 1 | 1 | 1 2 | 1 1 | 1 | 1 3 | 1 1 | 02 | | 12 | | | | | | 26412
26622 | | | GCEAN CAPE
PALMER | CG
FAA | | 139 42H | 240 | 5 | 5 | 5 5 | 5 | 5 5
5 5 | 5 5 | 5 | 5 9
5 9 | 5 5 | | | 12 | | | | | | 25331 | | 1 | PETERSBURG
POINT BARROW | A
NS | 55 49N
71 20N | 132 57H
156 24H | 50
13 | 5 | 6 1 | 5 5
6 6 | 6 | 5 5
6 6
5 5 | 5 6 | 6 | 5 5
5 5 | 3 6 | | | | | | | | | 25329
27501 | | | PORT CLARENC
PORT CLARENC
PORT HEIDEN | CG | 50 12N
65 15N
56 57N | 166 52W | 268
18
92 | 5 | 5 | 5 5
5 5 | 5 | | 5 5 | 5 | 5 5 | 5 5 | 12 | | 11 | | | | | | 25500 | | } | PRUDHOE BAY | SAMA | 70 15N | 148 20H | 45
20 | 6 | 5 | 6 6
5 5 | 5 | 6 6
5 5 | 6 | 6 | 6 | | | | | | | | | | 25330 | | | PUNTILLA
ROCK RIDGE | COSP | 61 07N | | 1837
840 | 5 | | 5 5 | | | 5 5 | Н | 5 3 | | | | | 12 | | | | | 2652 6
25617 | | | SAND POINT
SAVOONGA
SEWARD | SAWR
A | 55 20N
63 42N
60 07N | 170 28H | 50
45
70 | 3
6 | 3 | 3 3
3 3
6 6 | 3 | | 3
3
5 6 | 3 | | 3 3
3 3
6 6 | | | 12 | | | | | | 26438 | | | SHEMYA
SISTER IS | uso
A | 52 43N | 174 DBE | 128
35 | 1 5 | | 1 1 | 11 | 5 | 5 | 1 1 | 1 | 5 5 | | | 04 | | | 04 | | | 45715
25341 | | | SITKA
SITKINAK | FRA | | 154 DBH | 66
53 | 5 | 5 | 1 1
5 5 | 5 | 5 8 | | 5 | 5 9 | 1 1 | | | 11 | 05 | | | | | 25333
25335 | | | SKAGHAY
SKHENTNA | A | 61 58N | 135 18H | 30
153
285 | 3 | 3 | 5 5
3 3 | 3 | 5 3 | 5 3 | 5 | 5 | 5 5 | | | 12 | | | | | | 26514 | | | SLEETMUTE
SNOWSHOE LAK
SPARREVOHN | A | 62 D2N | 157 11H
146 40H
155 34H | 2410 | 3
6 | 3 | | 3 | | 3 3
5 6 | | | 3 3 | | | 12 | | | -01 | | | 26534 | | | SPRUCE CAPE
ST MARYS | CG
COOF | 62 04N | 152 19H
163 11H | 30 | 5 | 5 | ı | 5 | | | ŧΙ | | 5 5 | | | 11 | 11 | | | | | 25713 | | | ST PAUL IS
SUMMIT | H20 | 63 20N | 170 13H | 2410 | 1 5 | 1 | 1 1 | | 1 | 1 1 | 1 | 1 | 1 1 5 6 | | | 11
12
12 | | | 01
02 | 01 | | 26414
26528 | | | TALKEETHA
TANANA
TATAL INA | FSS
AFB | 65 10N | 150 06W
152 06W
155 57W | 240 | 6 | | 6 6 | 6 | 5 6 | 6 6 | 8 | 5 | 6 6 | | | 12 | 11 | | 03 | | | 26529
26536 | | | TIN CITY
TOKSOOK | AFS
SAME | 65 34N | 167 55H
165 07H | 258
15 | 6 | 5 | 7 7 | 6 | 6 (| 8 7 | 7 | 7 | 7 7 | | | | | | | | | 25634 | | | UNALAKLEET
VALDEZ | HS0 | 51 06N | 160 48H | 87 | | 6 | 6 6 | 5
6
3 | 6 (| 6 6 | 6 | 6 | 6 6
3 3 | | | 15 | 12 | | | | | 26627
26442
26618 | | | HALES
HEST FORK
HRANGELL | COOF | 65 28N | 168 03H
148 40H | 430 | | 5 | 1 | Н | | 5 5 | 11 | | 5 5 | | | | 09 | | | | | 25338 | | | YAKATAGA
YAKUTAT | A
HSB | | 142 30H | 33 | | | 3 3 | 3 | 4 | 4 4 | 4 | 4 | 4 4 | | | 12 | | | | | | 26445
25339 | | 1974 | ADAK | CG | | 177 00h | | | 5 | | 5 | | 5 5
1 1 | 5 | | 5 5 | | | 12 | 12 | | 12 | | | 25704 | | | ADAK
ANCHORABE
ANCHORAGE | FAA
WSB | 51 53N
61 13N
51 10N | | 134 | 1 | 1 | 1 1 1 | 1 | 1 | 1 1
1 1
1 1 | 1 1 | 1 | 1 1 | | | 12 | 1 | | '* | | | 25409
25451 | | | ANDREAFSKY
ANGOON | | 62 04N
57 31N | 163 184
134 354 | 290
14 | 5 | 3 | 3 1
5 5 | 3 | 3 3 | 3 3
5 5 | 3 | 3 | 3 3
5 5 | | | | | | | | | 25310 | | | ANIAK
ANNETTE | FAA | 55 025 | 159 324 | 113 | 1 | | 5 5 | | 5 1 | | | 1 | 1 1 | | | 12 | | | 11 | | | 26516
26308 | | | ATIBUN
ATTU
AUFEIS | SAM
CG
SAM | 52 50N | 149 251
173 11E | 70 | 5 | 5 | 5 5 | 5 | 5 | 5 5
1 1 | 5 | | 5 5 | | | | | | | | | 45712 | | ! | 1 | 1 | 1 | | 1 | i | 1 - | İ | 11 | 1 | l | 1 1 | | ļ | 1 | l | 1 | 1 | i | 1 1 | | ì | ı | | \mathbf{a} | 1 1 | \cap | C | 1 | \mathbf{a} | |--------------|-----|--------|---|---|--------------| | A | L | н | S | n | н | NUMBER OF MONTHS IN YEAR WITH | | | | | | | | но | UR | ٧. | RE | COR | tDS | В | ′ н | DN. | TH | | / | / | / æ | / get) | / _~ / | ا ا | /s = / | / § / | |------|-------------------------------|-------------|------------------|----------------|------------|--------------|--------|----------------|--------------|------------|-------|--------|-------------------|----------------|--------|-----|----|-----------------|------|----------|----------------|-------------------------|------|--------|------------------| | YEAR | NAME | TYPE | LAT | . 1 | ING. | ELEV. | | | | | | | ER
la la | | | ıla | | | | | TATAL SANDONNA | /
2/2/2/2
2/2/2/2 | | | HBAN | | 1974 | BARROH | use | 71 18 | | 47H | 38 | 1 | 1 | + | 1 7 | + | ₽ | \vdash | + | 4- | ╀ | ∕" | \\ \ | | <u> </u> | /~ | *** | / *· | 7 * | / | | | BARTER IS
BETHEL | HSB
HSB | 70 06
50 47 | 3N 143 | 384 | 50 | 1 | 1 | 1 | 1 1 | t 1 | 1 | 1 | 1 | 1 1 | | | | 12 | 1 | | | | 1 | 27502
27401 | | | BETTLES | WSO | 66 55 | N 151 | 3114 | 131
652 | 1 | | 1 | 1 1 | 1 1 | | 1 | | 1 1 | | ł | | 12 | | | | | | - 26615
26533 | | | BIG DELTA
BIGRKA IS | FAA
CG | 64 DC | | | 1275
50 | 6
5 | 5 | | 6 E | 5 6 | 6
5 | 6 | 6 | В∣€ | 6 | | - | 11 | | | | | | 26415 | | | BLAIR LK RNG | AF | 64 20 | N 147 | 394 | 725 | H | | - | ı | 1 | | | 7 | | 5 | | 1 | | ŀ | İ | | | | 26460 | | | CAPE DECISION | CG | 60 14 | N 134
N 146 | | 50
185 | 6
5 | | | 6 6
5 6 | | 5 | 6 | 1 | 1 | | 07 | ' | 707 | | l | | ľ | | 25315
26417 | | | CAPE LISBURN | AFS | 68 53
58 39 | N 166
N 162 | | 53
235 | 7 | 7 | 7 | 1 1 | 1 | 1 | | 1 | | | | | 1 | 1 | | ļ | | | 26631 | | - 1 | CAPE POLE | A | 55 58 | IN 133 | 48µ | 50 | 5 | 5 | 1 | 5 6 | 5 | | | | | 5 | l |] | | | | | | | 25623 | | | CAPE ROMANZO
CAPE SARICHE | AFS
CG | 61 47
54 36 | | | 405
176 | 7 | | | 7 7 | 7 | | 7 | | ? ? | | | | | | | | 1 | | 25633
25622 | | ļ | CAPE SPENCER
CAPE ST ELIA | CG | 58 12
59 48 | | | 88
50 | | | 6 6 | 5 6 | 6 | 6 | | | | | oe | | 07 | | | | | | 25316 | | Ì | CENTRAL | COOP | 65 33 | N 144 | 49H | 1000 | 1 | 1 | 1 | Ί. | 1. | [1 | | ı | İ | | 06 | 1 | 07 | 11 | | | | | 25401 | | | CHANDALAR
CHENA HOT SP | A
COOP | 67 30
65 03 | | 30M | 1845
1200 | | - | | | 1 | | | 1 | 1 | 1 | | | | 09 | | | | | | | I | COFFMAN COVE | A
WSB | 55 00
55 12 | N 132 | 50H
43H | 10 | | | 5 9 | | | 5 | | 5 | | ١. | | | | " | | | | | | | 1 | COLD FT CAMP | SAHR | 67 03 | N 149 | 34H | 99
1063 | | | 3 3 | 1 2 | 5 | | 1 | 1 2 | | 1 1 | | | 12 | | | 11 | | | 25624 | | i | CORDOVA
CRAIG | FAA | 60 30
55 29 | | 30H | 45
13 | 1 | | 1
:
5 | 1 1 | 1 | 3 | 1 | 1 : | 1 1 | 1 | 1 | | 12 | | | | | | 26410
25317 | | | CROOKED CREK
DEADHORSE | COOP
FSS | 61 52
70 12 | N 158 | 15W | 130 | | 1 | | . _ | | ۱۰۱ | | | | | | ľ | 08 | 09 | | | | | 23317 | | | DIETRICH | SAUR | 67 41 | N 149 | 28µ
44µ | 63
1489 | 6 | ٦ | 6 6 | " | • | | 6 | 9 | 1 | 1 | | ŀ | | | | | | | | | - 1 | DOLLY VARDEN | FSS
CG | 59 03
50 48 | N 158
N 151 | 31H | 86
108 | 5
3 | | 6 6
3 3 | | | | 5 3 | 5 E | 6 3 | | | | 01 | | | | | | 25512 | | | DUTCH HARBOR
EAGLE | SAUR | 53 53
64 47 | | 35M | 13 | 3 | 1 |] | 1 | | | 1 | 1 | | - | İ | | " | | | | | | 25614 | | 1 | EIELSON | AFB | 54 41 | N 147 | 12H
05H | 640
569 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 1 | | 1 | ĺ | | | 02 | | | | | 26422
26407 | | i | EKULTNA LAKE
ELDRED ROCK | CGGP | 61 24
58 58 | | 13H | 880
54 | 5 | 5 | 5 5 | , 5 | 5 | 5 | | | ŀ | ١, | | | | | | | 11 | | | | | ELFIN COVE
ELMENDORF | A AFB | 58 12
61 15 | | 40H
48H | 20 | | | | 1 | Ιİ | H | | | 5 | | İ | | Ì | | | | | | 25318 | | | FAIRBANKS | W58 | 64 49 | N 147 | 52H | 176
455 | | 1 | 1 1 | 1 | 1 | 1 | | 1 1 | | | ļ | } | 12 | | | | | | 26401
26411 | | | FAREHELL
FIVE FINGER | USB
CG | 62 31
57 16 | N 153
N 133 | 53H | 1503
30 | | | 5 5
5 5 | 5 | 5 | 5 | 5 ! | 5 5
5 5 | | | | | 12 | 10 | | 1 | | | 26519 | | | FIVE MILE CP | SAHR
AC | 66 05
66 33 | N 150
N 145 | 00W | 440 | | | | L | - | | | | 1 | 1 | | ŀ | | | | | | | 25319 | | Ì | FORT YUKON | A | 66 34 | N 145 | 16H | 457
435 | 3 | 1 | 3 3 | 1 | Ш | | 5 5 | 5 9 | 5 | 5 | | | | | | | | | 26413 | | | FRANKLIN BLK
FUNTER BAY | SAWR | 69 43
58 15 | N 148 | 41H
54H | 357 | - 1 | | 3
5 5 | | 5 | | 5 5 | 5 5 | 1 5 | | | | | | | | | | | | ļ | GALBRAITHE
GALENA | SAHR
AFS | | N 149
N 158 | 28H
56H | 2665
149 | 1 | -1: | 3 3 | 3 | | 3 | | 1 | 1 | 1 | | | | | | . | | | | | | GAMBELL | SAWR | 63 46 | N 171 | 45W | 25 | 3 | | 3 3 | | | | 3 3 | 1 1 | | | | | | | - 1 | | | | 26501 | | 1 | GLACIER
BULKANA | 4600
450 | 58 27
62 09 | | 53₩
27₩ | 50
1578 | 6 | 6 1 | 5 6 | 6 | 6 | 6 | 6 6 | 5 6 | 6 | 6 | | | 12 | | | | 02 | | 26425 | | | GUNSIGHT
HAINES | A | 61 54
59 14 | N 147 | 16H
26H | 2960
31 | 3 | | 3 3 | 3 | | - | | 3 5 | | | | | | | | İ | | | | | | HAPPY VALLEY
HAYES RIVER | | 69 10 | N 148 | 50H | 946 | | | 3 3 | 3 | 3 | | 1 | | 1 | 1 | | | 11 | | | Ì | | | 25232 | | 1 | HOMER | HS@ | 59 38 | N 152 | 30H | 1000 | 1 | 1 : | 5 5 | 1 1 | 5 | 1 | 1 1 | 5 5 | | | | | 12 | | 1 | | | | 25507 | | | ILIAMNA
INDIAN MIN | FRA
AFS | | N 154 | 55W | 190
946 | | | 5 5
5 6 | | 5 | | 5 5
6 6 | | | | | | 12 | 12 | | İ | | ŀ | 25506 | | | JUNEAU
KAKE | HS0
A | 58 226
56 586 | 134 | 35₩
57₩ | 20
30 | 1 | 1 : | 1 1 | 1 | 1 | 1 | 1 1 | ı 1 | 1 | 1 | | | 12 | 1 | ł | 12 | | | 26535
25309 | | | KAVIK | SAHR | 69 41 | 1 146 | 56H | 617 | 5 | 6 6 | 3 3 | 6 | 6 | 6 | 3 3 | 1 | П | 5 | | | | | | | | | | | | KETCHIKAN | | 50 341
55 211 | | 15W
42W | 106 | | 1 :
6 6 | | 1
6 | | | 1 1
6 1 | | | | | | 12 | | | - | | | 26523
25325 | | | KETCHIKAN
KING SALMON | | 55 351
58 411 | | 30H | 46 | 5 | 5 5
1 3 | 5 5 | 5 | 5 | 5 | 5 S | 5 | 5 | 5 | | ĺ | ا | İ | | | į | | | | | KODIAK
KOTZEBUE | M20 | 57 451 | 152 | 30M | 111 | 1 | 1 : | 1 1 | 1 | 1 | 1 | 1 1 | 1 | | 1 | | | 12 | | | 01 | | | 25503
25501 | | 1 | LAKE CHANDAL | A | 66 521
67 301 | 148 | 30H | 20
1825 | 5 | 1 2 | 5 5 | 5 | 5 | 5 | 1 1 | | 1
5 | 5 | | | 12 | - 1 | ı | 11 | | ı | 26616 | | ı | LAKE HOOD
LEVEL ISLAND | LAMR | 51 111
56 281 | | | 148 | | 3 3
5 6 | | 3 | 5 | | 3
5 5 | 3 | | 3 | | | | | | | | | | | | LIVENGOOD : | | 65 351 | 148 | 29H
45H | - 1 | | | | 1 | ı | - 1 | ì | 1 | 6 | 6 | | | | ŀ | ł | 1 | | - 1 | | | } | MCCARTHY | SAWR | 61 25 | 1 142 | 55₩ | 1600 | - 14 | 5 5 | i 5 | | 5 | 5 | 3 3
5 5
1 1 | 5 | 5 | | | | | ! | | | | - 1 | | | 1 | MCGRATH
MURPHY LAKE | MSØ
SAMR | | | 37H
34H | 340
2450 | 1 | 1] | 1 4 | | 1 | 1 | 1 1 | 1 | | | | | 12 | - 1 | 1 | | | 1 | 26510 | | | NENANA
NIKOLAI | | 64 331
63 011 | 149 | 05W
22W | 362
425 | 5 | 5 | | | | | 5 5 | | | | | | 10 | | - 1 | | } | | 26435 | | | NIKOLSKI | A | 52 571 | 168 | 51H | 70 | | 3 3 | | | | | | - | | | | | Ge . | 05 | | | ı | | | | | NGME
NGRTHWAY | | 64 301
62 571 | | | 18
1718 | | 1 1 | 1 | 1 | 1 | 11 | 1 1 | 1 | 1 1 | 1 1 | | | 12 | - 1 | | 12 | } | 1 | 26617 | | | NUNIVAK
BCEAN CAPE | SA | 60 231
59 331 | 166 | | 52 | 3 | 5 | | 3 | 3 | 3 | | 3 | | | | | | ı | - 1 | ł | | | 26412
26622 | | | BLD EDGERTON | COOP | 61 48f | 1 144 | 59H | 1320 | 1 | 1 | | | | - | 13 | | | | | | | 07 | j | - | | | | | - 1 | PALMER | FAA | 67 271
61 361 | 149 | 35H
05H | 1271
240 | 5 | 5 5 | 5 | 5 | | 5 | 5 5 | 6 | 5 | 5 | | | 12 | | | j | l | - | 25331 | | | PAXSON
PETERSBURG | A | 63 031 | | 27H | 2697
50 | | 5 5 | 5 | 5 | 5 | 5 | 5 5 | 5 | 5 | 5 | | | '- | | } | ļ | | j | | | | POINT BARROW | NS | 71 201 | 156 | 24H | 13 | 3 : | 3 3 | 3 | 3 | - 1 | 3 | | ļ | Н | | | | | | | 1 | | | 25329
27501 | | - 1 | PORT ALSWORT
PORT CLARENC | CG | 60 121
65 151 | 166 | 184
524 | 268
18 | 5 5 | 5 S | | 5 | | 5 6 | | 5 | 5 | 5 | 11 | | 10 | ļ | | - 1 | | ļ | | | | PORT HEIDEN
PROSPECT CRK | A | 56 571
66 481 | 158 | 37H
36H | 92
1105 | 5 5 | 5 5 | 5 | 5 | 5 | 5 ! | 5 5 | | | 5 | | | ' | | | | | ļ | 25508 | | | PRUDHOE BAY | SAHR | 70 151
62 061 | 148 | 20µ | 45
1837 | 5 6 | 5 B | 6 | 6 | 6 | 6 | 5
5
5 | 6
5 | 5 | 6 | | | | | l | | | - | | | 1 | | " | - UO | 1 *** | ,,,,, | 1637 | 5 | 5 5 | 7 | 5 | 7 | 7 | 7 3 | 13 | 5 | 5 | | | | | | - 1 | | l | 26526 | | | ALAS | KA | | | | | | | | | | | | | | | N | UH | BER | | | HS II | N YE | AR HI | тн | |--------------|---|---
--|--|--|--|---|---|--|--|---|---|---|---|---|-----------|--------|----|--|--
---|-----------|--------|-------|---| | | | | | | | | | | | | | BY | | | Ή | / | /
& | / | <u>*</u> / | | | / ±/ | /
& | 135/ | 800 | | YEAR | NAME | TYPE | LAT. | LONG. | ELEV. | | | | | | | ER I
A S | | | D | 1 8 4 6 W | * / £ | Š | | A STATE OF THE STA | ZA J. P. | | | | HBAN
NUMBER | | YEAR
1974 | ROCK RIDGE SAND POINT SAVORINGA SEMARD SISTER IS SITKA SITKA SITKINAK SKAGWAY SKWENTHA SLANA SLANA SPARCE CAPE ST MARYS ST PAUL IS SUMMIT TALKEETHA TANANA TATALINA TIN CITY TOKSOOK UNALAKLEET VALDEZ WALES WARNELL | 68 4 4 4 4 4 4 5 5 3 3 3 5 4 4 4 8 3 4 8 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 51 07N
55 20N
63 42N
56 10N
56 10N
57 04N
59 26N
69 26N
62 43N
62 02N
62 02N
62 02N
62 02N
62 02N
62 02N
62 02N
63 30N
63 30N
63 34N
63 34N
65 34N
65 37N
66 51 06N
65 52N
66 53N
66 55
67 56 56 | 149 45W
170 28H
170 28H
135 25W
135 15W
135 15W
135 18H
135 18H
135 18H
151 12H
143 55W
144 60W
152 19H
152 19H
152 06H
155 57W
150 06H
156 07H
156 07H
156 03H
156 03H
156 03H
156 03H
156 03H
156 03H
156 03H
156 03H
156 03H | 840
50
45
70
35
66
53
30
2420
2410
1736
28
2410
351
240
831
258
87
15
15
240
410
410
410
410
410
410
410
410
410
4 | 3 3 6 5 1 5 3 1 5 6 6 6 7 3 | 3 6 5 1 5 5 3 1 5 1 1 6 6 6 7 6 6 3 | 3651555 315 1166677 663 5 | 365155 31 116677 163 5 | 3651555531 116677 163 5 | 3651555531 116677 16355 | 3691555531 116677 66355 | 3 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 3651555531 116677 663 | 3651555531 116677 6635 | Jan. 6 | | | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | 04 D6 11 | 100 | 111
07 | | | 25617
26438
25341
25333
26335
26514
26534
26534
25713
26414
26528
26529
26536
26627
26442
26618
25338 | | 1975 | ARANASAL YAKATABA YAKUTAT ADAK ADAK ANCHORAGE ANCHORAGE ANCHORAGE ANCHORAGE ANCHORAGE ANCHORAGE ANCHORAGE ANTAK ANTAK ANTAK ANTAK ANTAK BARTER IS BETTLES BIG DELTA BIGKA IS BLAIR LK RNG CAPE LISBURN CAPE ROMANZO | A S G A O R | 50 05N 51 31N 51 35N 61 13N 61 13N 61 13N 65 20 4N 65 20 4N 65 20 4N 65 50 N 66 50N | 142 30M
139 40M
177 39M
149 50M
150 01M
150 01M
150 318M
134 35M
134 35M
134 35M
134 35M
135 35M
136 47M
133 38M
151 31M
151 31M
151 31M
151 39M
152 30M
145 49M
146 02M
147 55M
148 30M
148 30M
148 30M
149 30M
14 | 16 134 156 280 156 280 156 280 157 50 152 157 50 152 157 50 156 156 156 156 156 156 156 156 156 156 | 1 51111355115111165117575 11111163 1 51155 | 1 51111355115111165117575 11111163 1 5 | 4 1 5 1 1 1 1 2 5 5 5 1 1 1 1 1 1 6 5 1 1 1 7 5 7 5 1 1 1 1 1 1 1 5 5 1 1 1 1 | 41 5111365115111165117575 11111163 1 51155 | 41 51113551151111551117575 111111163 1 51155 | 41 11135511 111165117575 11111163 1 51155 | 41 1111355116 1111165117575 611111163 1 51155 | 41 511113551651111165117575 611111163 1 51155 | 41 5111355165111165117575 61111163 1 5115 | 1 5111 551 5111165117675 81611663 1 51155 | | | | 12 10 09 12 12 | 112 | 04 | 12 | 06 | | 25445
25445
25445
2545
26409
26451
25310
26516
25308
45712
27502
27401
26615
26533
26415
26431
26623
26623
26623
26623
26623
26623
26623
26623
26623
26623
26623
26623
26623
26623
26623
26623 | | | FORT YUKON FRANKLIN BLK FUNTER BAY GALBRAITHE GALBRA GAMBELL GULKANA HAINES HAPPY VALLEY HAYES RIVER HOMER ILIAMNA INDIAN MTN JUHNSTONE PT JUNEAU KETCHIKAN KETCHIKAN KETCHIKAN KETCHIKAN KETCHIKAN KETCHIKAN KETCHIKAN KOTZEBUE LAKE CHANDAL | AC SA WAR AFS A WS B A WS B AFS A WS B AFS A WS B AFS A WS B AFS B A WS B WS B WS B B WS B B WS B B WS B B B B | 56 334
58 154
68 294
63 464
63 464
63 464
652 9144
659 144
659 144
659 145
660 294
660 294
660 344
660 344
660 344
660 344
660 344
660 344
660 344
660 344
660 345
660 | 145 12w 114 41h 149 29w 145 129w 175 29w 175 27w 135 26w 148 50w 152 05w 153 36w 193 42w 154 35w 151 151 15w 151 15h 15h 15h 15h 15h 15h 15h 15h 15h | 457
457
357
2665
149
25
1579
31
848
1000
946
20
300
105
105
111
20
1825 | 5 1 5 1 5 1 5 7 1 5 1 1 1 1 1 1 1 1 1 1 | 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5 5 5 1 1 1 1 3 5 5 5 5 5 5 5 5 5 5 5 5 | 5 1 1 3 5 5 1 5 7 3 1 5 1 1 5 1 1 1 | 51113651573151151 | 151136515157315115111 | 1 1 1 1 1 5 1 1 1 3 6 5 1 1 5 5 1 1 1 5 5 1 1 1 1 5 5 1 1 1 1 1 1 5 5 1 1 1 1 1 1 5 5 1 1 1 1 1 1 5 5 5 6 6 6 6 | 151136515157315115111 | 5 1 5 1 1 3 6 5 1 5 1 5 7 3 1 | 5 1 1 3 6 5 1 5 7 3 1 5 1 1 5 1 1 1 | | | | 12
12
12
12
10 | 12 | | 12 | | | 26413
26501
26425
25232
25507
25506
26535
25309
26523
25325
25501
26616 | | \sim | _ | _ | v | _ | |--------|-----|-----|---|----| | | ··· | • | и | LJ | | | | . ~ | n | | | | ALASI | KA | | | | | | | | | | | | | | | | | NU | MBER | | | 45 II | N YEI | AR HI | TH | |------|--|-------------------|----------------|-------------------|------------|-------------------|------------------------|-------------|--------|-----------------------|-------------|---------|-------------------|-------------------|--------|-------------|----------|--------|----------|----------|--|--|----------|-------|-------|-------------------------| | | | | | | | | | HO | JRL | Y R | EC | ORI | 08 | BY |
MO | NTH | 1 | / | /
s / | / _/ | / ₂ 2 / | 1000 10 10 10 10 10 10 10 10 10 10 10 10 | / 5 | / 5/ | 201 | \ s */ | | YEAR | ·NRME | TYPE | | nt i | ا ا | | ELEV. | | | 24
4 lo | | | | | | 11 | | Z. | | | ST AND | | | | | WBAN | | 1975 | LAKE HOOD | LAME | ₩ | 114 | | | 148 | Н | - | 1 A
3 3 | ٠. | H | - | 3 | 3 | Н | <u>.</u> | / •5 • | / * · | ~ | \leftarrow | | 7 | /** | 7 | NUMBER | | | LEVEL ISLAND
LIVENGGOD | A
SALIR | 65 | | 148 | | 30 | 5
5 | 5 | 5 5
6 6 | 5
6 | 6 | 5 5 | 5 5
6 6 | 5 | 5 | 5 | | i | | | | | | | | | | MACLEOD HARB
MCCARTHY
MCGRATH | A
SAHR
HSB | | 53N
28N
58N | 142 | 55H | 1600
340 | 3
6
1 | 6 | | 6 | 6 | 5 4 | 3 3
5 6
1 1 | 6 | 6 | 5 | | | 12 | 07 | | | ľ | | 26510 | | | MCKINLEY PRK
MINCHUMINA | A
FAA | 63
63 | 39N | 148 | | 2050
701 | 1 | ı | 1 1
6 6 | li | ı | - | 1 1
6 5 | 1 | 5 | | | | 12 | | | | | | 26429
26512 | | | MURPHY LAKE
NENANA | SAHR
A | 64 | 38N
33N | 149
149 | 34H
05H | 2450
362 | | 5 | 1 1 | 1 | 1 | ŀ | 5 | 5 | 5 | | | | 10 | | | | | | 26435 | | | NGME
NGRTHWAY
NUNIVAK | FAR
SA | 64
62
60 | 57N | 141 | 26H
56H | 18
1718 | 1 1 3 | 1 | 1 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | | | 12
12 | | | 12 | | | 26617
26412 | | 1 | OLD EDGERTON | COOP | 61 | | 144 | 59H | 52
1320
1271 | 1 | 1 | 3 3 | H | 1 1 | 3 | 1 1 | ł | 3 | , | | | | 12 | | | | | 26622 | | | PALMER
PAXSON | FAA
A | | 35N | 145 | 05H
27H | 240
2697 | 5 | 5 | 5 5
5 5 | 5 | 5 | 5 3 | 5 5 | 5 | 5 | 3 | | | 12 | | | | | | 25331 | | | PETERSBURG
PORT ALSHORT
PORT CLARENC | A A | 56
60 | 12N | 154 | 184 | 50
268 | 5 | 5 | 5 5
5 5 | 5 | | 5 ! | 5 5
5 5 | 5 | 5 | 5 | | | | | | | | | 25329 | | : | PORT HEIDEN
PROSPECT CRK | CB
A
SAWR | 55
56
86 | 15N
57N
48N | 158 | 52H
37H
38H | 18
92
1105 | 5 | 5 | 5 5
5 5 | 5 | 5 | 5 ! | 5 5
5 5 | 5 | 5 | | 02 | | 12 | | | | | | 25508 | | | PRUDHOE BAY
PUNTILLA | SAHR
A | 70
62 | 15N
06N | 148
152 | 20W
45W | 45
1837 | 6 | 6 | 6
5 5 | 6 | 6 | 6 9 | 5 6 | 6 | 6 | 6 | | | | | | | | | 26526 | | | RAMPART
SAVOONGA
SEHARD | C80P
A
A | 65
63
60 | 30N
42N
07N | 170 | 26H | 400 | | 3 | 3 3 | | | | 3 3 | | | | | | | 02 | | | | | 20.400 | | ļ | SISTER IS
SITKA | A
FAA | 58
57 | 10N | | 27W
15W
21W | 70
35
86 | 5 | 5 | 5 6
1 1 | 5 | 5 | 5 9 | 6 6
5 5 | 5 | | 5 | | | 11 | 90 | | | | | 26438
25341
25333 | | | SITKINAK
SKAGWAY | CG
A | 55
59 | 33N
28N | 154
135 | 480
481 | 53
30 | 5 | 5 | 5 5
5 5 | 5 | 5 | 5 9 | 5 5
5 5 | 5 | 5 | 5 | | | 12 | | | | | | 25335 | | | SKHENTNA
SLANA
SNOHSHOE LAK | A | 62 | 58N
43N
02N | 143 | | 153
2420 | 5 | 5 | 3 3 | 5 | 5 | 5 9 | 5 5 | 5 | 3 | 5 | | | | | | | | | 26514 | | | SPARREVOHN
ST MARYS | AFS
COOP | 51 | 061 | 155 | 40H
34H
11H | 2410
1736
30 | | | 3 3
5 6 | 3
6 | | | 3 3
5 6 | | 6 | | | | 12 | 12 | | | | | 26534 | | | ST PAUL IS
SUMMIT | ₩\$8
₩\$8 | 57
63 | 09N | 170
149 | 13H
08H | 28
2410 | 1 | 1 | 1 1 | 1 | 1 | 1 : | 1 1 | 1 | | 1 | | | 12 | | | 12
10 | | | 25713
26414 | | ĺ | TALKEETNA
TANANA
TATAL INA | FSS
AFB | 65 | 18N
10N
53N | 152 | 06H
06H
57H | 351
240
931 | 6 | 6 | 5 6 | 6 | 6 | 6 6 | | 5 | 6 | 6 | | | 12 | 02 | | | | | 26528
26529 | | | TIN CITY
TONSINA | AFS
SAWR | 65 | 34N | | 55H | 258
1875 | 7 | 7 | 1 1
7 7
6 6 | 7 | 7 | 7 7 | | 7 | 6
7
6 | | | | | | | | | | 26536
26634 | | | UMIAT
UNALAKLEET | SAMR
MS0 | | | 160 | 484
484 | 337
21 | 6 | 6 | 6 6 | 6 | 6 | 6 6 | 6 6 | 6 | 6
6 | 6 | | | 11 | | | 12 | | | 26508
26627 | | | VALDEZ
HALES
HHITTER | A
SAHR
R | | 08H
37N
46N | 168 | 21H
03H
41H | 87
18
156 | 3 | 5 | | 3 | 3 | 6 6
3 3
5 9 | 3 3 | 3 | 3 | | | | 12 | 12 | | 12 | | | 26442
26618 | | | WILK LAKE 2 | C00P | | | 151 | 33H
23H | 1190 | - 1 | 5 | 1 | H | | 5 5 | ı | | 5 | 1 | | | , | 02 | | | | | 25338 | | | YAKATAGA
YAKUTAT | A
HSB | 60
59 | 05N
31N | | 40H | 33
31 | - 1 | 5 | | 5 | 5 | 5 9 | | 5 | 5 | 5 | | | 11 | | | 12 | | | 26445
25339 | | 1976 | ADAK
ADAK | CG
NS | | 35N
53N | 177
176 | 29H | 16 | | | 5 5 | | | 1 2 | 5 5 | | 5 | | | | 12 | 12 | | 12 | | | 25704 | | | ANCHORAGE
ANCHORAGE | FAA
HSB | 61
61 | 13N
10N | 149
150 | 50H
01H | 134
158 | 1 | 1 | 1 1 | 1 1 | 1 | 1 2 | 1 1 | 1 | 1 | 1 | | | 12 | | | | | | 26409
26451 | | | ANDREAFSKY
ANGBON
ANIAK | SAHR
A
FAA | 57 | | | 35H
32H | 290
14
91 | 5 | 5 9 | | 3
5
5 | 5 | 3 3
5 5
5 5 | 3 3 | | | 5 | | | | | | | | | 25310
26516 | | | ANNETTE
ATIGUN | HSB
SAHR | 55
68 | 02N
11N | 131
149 | 34H
25H | 113
3335 | 1 | 1 | 6 | 6 | 5 | 1 1
6 6 | 1 1 | 1
6 | 1 | | | | 12 | | | 12 | | | 25306 | | | BARROW
BARTER IS | LCG
H2G
H2G | 71 | 50N
18N
08N | 156 | 47H | 70
38
50 | 1 | 1 | 1 1 | 5
1
1 | 1 | 5 5 | 5 5 | 1 | 1 | | | | 15 | | | 08
05 | | | 45712
27502
27401 | | | BETHEL
BETTLES | HSB
HSB | 60
66 | 47N
55N | 161
151 | 48W | 131
652 | 1 | 1 | 1 1 | 1 | 1] | 1 2 | 1 1 | 1 | 1 | 1 | | | 12 | | | 11 | | | 26615
26533 | | - | BIG DELTA
BIGREA IS | FAA
CG | 56 | 00N
51N | 135 | 33⊭ | 1275
50 | 5 | 6
5 | 5 6 | 6 | 5 | 5 5 | 5 6 | 5 | 6 | 5 | | | 12 | | | | | | 26415 | | | CAPE LISBURN
CAPE NEWENNA | AFS
AFS | 66 | 20N
53N
38N | 166 | | 725
53
235 | 6 | 5 9 | 5
5
6
7
7 | 5
6
7 | 5 6 7 | 5 !
6 !
7 : | 3 G | 6 | 5
6
7 | 6 | | | | | | | | | 64060
26631
25623 | | | CAPE POLE | A
AFS | 55
61 | 58N
47N | 133
166 | 48H
02H | 50
405 | 5 | 5 | 5 5 | 5 | 5 | 5 5 | 5 5 | 5 | 5 | 5 | | | | | | | | | 26633 | | | CAPE SARICHE
CENTRAL | CG
COOP | | 338 | | 49H | 176 | - 1 | - | 5 5 | Ш | H | 5 5 | 1 | | | 5 | | | | 11 | | | | | 25622 | | | CHANDALAR
COLD BAY
COLD FT CAMP | HSB | 55 | 30N
12N
03N | 162 | 43H | 1845
99
1063 | 1 | 1 | sl a | 1 | 1
B | 6 6
1 1
6 6 | 1 1 | 1 | 1 | 1 | | | 12 | | | 11 | | | 25624 | | | CORDOVA
DEADHORSE | FAA
FSS | 50
70 | 30N | 145
148 | 30H
28H | 45
83 | 1 | 1 | 1 1 | 1
1
6 | 1 | 1 2 | 1 1 | 1 | 1 | 1 | | | 09 | | | | | | 26410 | | | DIETRICH
DILLINGHAM
DBLLY VARDEN | SAHR
FSS
CG | 59 | 41N | 158 | 3114 | 1489
86
108 | 6 | 6 | 5 6 | 6
3 | 5 | 6 6 | 5 6 | 5 | 6 | 6 | | | ,_ | | | | | | 25512 | | | DUTCH HARBOR | A | 53 | 48N
53N
47N | 166 | 32H | 13
840 | اد | 1 | 13 | | 3 | 3 :
5 : | 3 3 | 5 | 5 | | | | 12 | 11 | | | | | 25614
26422 | | 1 | EIELSON
EKULTNA LAKE | AFB
COOP | 64
61 | 41N
24N | 147
149 | 05W | 569
860 | ١ | ı | 1 1 | 1 1 | Н | | 1 | | | | | | | | | | 06 | | 26407 | | | ELFIN COVE
ELMENOBRF
FAIRBANKS | A
AFB
HSB | 61 | 12N
15N
49N | 149 | 40H
48H | 20
176
455 | 1 | 1 | 5 5 | 5
1
1 | 5 1 1 5 | 5 5 | 5 5 | 1 | 5 | 1 | | | | | | | | | 26401 | | | FAREWELL | MSG | | 31N | | | 1503 | 5 | 5 | 5 5 | 5 | 5 | 5 5 | 5 5 | 5 | | 5 | | | 11 | 08 | | | | | 26411
26519 | · | | | | | | | ALASI | KΑ | | | | | | | | | | | | | NUM | IBER | OF t | IONTH | S IN | YEAR H | (ITH | |------|---|--|--|---|--|-----------------------|--------------------------|---------------------------|-----------------------|------------------|-------------------------------------|-----------------------|---------------------------------|---------------------------------------|-----|----------------------|----------------
--|-----------|---------|--| | | | | | | | HOU | RLY | REC | ORI | 08 | BY | MOR | нтн | /. | / / | , , <u>,</u> | / <u>2</u> 2 / | Para Para Para Para Para Para Para Para | ,
,e=/ | / */** | /8/ | | | i | | | | | | = 2 | | | | | | , | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | Lee Land | 20 1 1 2 2 3 4 1 2 2 3 4 1 2 2 3 4 1 2 2 3 4 1 | 5 /s | | WBAN
NUMBER | | YEAR | NAME | | LAT. | L | | - | ┵┵ | ┵. | 41 | | | ₩ | → | 150 | /** | <u> </u> | <u> </u> | / * * | / ¥` € | 1 8 8 4 | NUMBER | | 1976 | FIVE FINGER FIVE MILE CP FORT YUKON FRANKLIN BLK FUNTER BAY | CG
SAWR
AC
SAWR | 66 33N
69 43N
58 15N | 150 00H
145 12H
148 41H
134 54H | 30
440
457
357
5 | 5 , | 5 5 | 5 5 5 5 5 5 5 5 | 6 6 6 6 | 5
5 | 5 5
6 6
5 5
6 6
5 5 | 6
5
6
5 | 5 5
6 6
5 6
5 5 | | | | | | | | 25319
26413 | | | GALBRAITHE
GALENA
GAMBELL | SAWR
AFS
SAWR | 68 29N
64 44N
63 46N | 156 56₩ | 2565
149
25 | 1 2 | | 1 1 | | 1 | 1 1 | 1 | 1 1 | | | | | | | | 26501 | | | GULKANA
GUSTAVUS
HAINES
HAPPY VALLEY
HAYES RIVER | HSO
SAHR
A
SAHR
A | 62 09N
58 25N
59 14N
69 10N
61 59N | 145 274
135 444
135 264
148 504
152 054 | 1579
19
31
948
1000 | 5 5
1 | 5 6
5 5
1 1 | 6 6
5 5
1 1
5 5 | 5 | 5 | 6 6
5 5
5 5
1 1
5 5 | 5 1 5 | 6 5
5 5
5 1
5 5 | | | 12
12 | · | | | | 26425
25322
25232 | | | HEALY
HOMER
ILIAMNA
INDIAN MTN
JOHNSTONE PT | SAHR
HSB
FAA
AFS
A | 59 45N
66 DON | 149 01W
151 30W
154 55W
153 42W
146 36W | 1475
69
190
946
24 | 5 7 | 5 5 | 1 1
5 5
7 7
3 3 | 5 7 | 7 | 1 1
5 5
7 7
3 3 | 1
5
7 | 5 5
1 1
5 5
7 7
3 3 | | | 12 | 12 | | | | 25507
25506
26535 | | | JUNEAU
KAKE | WSB
A | 58 22N
56 58N | 134 35H
133 57H | 20
30 | 5 9 | 1 1 | 1 1
5 5 | 1 5 | 5 | 1 1
5 5 | 5 | 1 1 5 5 | | | 12 | | | 12 | | 25309 | | | KENAI
KETCHIKAN
KETCHIKAN | FAA
CG
FSS | 60 34N
55 35N
55 21N | 131 30W | 106
96 | 5 9 | | 1 1
5 5 | S 5 | 5 | 1 1
5 5
1 1 | 5 | 1 1 5 1 | | | 11 | | | | | 26523
25325 | | | KING SALMON
KODIAK
KOTZEBUE
LAKE CHANDAL
LAKE HOOD
LEVEL ISLAND
LIVENGOOD | HSO
HSO
HSO
A
LAHR
A
SAHR | 58 41N
57 45N
66 52N
67 30N
61 11N
56 28N | 156 39H
152 30H
162 38H
148 30H
149 57H | 46
111
20
1825
148
30 | 1
1
5
3
5 | 1 1 1 5 5 5 5 5 5 5 | 1 1 1 1 5 5 5 5 6 6 6 | 1 1 5 5 5 | 1 1 5 | 1 1 1 1 1 5 5 5 3 3 5 5 6 6 6 | 1
1
5
3
5 | 1 1
1 1
5 5
3 3
5 6 | | | 12
11
12 | | | 12 | | 25503
25501
26616 | | | MACLEGO HARB
MANLEY HOT S
MCCARTHY | A
A
SAHR | 65 DON | 147 45H
150 39H
142 55H | 45
265
1600 | 3
6 6 | 11 | 3 3 | 11 | 1 | 3 3
6 6 | 3 | 3 3 6 6 | | | | | | | | 26524 | | | MCGRATH
MCKINELY PRK
MINCHUMINA
NENANA | HSB
A
FAA
A | 62 58N
63 39N | 155 37W
148 48W
152 17W | 340
2050
701
362 | 1 2
 5 9 | 1 1 5 5 5 | 1 1 | 1 | 1 | 1 1 | 1
6 | 1 1 6 6 5 5 | | | 12 | • | | | | 26510
26429
26512
26435 | | | NIKOLAI
NOME
NORTHHAY
NUNIVAK | COOP
HSO
FAA
SA | 62 57N
60 23N | 154 224
165 264
141 564 | 425
18
1718
52 | | 1 1 1 3 | 1 1 1 3 3 3 | 1 3 | 1 | | 1 | 1 1 1 | | | 12
12 | 06 | | 12 | | 26617
26412
26622 | | | BCEAN CAPE
BCEAN RANGER
BLD EDGERTON
BLD HAN
PALMER | CG
SAHR
CBBP
SAHR
FAA | 51 48N
67 27N | 166 57W | 1320
1271
240 | 5 6
5 9 | 5 6 | 3 3
6 6
5 5 | 6 | 6 | 6 6
6 6
5 5 | Б | 6 6
6 5 | | | 12 | 12 | | | | 25331 | | | PAXSON PETERSBURG PORT ALSHORT PORT CLARENC PORT HEIDEN | A
A
CG
A | 56 49N | | 2697
50
268
18
92 | 5 t | 5 5 | 5 5 5 5 5 5 5 | 5 | 5 | 5 5
6 6
5 5 | 6
5 | 5 5
6 5
5 5 | | | 10 | | | | | 25329
25508 | | | PROSPECT CRK PRUDHOE BAY PUNTILLA RAMPART | SAWR
SAWR
A
COOP | 66 40N
70 15N
62 06N | 150 38H
148 20H | 1105
45
1837
400 | 1 6 | 1 1
5 6 | 1 1
6 6
5 5 | 1 6 | 6 | 1 1 | 5 | 1 1 6 6 | | | | 10 | | | | 26526 | | | SAVBONGA
SEDCO 706
SEWARD
SISTER IS | A
5AHR
A | 59 52M
60 07M
58 10M | 170 28W
143 16W
149 27W
135 15W | 45
70
35 | 6 6
5 9 | 5 6 | 6 6
5 5 | 6 5 | 6 | 6 6
5 5 | 6
6
5 | 3 3
6 6
6 6
5 5 | | | 12 | | | | | 26438
25341 | | | SITKA
SITKINAK
SKAGWAY
SLANA
SNOWSHOE LAK | FAA
CG
A
A | 56 33N
59 28N
62 43N | 135 214
154 084
135 184
143 554
146 404 | 66
53
30
2420
2410 | 5 5
5 5 | 5 5 | 5 5 5 5 5 5 3 3 | 5 5 | 5 | 1 1
5 5
5 5
5 5 | 5 | 1 1
5 5
5 5
5 5
3 3 | | | 12
12
12 | 07 | | | | 25333
25335 | | | SPARREVOHN
ST MARYS | AFS
COOP | 61 06M
62 04M | 155 34W
163 11W | 1736
30 | 6 6 | 5 6 | 6 6 | 6 | 6 | 6 6 | 6 | 6 6 | | | 12 | 11 | | | | 26534 | | | ST PAUL IS
SUMMIT
TALKEETHA
TANANA
TATALINA
TIN CITY
TOMSINA | WSO
WSO
WSO
FSS
AFB
AFS
SAWR | 63 20N
62 18N
65 10N
62 53N
65 34N | 170 13W
149 08W
150 06W
152 06W
155 57W
167 55W
145 13W | 28
2410
351
240
931
258
1875 | 5 6
6 6 | 1 1
5 6
5 6
5 6 | 1 1 1 5 5 5 6 6 6 6 6 6 6 | 6
6
6
6
6 | 1
6
6
6 | 1 1 1
1 5 6
6 6
6 6
6 6 | 1
6
6
6 | 1 1
6 6
6 6
6 6
6 6 | | | 12
12
12
12 | | | 03 | | 25713
26414
26528
26529
26536
26634 | | | UMIAT
UNALAKLEET
VALDEZ
HALES
HHITTER | SAUR
USO
A
SAUR
A | 69 22N
63 53N
61 08N
65 37N
60 46N | 152 03H
160 48H
146 21H
168 03H
148 41H | 337
21
67
18
156 | | 5
6
5 6
3 3 | 6 6 6 5 5 5 | 6
6
3 | 6 6 3 | 6 6
6 6
3 3 | 6
6
3 | 6 6
6 6
5 3
5 5 | | | 12
12 | 12 | | 11 | | 26508
26627
26442
26618 | | | WILD LAKE 2
HRANGELL
YAKATAGA
YAKUTAT | COGP
A
A
WSG | 56 28N
60 05N | 151 33W
132 23W
142 30W
138 40W | 1190
43
33
31 | 5 9 | 5 5 | 5 5
5 5
1 1 | 5 5 | 5 | 5 5
5 5
1 1 | 5 | 5 5
5
1 1 | | | 111 | 02 | | 11 | | 25338
26445
25339 | | | | | | | | | | | | | | | | | | | : | | | | | | ELEV | NAME | TYPE | LAT. | LONG. | HBAN
NUMBER | ELEV | NAME | TYPE | LAT. | LONG. | HBAN
NUMBER | |----------------------------|---|--|--|---|---|----------------------------|--|---|--|---|---| | 0
4
5
6 | KETCHIKAN
IGLOO
FUNTER BAY
EMMONAK
POINT BARROW | SAUR
A
A
SAUR
AFS | 55 20N
65 09N
58 15N
62 46N
71 18N | 131 34H
165 04H
134 54H
184 30H
156 47H | 25325
27506 | 18
18
18
18 | PORT ALEXAND
PORT CLARENC
SKAGWAY
VALDEZ
WALES | A
CG
A
A
SA | 56 15N
65 15N
59 27N
61 07N
65 37N | 134 39H
166 52H
135 19H
146 16H | 25348
25335
26442
26618 | | 9
10
10
10 | HYDER
CANDLE
COFFMAN COVE
DUTCH HARBOR
ICY BAY | A
A
A
NS
SAWR | 55 54N
65 56N
56 00N
53 54N
59 59N | 130 01W
161 55W
132 50W
166 32W
141 48W | 26619
25611 | 18
18
18
19 | WALES WALES WRANGELL GUSTAVUS POINT BARROW | SAWR
WBAS
A
SAWR
AFS | 65 37N
65 37N
56 28N
58 25N
71 20N | 168 03H
158 03H
132 23H
135 44H
156 39H | 26618
26618
25338
25322
27506 | | 10
10
10
10 | KIVALINA
KGYUK
NGME
PRUDHGE BAY
PT SPENCER | A
A
S
S
A
A
A
A
A
B | 67 46N
64 57N
64 29N
70 19N
65 15N | 164 42H
151 08H
165 24H
148 33H
166 21H | 26617
26612 | 19
19
19
19 | POINT HOPE
SELOOVIA
ST PAUL IS
ST PAUL IS
TENAKEE | AAF
SAWR
NS
SA
A | 68 21N
59 26N
57 07N
57 07N
57 47N | 186 47H
151 42H
170 16H
170 16H
135 12H | 25601
25712
25713
25336 | | 10
10
10
11
11 | QUINHAGAK
TELLER
TELLER
ATKA
KOTZEBUE | SAWR
A
AAF
A
SA | 58 45N
65 16N
65 18N
52 12N
66 52N | 161 54H
166 21H
166 55H
174 20H
162 38H | 26626
26607
25715
26616 | 20
20
20
20 | BARTER IS
ELFIN COVE
GOLOVIN
GUARD ISLAND
GUSTAVUS | AFB
A
CG
A | 70 08N
58 12N
64 33N
55 27N
58 25N | 143 36W
136 40W
163 01W
131 53W
135 42W | 27401
26628
25320
25322 | | 11
11
12
12
12 | POINT BARROW
SKAGWAY
ATTU
GÖLÖVIN
KODIAK | CAA
A
S
A
NF | 71 20N
59 27N
52 50N
64 33N
57 46N | 156 394
135 194
173 116
163 014
152 224 | 27504
25335
46712
26528
25509 | 50
50
50
50 | JUNEAU
JUNEAU
KOTZEBUE
KOTZEBUE
PLATINUM | HBAS
HSB
HBAS
HSB
A | 58 22N
58 22N
56 52N
66 52N
59 01N | 134 35W
134 35W
162 38W
162 38W
161 47W | 25309
25309
26616
26616
25613 | | 12
12
12
12
12 | KOTZEBUE
NOME
NOME
POINT LAY
PORT ALTHORP | SA
S
HBG
SA
A | 66 52N
64 29N
64 29N
69 45N
58 09N | 162 384
165 244
165 244
163 034
136 224 | 26616
26617
26617
26624 | 20
20
20
20 | PT RETREAT
SELAWIK
ST PAUL IS
ST PAUL IS
UNALAKLEET | CG
A
SPL
A | 58 25N
66 34N
57 07N
57 07N
63 53N | 134 574
180 014
170 164
170 164
160 484 | 25330
25713
25713
26627 | | 12
13
13
13 | VALDEZ
CRAIG
DUTCH HARBOR
DUTCH HARBOR
KIMSHAN | A
A
SAWR
A | 51 07N
55 29N
53 53N
53 53N
57 41N | 145 15H
133 09H
156 32H
156 32H
136 05H | 26442
25317
25814
25614 | 20
21
21
21
21 | WIDE BAY
AKIAK
BARTER IS
MOSES POINT
MOSES POINT | SAHR
COOP
AFB
AAF
AC | 57 22N
60 52N
70 08N
64 43N
64 42N | 156 25W
161 23W
143 36W
162 05W
162 03W | 27401
26603
26620 | | 13
13
14
14
14 | PGINT BARROW
VALDEZ
ADAK
ADAK
ANGGON | NS
A
AAF
NS
A | 71 20N
61 07N
61 53N
51 53N
57 30N | 156 244
146 164
176 384
176 394
134 354 | 27501
26442
25707
25704
25310 | 21
21
21
21
21 | MOSES POINT
MOSES POINT
PLATINUM
SKAGWAY
UNALAKLEET | CAA
FAA
AAF
AAF
CAA | 64 42N
64 42N
59 01N
59 27N
63 53N | 162 03H
162 03H
161 47H
136 19H
160 46H | 26620
26620
25604
25303
26627 | | 14
14
14
14 | DAVIS
LITTLE PORT
PLEASANT IS
POINT BARROW
POINT HOPE | AAF
A
AFS
A | 51 53N
56 23N
58 10N
71 21N
68 20N | 176 39H
134 39H
135 30H
156 39H
166 48H | 25701
25327
25340
27505
26623 | 21
21
21
21 | UNALAKLEET
UNALAKLEET
UNALAKLEET
BETHEL
DUTCH HARBOR | FAA
WBAS
WBO
WBO
SA | 63 53N
63 53N
63 53N
60 48N
53 53N | 160 48W
160 48W
160 48W
161 45W
166 32W | 26627
26627
26627
26615
25614 | | 15
15
15
15
15 | ADAK
AMAK ISLAND
BETHEL
DAVIS
DAVIS | NS
AF
WBAS
AAF
AFB | 51 53N
55 24N
60 47N
51 53N
51 53N | 176 384
163 084
161 434
176 394
176 394 | 25704
25609
26615
25701
25701 | 22
22
23
23 | JUNEAU
NGME
UNALAKLEET
DUTCH HARBGR
KANATAK | HBAS
SPL
AAF
AFS
A | 58 22N
64 30N
63 54N
53 54N
57 34N | 134 35H
165 24H
160 47H
166 32H
156 02H | 25309
26617
26608
25620 | | 15
15
15
15
15 | DEERING
DUTCH HARBOR
EGAVIK
HAINES
KETCHIKAN | A
NS
A
A
SA | 56 04N
53 54N
64 02N
59 14N
55 21N | 162 45W
166 32W
160 55W
135 27W
131 39W | 25611
25323
25325 | 23
24
24
24
24 | VALDEZ
ALITAK
ANNEX GREEK
BARROW
CANDLE | S & & & & & & & & & & & & & & & & & & & | 51 D7N
56 57N
58 19N
71 10N
55 56N | 146 16W
154 10W
134 06W
156 47W
161 55W | 26442
25512
25311
27502
26619 | | 15
15
15
15
15 | KETCHIKAN
NOME
PLATINUM
RADIOVILLE
SOLOMON | HBB
HBAS
A
A | 55 21N
64 30N
59 01N
57 36N
64 35N | 131 39H
165 26H
161 47H
136 09H
164 24H | 25325
26617
25613
25332
26628 | 24
24
24
25
25 | DAVIS
JOHNSTONE PT
NIKOLSKI
BARROW
CHIRIKOF IS | AAF
A
A
WBO
SAWR | 51 53N
60 29N
52 57N
71 18N
55 54N | 176 39W
146 38W
168 52W
156 46W
155 34W | 25701
27502
25511 | | 15
15
16
16
16 | TOKSOOK
VALDEZ
ADAK
KETCHIKAN
MOSES POINT | SAHR
A
NS
SA
CAA | 60 32N
61 07N
51 53N
55 20N
64 42N | 165 07H
146 16H
176 39H
131 39H
162 03H | 26442
25704
25325
26620 | 25
25
25
25
25 | CORDOVA EXCURSION IN GAMBELL HYDABURG LINCOLN ROCK | S
A
S
A
C
G | 60 31N
58 25N
63 46N
55 12N
56 03N | 145 36W
135 26W
171 45W
132 49W
132 46W | 26410
25326 | | 16
16
16
15 | SHISHAREF
VALDEZ
WALES
WALES
SEWARD | SA
A
CAA
WBAS
SAWR | 66 14N
61 07N
65 37N
65 37N
60 08N | 166 07H
146 16H
168 03H
160 03H
149 25H | 26625
26442
26518
26618 | 25
25
26
26
27 | ATKA | e
e
es
es
es | 57 03N
55 13N
52 14N
53 53N
52 50N | 135 20H
161 21H
174 13H
166 32H
173 19E | 25333
25710
25611
45701 | | 17
17
18
18
18 | VALDEZ
WALES
NOME
NOME
POINT LAY | A
AAF
WBAS
WSO
SA | 61 07N
65 37N
64 30N
64 30N
69 45N | 146 16H
168 03H
165 26H
165 26H
163 03H | 26442
26609
26617
26617
26624 | 27
28
28
28
29 | VALDEZ
PGINT LAY
ST PAUL IS
ST PAUL IS
BARRGW | 5
58
WBAS
WBAS | 61 07N
69 45N
57 09N
57 09N
71 18N | 146 16H
163 03H
170 13H
170 13H
156 47H | 26442
26624
25713
25713
27502 | | | | | | | | | | | | | | | ELEV. | NAME | TYPE | LAT. | LONG. | HBAN
NUMBER | ELEV. | NAME | TYPE | LAT. | LONG. | HBAN
NUMBER | |----------------------------|--|--------------------------------------|--|---|----------------------------------|----------------------|---|----------------------------|--|---|---| | 29
29
29 | GUSTAVUS
GUSTAVUS
WAINWRIGHT | CAA
FAA
A | 58 25N
58 25N
70 37N | 135 42H
135 42H
160 04H | 25322
25322
27503 | 45
45
45 | HOLTZ BAY
MACLEGO HARB
MIDDLETGN IS | AAF
A
CAA | 52 55N
59 53N
59 20N | 173 10E
147 45H
146 19H | 45704
25402 | | 30
30 | ALITAK
ALITAK | SA
NF
NS | 70 37N
56 55N
56 55N | 160 D4H
154 15H | 27503
25512
25602 | 45
45
45 | NUNIVAK
OHOGAMUTE
PRUDHOE BAY | SA
A
SAHR | 60 23N
61 38N
70 15N | 166 12W
161 54W | 26622 | |
30
30
30
30 | AUGUSTINE IS
DILLINGHAM
DUTCH HARBOR
ELIM | A
SAHR
NF
A | 59 25N
59 03N
53 53N
64 40N | 153 25H
158 27H
156 32H
162 05H | 25513
25616 | 45
45
46
46 | SAVOONGA
YAKUTAT
KING SALMON
KING SALMON | A
AAF
HBAS
HSB | 63 42N
59 31N
58 41N
58 41N | 170 28W
139 40W
156 39W
156 39W | 25339
25503
25503 | | 30
30
30 | FIVE FINGER
GAMBELL
GAMBELL | CG
SA
SAHR | 57 16N
63 51N
63 51N | 133 37H
171 36H
171 36H | 25319
26703 | 46
45
47 | NOME
ST PAUL IS
DEADHORSE | AAF
SA
SAWR | 84 31N
57 07N
70 12N | 165 26H
170 16H
148 27H | 26604
25713 | | 30
30
30 | KAKE
LEVEL ISLAND
NORTHEAST CA | A
AFS | 56 58N
56 28N
63 19N | 133 57H
133 06H | 26632 | 47
47
48 | OUTCH HARBOR
KING SALMON | NF
HBAS
SAHR | 53 53N
58 41N | 166 32H
156 39H | 25616
25503 | | 30
30
30
30 | SKAGWAY
ST MARYS
UNALAKLEET
WALES | A
C00P
A | 58 28N
62 04N
63 53N | 135 18W
163 11W
160 48W | 25335
26627 | 49
49
49 | UGNU
BULDIR IS
HOONAH
KING SALMON | AAF
A
HBAS | 70 23N
52 22N
58 07N
58 41N | 149 50W
175 58E
135 27W
156 39W | 45706
25503 | | 31
31 | AKULURAK
BARROH | AAF
HBAS | 65 37N
62 30N
71 10N | 164 25H
155 47H | 26618
26610
27502 | 49
48
48 | MT VILLAGE
NAKNEK
NAKNEK | SA
AAF
AFB | 62 07N
58 41N
58 41N | 163 43H
156 39H
156 39H | 26621
25503
25503 | | 31
31
31 | HAINES
SITKA
YAKUTAT | A
A
AAF | 59 14N
57 03N
59 31N | 135 26H
135 20H
139 40H | 25232
25333
25302 | 49
50
50 | NALDEZ
ATKA
BARTER IS | A
SAHR
HBAS | 61 08N
52 10N
70 08N | 146 15H
174 12H
143 38H | 26442
25715
27401 | | 31
31
32
32 | YAKUTAT
YAKUTAT
GAMBELL
SAND POINT | HBAS
HBAS
CAA | 59 31N
59 31N
63 51N
55 20N | 139 40H
139 40H
171 36H
160 30H | 25339
25339
26703
25617 | 50
50
50
50 | BARTER IS
BIORKA IS
CAPE DECISIO
CAPE POLE | USO
CO
CO
A | 70 08N
56 51N
56 00N
55 58N | 143 38H
135 33H
134 08H
133 48H | 27401
25315 | | 32
32
32 | SAND POINT
SAND POINT
SAND POINT | NF
SAWR | 55 20M
55 20M
55 20M | 160 30H
160 30H
160 30H | 25617
25617
25617 | 50
50 | CAPE ST ELIA
CAPE WRANGEL
DEADHORSE | CG
NF
FSS | 59 48N
52 53N
70 12N | 144 36H
172 31E
148 27H | 25401
45713 | | 33
33
33 | AKULURAK
NGME
NGRTHEAST CA | A
S
AFS | 62 30N
64 29N
63 19N | 164 25H
165 21H
168 56H | 26517
26632 | 50
50
50 | DILLINGHAM
FIRE ISLAND
GLACIER | SAWR
AFS
COOP | 59 03N
61 09N
58 27N | 158 27H
150 14H
135 53H | 25513
26507 | | 33
33
33
34 | YAKATAGA
YAKATAGA
YAKATAGA
VALDEZ | A
CAA
FAA
S | 60 05N
60 05N
60 05N
61 07N | 142 30W
142 30W
142 30W
146 15W | 26445
26445
26445 | 50
50 | KANAGA BAY
KOGGIUNG
NUNIVAK | NS
A
ASC | 51 43N
59 02N
60 23N | 177 15W
156 20W
166 12W | 25711
26622 | | 35
35 | AKIAK
BEAVER FALLS | C00P | 60 52N
55 23N | 161 23W | 26442
25313 | 50
50 | GGFINGA
UNUINAK IZ
UNUINAK | SA
AAF
AAF | 60 23N
60 12N
51 33N | 166 12H
166 06H
178 48H | 26622
26605
25702 | | 35
35
35
35 | DRIFT RIVER
NUNIVAK
PORTAGE
SAVOONGA | SAHR
SA
A
A | 60 35N
60 23N
60 51N
63 41N | 152 09H
166 12H
148 59H
170 26H | 26622
26437 | 50
50
50
50 | PETERSBURG
PILGRIM SPRG
PILGT PGINT
SAND PGINT | A
A
SAWR | 56 49N
65 05N
57 37N
55 20N | 132 57W
154 58W
157 34W
160 30W | 25329
25514
25617 | | 35
35
36
36 | SISTER IS
ST MICHAEL
ATKA | A
SAWR
A
BAF | 58 10N
63 30N
52 10N | 135 15H
162 00H
174 12H | 25341
25715 | 50
50
50 • | HHITE MOUNTA | A
SAHR
A | 61 02N
70 20N
64 41N | 151 11H
148 18H
163 24H | 26630 | | 36
36 | CAPE THOMPSO
TREE POINT | SPL
CG | 52 13N
68 06N
54 48N | 174 12W
185 48W | 25708
26636
25337 | 51
52
52 | BRUIN BAY
CAPE LISBURN
NUNIVAK | CAA
AFS
SA | 58 22N
68 53N
60 23N | 153 59H
166 08H | 26631
26622 | | 37
38
38
38 | NUNIVAK
BARROH
BARROH
BETHEL | A
WBAS
WSG
WBO | 60 23N
71 18N
71 18N
60 48N | 166 12W
156 47W
156 47W
161 45W | 26622
27502
27502
26615 | 53
53
54
55 | CAPE LISBURN
SITKINAK
ELDRED ROCK
HOMER | AFS
CG
CG
R | 56 53N
56 33N
56 58N
59 38N | 166 08H
154 08H
135 13H
151 30H | 26631
25318
25507 | | 36
36
39
39 | KØDIAK
MARY ISLAND | SAWR
AFS
NF
CG | 59 03N
63 19N
57 45N
55 06N | 158 27H
168 56H
152 31H
131 11H | 25513
26632
25509 | 58
60
60
60 | SENTINEL IS | CG
A
A
CG | 59 48N
59 14N
60 19N
58 33N | 144 36W
135 27W
151 16W
134 55W | 25401
25323 | | 39
40
40
40
40 | ANCHORAGE
BARTER IS
BARTER IS | CAA
COOP
AAF
AFB
CG
A | 60 46N
61 14N
70 08N
70 08N
57 27N
55 11N | 147 48H
149 52H
143 36H
143 36H
134 52H | 26436
27401
27401 | 62
62
63
65 | SEGUAM
SEWARD
SITKA
KBYUK | S
AAF
SA
SPL
A | 57 07N
52 23N
60 07N
57 03N
64 57N | 170 16H
172 25H
149 27H
135 20H
161 06H | 25713
25703
25438
25334 | | 41
43
43
44
44 | KOYUK
NOME
HRANGELL
CORDOVA
CORDOVA | AAF
AAF
A | 64 52N
64 31N
56 20N
60 32N | 131 49H
161 06H
165 26H
132 23H
145 42H | 26602
26504
25338
26410 | 65
66
66
67 | SEWARD
SITKA
SITKA
CAPE LISBURN | | 57 03N
60 07N
57 04N
57 04N
68 52N | 135 20H
148 27H
135 21H
135 21H
166 08H | 25333
26438
25333
25333
26531 | | 44
45
45 | MT VILLAGE
CORDOVA | HBAS
SA
ARF
AF | 60 30N
62 07N
60 29N
60 30N | 145 30H
163 43H
145 30H
145 30H | 26410
26621
26402
26410 | 67
68
68 | UMNAK ISLAND
ILIAMNA | A | 58 40N
53 32N
59 44N
66 50N | 156 45H
167 47H
154 48H
161 00H | 25610
25606 | | 45
45 | | FRA
HBAS | 60 30N
60 30N | 145 30H
145 30H | 26410
26410 | 69
69 | HOMER | HBAS | 59 38N | 151 30H | 25507
25507 | | | | | | | | | | İ | } | i | | | ELEV. | NAME | TYPE | LAT. | LONG. | HBAN
NUMBER | ELEV. | NAME | TYPE | LAT. | LONG. | MBAN
NUMBER | |---------------------------------|--|----------------------------------|--|---|---|---------------------------------|--|----------------------------------|--|---|---| | 70
70
70
70 | ATTU
CORDOVA
HAINES
NIKOLSKI | CG
S
A | 52 50N
60 32N
59 14N
52 57N | 173 11E
145 42H
135 27H
168 51H | 45712
25410
25323 | 108
110
111
111 | DOLLY VARDEN
ANNETTE
KODIAK
KODIAK | CG
A
NAF
WS0 | 50 48N
55 02N
57 45N
57 45N | 151 38H
131 34H
152 30H
152 30H | 25308
25501
25501 | | 70
71
73 | SEWARD
KISKA ISLAND
HØMER | A
NAAF
CAA | 60 07N
51 58N
59 38N | 149 27W | 25438
45710
25507 | 111
112
113 | PETERSBURG
KODIAK
ANNETTE | CAA
NAF
HBAS | 56 49N
57 45N
55 02N | 132 57H
152 30H
131 34H | 25329
25501
25308 | | 73
73
74 | HOMER
HOMER
REINDEER PAS | FAA
HBAS
AAF | 59 38N
59 38N
53 31N | 151 30H
151 30H
167 55H | 25507
25507
25606 | 113
113
114 | ANNETTE
SHEMYA
ANNETTE IS | WSØ
NS
AAF | 55 02N
52 43N
55 02N | 131 34H
174 06E
131 35H | 25308
45714
25301 | | 75
75
75
76 | CHIRIKOF IS
KAD RIVER
VALDEZ
SEHARD | NF
SAUR
A | 55 54N
70 04N
61 08N
80 07N | 155 34H
147 43H
146 15H
149 27H | 25511
26442
26438 | 115
115
116
118 | SØLDØTNA
KØDIAK
SEHARD
ANCHØRAGE | SAHR
NAF
SA
COBP | 60 28N
57 45N
60 08N
61 13N | 151 02W
152 30W
148 27W
148 52W | 25501
25438 | | 75
80
80 | SEWARD
AMCHITKA IS
CHUGINADAK | SA
NS
AAF | 50 07N
51 24N
52 50N | 149 27H
179 15E
169 50H | 26438
45711
25601 | 118
118
119 | ANCHURAGE
ANCHURAGE
AMERICAN RVR | S
MB0
AAF | 61 13N
61 13N
65 27N | 149 52H
149 52H
165 46H | 26611 | | 80
81 | HOOPER
JUNEAU
ANIAK | SAHR
HBØ
CØØP | 61 30N
58 18N
61 35N | 156 05W
134 24W
159 32W | 25324
26516 | 121
122
123 | MIDDLETON IS
KETCHIKAN
GALENA | AFS
FSS
AFS | 59 27N
55 20N
64 43N | 146 18W
131 40W
156 54W | 25403
25325
26501 | | 83
84
85
85
85 | DEADHORSE
PORT HEIDEN
ANCHORAGE PS
CANYON IS
CANYON IS | FSS
AAF
COOP
A
CAA | 70 12N
56 57N
61 13N
58 33N
58 33N | 148 28W
158 38W
149 52W
133 40W
133 40W | 25504 | 125
125
125
125
126 | CROOKED CREK
GALENA
GALENA
SHEMYA
NULATO | A
AFS
WBAS
WBAS
A | 61 52N
64 43N
64 43N
52 43N
64 43N | 158 15H
156 54H
156 54H
174 06E
158 04H | 26518
26501
26509
45715 | | 85
85
86
86 | KANAKANAK
KENAI
DILLINGHAM
NAKMEK
MARSHALL | A
A
F55
A | 59 DIN
60 34N
59 D3N
58 42N
61 51N | 158
31W
151 15W
158 31W
157 02W
161 43W | 26523
25512 | 128
128
130
130 | SHEMYA
SHEMYA
CATON ISLAND
CROOKED CREK
GALENA | HBAS
HSB
NF
CBBP
CAR | 52 43N
52 43N
54 25N
61 52N
64 43N | 174 06E
174 06E
162 28H
158 15H
156 54H | 45715
45715
25615
26509 | | 87
88
90
90 | VALDEZ
CAPE SPENCER
HAINES
KALSKAG | A
CG
A | 61 08N
56 12N
58 14N
51 27N | 146 21W
136 38W
135 27W
160 49W | 26442
25316
26323 | 130
131
131
131 | UMNAK
BETHEL
BETHEL
CAPE | SAWR
WBAS
WSB
AAF | 53 23N
60 47N
60 47N
53 23N | 167 54H
161 48H
161 48H
167 54H | 25621
26615
26615
25602 | | 90
91
91
91 | YAKUTAT
ANIAK
ANIAK | CAA
CAA
FAA
NS | 59 32N
61 35N
61 35N | 139 44H
159 32H
159 32H | 25339
26516
26516 | 131
132
132 | JUNEAU
SHEMYA | AFB
HBB
AAF
AFB | 53 23N
58 18N
52 43N
52 43N | 167 54H
134 24H
174 06E
174 06E | 25602
25324
45708
45708 | | 91
91
91 | ATTU
KENAI
KENAI | CAA
FAA | 52 50N
60 34N
60 34N
59 24N | 173 11E
151 15H
151 15H | 45709
26523
26523 | 132
132
134 | SHEMYA
TRINITY-UGAS
ANCHORAGE
ANCHORAGE | SAHR
CAA | 57 25N
61 13N | 157 44W
149 50W | 26409
26409 | | 92
92
92 | ATTU
PORT HEIDEN
PORT HEIDEN
ST PAUL IS | NS
A
SA
SA | 52 48N
56 57N
56 57N
57 07N | 173 10E
158 37H
158 37H
170 16H | 45709
25508
25508
25713 | 134
134
135
138 | ANCHORAGE
ANCHORAGE
GALENA
SHUNGNAK | LAHR
SAHR
AFS
CAA | 51 13N
61 13N
64 43N
66 54N | 149 50H
149 50H
156 54H
157 02H | 26409
26409
26501
26513 | | 93
93
93
94
95 | COLD BAY KALTAG SHEMYA FORT MORROW COUNCIL | SAHR
A
SAHR
AAF
A | 55 12N
64 20N
52 43N
56 57N
64 53N | 162 43H
158 45H
174 06E
158 37H
163 41H | 25624
45715
25504 | 139
140
140
141
143 | GALENA
CATON ISLAND
KOBUK
ANCHORAGE
CHIRIKOF | WBAS
NS
A
WBAS
NS | 64 43N
54 25N
65 54N
61 13N
55 55N | 156 54H
162 28H
156 52H
149 50H
155 35H | 26509
25612
26409
25505 | | 95
96
96
96
96 | SEWARD
COLD BAY
KETCHIKAN
ST PAUL IS
ST PAULS IS | SA
HBAS
FSS
HBO
AAF | 60 08N
55 12N
55 21N
57 07N
57 08N | 149 27H
162 43H
131 42H
170 16H
170 16H | 26438
25824
25325
25713
25705 | 145
147
148
148
149 | TANAGA IS
ANCHORAGE
ASI TANAGA
LAKE HOOD
GALENA | NS
WBAS
NS
LAWR
BFS | 51 45N
61 10N
51 40N
61 11N
64 44N | 178 02H
150 01H
178 00H
149 57H
156 56H | 25714
26451
25709
26501 | | 97
97
96
98
99 | ST MATTHEW
ST MATTHEW
COLD BAY
SITKA
COLD BAY | AAF
ASC
SAWR
NS
WBAS | 60 21N
60 29N
55 12N
57 03N
55 12N | 172 42H
172 42H
162 43H
135 21H
162 43H | 26701
25624
25307
25624 | 150
150
150
152
152 | BIG LAKE
CROOKED CREK
HOLY CROSS
ILIAMNA
ILIAMNA | SAWR
A
A
CAA
FAA | 61 32N
61 52N
62 10N
59 45N
59 45N | 149 50H
158 15H
158 45H
154 55H
154 55H | 26518
26521
25506
25506 | | 100
88
88
88 | COLD BAY
KANAKANAK
THORNBROUGH
THORNBROUGH
ANIAK | MSØ
SA
ARF
AFB
CAA | 55 12N
58 01N
55 12N
55 12N
61 35N | 162 43H
156 31H
162 43H
162 43H
159 32H | 25624
25603
25603
25515 | 152
153
153
153
156 | KODIAK
NULATO
SKWENTNA
SKWENTNA
WHITTER | SA
A
A
CAA | 57 48N
64 43N
61 58N
61 58N
60 46N | 152 24H
158 04H
151 12H
151 12H
148 41H | 25509
26514
26514 | | 100
100
100
100
100 | ANIAK
ANIAK
KING ISLAND
PINGO
SEMISOPOCHNO | COOP
SA
A
SAWR
BAF | 61 35N
61 35N
64 56N
70 02N
51 55N | 159 32H
159 32H
168 01H
147 43H
179 35E | 26516
26516
45707 | 158
158
158
158
166 | ANCHBRAGE
ANCHBRAGE
KALTAG
SKHENTNA
MATANUSKA | HBAS
HSB
AAF
A | 61 10N
61 10N
64 18N
61 58N
61 32N | 150 01H
150 01H
158 43H
151 12H
149 14H | 26451
26451
26502
26514
26448 | | 102
104
105 | PBRT HEIDEM
ADAK
ANCHBRAGE | CAA
NS
WBAS | 56 57N
51 57N
61 10N | 158 37H
176 36H
149 59H | 25508
25704
26451 | 175
175
175 | CAPE SARICHE
RUBY
TAKU LUDGE | CG
A | 54 36N
64 44N
58 33N | 164 56H
155 26H
133 41H | 25622 | | 106
106 | KENAI
KBDIAK | FAA
CAA | 60 34N
57 46N | 151 15W
152 19W | 26523
25509 | 176
176 | CAPE SARICHE
ELMENDORF | CG
AFB | 54 36N
61 15N | 164 56W
149 48W | 25622
26401 | | | l | ļ | | l | ! | | | l | l | I | 1 | | ELEV. | NAME | TYPE | LAT. | LONG. | MBAN
NUMBER | ELEV. | NAME | TYPE | LAT. | LONG. | HBAN
NUMBER | |---------------------------------|--|---------------------------------|--|--|---|---------------------------------|---|---|--|---|---| | 185
185
185
185
186 | CAPE HINCHIN
CAPE HINGHIN
KOKRINES
KOUGAROK
ILIAMNA | CG
CG
ARF
AAF
FAA | 60 14N
60 14N
64 54N
64 54N
59 45N | 146 39H
146 39H
154 40H
154 40H
154 55H | 26417
26417
26503
26614
25508 | 337
337
340
340
340 | UMIAT
UMIAT
MCGRATH
MCGRATH
UMIAT | SAWR
WBAS
WBAS
WSO
AFS | 69 22N
69 22N
62 58N
62 58N | 152 08H
152 08H
155 37H
155 37H
152 08H | 26508
26508
26510
26510
26537 | | 190
192
192
192
198 | ILIAMNA
AMCHITKA IS
ELMENDORF
ELMENDORF
PALMER | MBAS
AAF
AAF
AFB
A | 59 45N
51 24N
51 15N
51 15N
61 36N | 154 55W
179 16E
149 48W
149 48W
149 05W | 25508
45702
26401
26401
25331 | 341
350
351
351
351 | MCGRATH
STEVENS VILA
TALKEETNA
TALKEETNA
TALKEETNA | WBAS
A
CAA
FAA
WBAS | 62 58N
56 01N
62 18N
52 18N
62 18N | 155 37W
148 05W
150 05W
150 06W
150 06W | 26510
26449
26528
26528
26528 | | 198
200
202
202 | PALMER
HAYCBCK
SQUAW HARBOR
AMCHITKA IS
AMCHITKA IS | FRA
A
A
AAF
AFB | 51 36N
65 12N
55 15N
51 23N
51 24N | 149 05W
161 09W
160 33W
179 15E
179 18E | 25331
45702
45702 | 351
353
356
367
362 | TALKEETNA
NENANA
TALKEETNA
FRANKLIN BLK
NENANA | HSB
A
CAA
SAHR
A | 62 18N
64 33N
62 18N
68 43N
64 33N | 150 06H
149 05H
160 06H
148 41H
149 05H | 26528
26436
26528
26435 | | 203
206
210
215
217 | JUNEAU
ELMENDORF 2
NULATO
BIORKA IS
DAVIS | HBG
AFB
A
CAA
AAF | 58 18N
61 15N
64 43N
56 51N
51 53N | 134 254
149 484
158 044
135 324
176 394 | 25324
26452
25701 | 364
364
364
367
395 | NENAMA
NENAMA
NENAMA
NENAMA
MEDISE RUN | A
CAA
FAA
AAF
CBBP | 64 33N
64 33N
64 33N
64 33N
61 15N | 149 05W
149 05W
149 05W
149 05W
149 40W | 26435
26435
26435
26404 | | 220
220
221
221
221 | AMCHITKA IS
TANANA
TANANA
STONY RIVER
STONY RIVER | AFB
S
SA
A
SA | 51 23N
65 10N
65 10N
61 46N
61 46N | 179 15E
152 06W
152 06W
156 38W
156 38W | 45702
26528
26529
26527 | 400
400
400
406
410 | KULIK LAKE
BPHIR
RAMPART
CAPE ROMANZO
FORT YUKON | SAWR
A
COOP
AFS
A | 58 59N
63 10N
65 30N
61 47N
66 35N | 155 07H
156 33H
150 08H
166 02H
145 18H | 26633
26413 | | 225
228
230
230
234 | PALMER
SKHENTNA
PALMER
TANANA
TANANA | A
A
AFS
CAA | 61 36N
61 57N
61 36N
65 12N
65 10N | 149 05W
151 10W
149 07W
152 12W
152 06W | 25331
26514
25331
26504
26529 | 422
422
425
425
425 | FORT YUKON
FORT YUKON
FORT YUKON
FORT YUKON | A
SAWR
A
CAA
FAA | 66 35N
66 35N
86 35N
66 35N
66 35N | 145 18H
145 18H
145 18H
145 18H
145 18H | 26413
26413
26413
26413
26413 | | 234
235
237
240
240 | TANANA
CAPE NEWENHA
AMCHITKA IS
PALMER
TANANA | SA
AFS
SAUR
FAA
CAA | 65 10N
58 39N
51 23N
61 36N
65 10N | 152 06H
162 04H
179 15E
149 05H
152 06H | 28529
25623
25331
26529 | 425
430
432
434
435 | NIKBLAI
WEST FORK
FAIRBANKS
CAPE ROMANZO
FORT YUKON | COOP
COOP
FAA
AFS
A | 83 01N
65 28N
64 51N
61 47N
65 34N | 154 22W
148 40W
147 47W
166 02W
145 16W | 25533 | | 240
240
240
245
250 | TANANA
TANANA
TANANA
PALMER
NOXAPAGE | FRA
FSS
HBAS
A
AAF | 65 10N
65 10N
65 10N
61 36N
65 32N | 152 06H
152 06H
152 06H
149 07H
164 12H | 26529
26529
26529
25331
25606 | 440
440
442
443
450 | FAIRBANKS
FIVE MILE CP
FAIRBANKS
FAIRBANKS
NORA FEDERAL | HBAS
SAWR
HBAS
HBAS
SAWR | 64 49N
66 05N
64 50N
64 49N
69 34N | 147 52H
150 00H
147 43H
147 52H
148 45H | 26411
26411
26411 | | 250
251
257
258
258 | TAYLOR AMCHITKA IS HAINES ELMENDORF TIN CITY | A
AAF
CAA
AFB
AFS | 65 40N
51
24N
58 13N
61 15N
65 34N | 164 47H
179 16E
135 26H
149 46H
167 55H | 45702
25323
26401
26634 | 450
454
455
455
457 | NYAC
FAIRBANKS
FAIRBANKS
FAIRBANKS
FORT YUKON | SAWR
HBB
HBAS
HSB
AC | 61 00N
64 50N
64 49N
64 49N
66 33N | 159 59W
147 43W
147 52W
147 52W
145 12W | 26525
26411
26411
26411
26413 | | 264
265
268
269
270 | MANLEY H SPG
MANLEY HBT S
PORT ALSWORT
TIN CITY
DAHL CREEK | AAF
A
A
A | 65 00N
65 00N
60 12N
65 34N
66 56N | 150 38W
150 38W
154 18W
167 55W
156 52W | 26505
26524 | 460
464
464
484
484 | BIRCH ROAD
FAIRBANKS
LADD
FAIRBANKS
LADD | C00P
HB0
HB0
HB0
HB0
HB0 | 61 08N
64 50N
64 51N
64 50N
64 51N | 149 46H
147 36H
147 35H
147 43H
147 35H | 26411
26403
26411
26403 | | 271
271
273
275
275 | LAKE CLARK
TIN CITY
TIN CITY
HOT SPRINGS
PALMER | A
AFS
AFS
A | 60 17N
65 34N
65 34N
64 59N
61 36N | 154 17W
167 56W
167 55W
167 55W
150 40W
149 07W | 25634
26634
25331 | 496
500
500
500
500 | MTN VILLAGE
FAIRBANKS
HBG RIVER
SHUNGNAK
SUSIE 1 | AAF
SPL
A
SA
SAHR | 62 07N
64 50N
65 45N
66 54N
68 31N | 163 45H
147 43H
155 50H
157 07H
148 53H | 26635
26411
26513 | | 280
285
285
290
290 | PIGOT
MANLEY H SPG
SLEETMUTE
ANDREAFSKY
ANDREAFSKY | A
AAF
A
A
SAWR | 60 47N
64 58N
61 42N
62 04N
62 04N | 148 20W
150 38W
157 11W
163 18W
163 18W | 26505 | 537
539
542
543
545 | CLEAR STA A
EIELSON
CLEAR
CAPE NEWENHA
HUGHES | AFS
AFB
SAHR
AFS
A | 62 13N
64 39N
64 17N
58 40N
66 04N | 149 05H
147 04H
149 10H
162 10H
154 14H | 26408
26407
25623
26522 | | 298
300
300
300
303 | KISKA ISLAND
NONDALTON
PALMER
SUNSHIME LAK
FLAT | A | 51 59N
59 59N
61 36N
62 10N
62 27N | 177 34E
154 50W
149 08W
150 10W
150 00W | 45703
25331
26520 | 545
546
547
547
550 | PAINTERS CRK
CLEAR
EIELSON
EIELSON
LIVENGOOD | SAWR
SAWR
AAF
AFB
A | 57 10N
64 19N
64 39N
64 39N
65 35N | 157 26W
149 09W
147 04W
147 04W
148 29W | 26407
26407
26428 | | 303
308
309
315
325 | FLAT
TANALIAN PT
FLAT
NIKOLSKI
MANLEY HOT S | SA
A
A
AAF
A | 62 27N
60 13N
62 27N
52 55N
65 00N | 158 00H
154 22H
158 00H
168 58H
150 39H | 26520
26531
26520
26605
26524 | 552
556
557
560
569 | EIELSON
CURRY
IMURUK LAKE
CHALKYITSIK
EIELSON | AFB
AAF
COOP
AFB | 64 39N
62 37N
65 35N
66 38N
64 41N | 147 04H
150 02H
163 50H
143 43H
147 05H | 26407
26613
26407 | | 326
326
333
337
337 | FLAT
MCGRATH
MCGRATH
UMIAT
UMIAT | A
CAA
A
CAA
NS | 62 27N
62 58N
62 58N
69 22N
69 22N | 158 00W
155 37W
155 37W
152 08W
152 08W | 26520
26510
26510
26508
26506 | 572
560
560
581
600 | CHITINA
CLEAR
LIVENGOOD
CHITINA
RLATNA | A
SAWR
COOP
A
A | 61 32N
64 17N
65 32N
61 32N
66 34N | 144 27H
149 11H
148 31H
144 27H
152 44H | | | | | | | | | | | | | | | | ELEV. | NAME | TYPE | LAT. | LONG. | HBAN
NUMBER | ELEV. | NAME | TYPE | LAT. | LONG. | MBAN
NUMBER | |--------------------------------------|--|-----------------------------------|--|---|---|--------------------------------------|--|-----------------------------------|--|---|---| | 617
617
620
621
650 | KAVIK
KAVIK RIVER
VENETIE
COLLEGE
SAGHON | SAHR
SAHR
COOP
A
SAHR | 69 41N
69 41N
67 00N
64 52N
69 22N | 148 56H
146 56H
146 34H
147 50H
148 42H | | 1350
1410
1475
1489
1500 | HEALY
TACOTHA
HEALY
DIETRICH
GRUGSTAKE | A
A
SAHR
SAHR
A | 63 51N
63 00N
63 53N
67 41N
64 02N | 148 58W
156 04W
149 01W
149 44W
148 12W | 25447 | | 652
652
672
672
700 | BETTLES BETTLES BETTLES BETTLES CIRCLE | HBAS
HSB
CAA
FAA | 66 55N
66 55N
66 55N
66 55N
65 48N | 151 31H
151 31H
151 31H
151 31H
144 04H | 26533
26533
26533
26533
26446 | 1500
1503
1503
1503
1503 | STUYAHOK
FAREWELL
FAREWELL
FAREWELL
FAREWELL | A
CAA
FAA
HBAS
HSO | 62 10N
62 32N
62 32N
62 32N
62 32N | 161 50H
163 54H
153 54H
153 54H
163 64H | 26519
26519
26519
26519
26519 | | 700
701
701
701
705 | UPPER RUSSIA
MINCHUMINA
MINCHUMINA
MINCHUMINA
MINCHUMINA | | 60 21N
63 53N
63 53N
63 53N
52 55N | 150 06H
152 17H
152 17H
152 17H
158 47H | 26512
26512
26512
25626 | 1546
1554
1578
1579
1579 | TANACROSS TANACROSS GULKANA GULKANA | CAA
AAF
CAA
FAA
WAAS | 63 24N
63 24N
62 09N
62 09N
62 09N | 143 19H
143 19H
145 27H
145 27H
145 27H | 26440
26405
26425
26425 | | 705
711
725
730 | RUBY
UNALGA IS
BLAIR LK RNG
LIVENGOOD | CAA
NF
AF
A | 64 44N
53 56N
64 2DN
65 35N | 155 26W
166 10W
147 39W
148 29W | 25608
26460
26428 | 1579
1600
1713
1718 | GULKANA
MCCARTHY
NGRTHHAY
NGRTHHAY | WSB
SAWR
AF
CAA | 62 09N
61 26N
62 57N
62 57N | 145 27H
142 55H
141 56H
141 56H | 26425
26425
26412
26412 | | 750
806
821
621
634 | EAGLE
EAGLE
EAGLE
EAGLE
EAGLE | A
A
HB0 | 65 35N
64 46N
64 46N
64 46N | 144 47H
141 12H
141 12H
141 12H
141 12H | 26416
 26422
 26422
 26422
 26422 | 1718
1718
1728
1730
1735 | NORTHWAY NORTHWAY SPARREVOHN MCKINLEY PRK SPARREVOHN | FAA
HBAS
AFS
COOP
AFS | 62 57N
62 57N
61 06N
63 44N
61 06N | 141 56H
141 56H
155 34H
148 55H
155 34H | 26412
26412
26534
26429
26534 | | 834
835
837
840
640 | EAGLE
EAGLE
EAGLE
EAGLE
ROCK RIDGE | H80
A
A
C00P | 64 46N
64 46N
84 46N
64 47N
61 07N | 141 12W
141 12W
141 12W
141 12W
149 45W | 26422
26422
26422
26422 | 1736
1800
1800
1825 | SPARREVOHN JACK HADE TETLIN LAKE CHANDAL | AFS
A
A
A | 61 06N
64 07N
63 10N
67 30N | 155 34W
141 35W
142 32W
148 30W | 26534 | | 855
870
880
660 | BETTLES CENTRAL EKLUTNA LAKE EKULTNA LAKE | A
COOP
COOP | 65 54N
65 35N
61 24N
61 24N | 144 48H
149 09H
148 09H | 26517
26418 | 1837
1845
1875
1900
2000 | PUNTILLA CHANDALAR TONSINA LAKE CHANDAL CHICKEN | A
SAWR
COOP | 62 06N
67 30N
61 33N
67 30N
64 04N | 148 30W
148 30W
145 13W
148 30W
141 56W | 26526 | | 900
931
935 | RICHARDSON
TATALINA
COLLEEN
TATALINA
CIRCLE HOT S | AFB
CGGP
AFB
A | 64 17N
62 53N
67 44N
62 53N
65 29N | 145 214
155 574
142 284
155 574
144 364 | 26536
26536
26419 | 2050
2050
2092
2100
2100 | MCKINELY PRK
MCKINLEY PRK
MCKINLEY PRK
ANAKTUVUK
ANAKTUVUK | A
A
A
COOP | 63 39N
63 39N
63 43N
68 10N
68 10N | 148 48W
148 48W
148 58W
151 46W
151 46W | 26429
26429
26428 | | 935
939
946
948 | CIRCLE HBT S
TATALINA
INDIAN HTH
HAPPY VALLEY | SAUR
AFB
AFS
SAUR | 65 29N
82 54N
66 00N
69 10N | 144 36W
155 58W
153 42W
148 50W | 26419
26536
26535 | 2127
2128
2250
2260 | BROAD PASS
RAPIDS
ARCTIC VILAG
SHEEP MTN | A
COOP
A | 63 22N
63 32N
68 08N
61 48N | 149 02W
145 51W
145 32W
147 41W | 26439 | | 973
990
995
1000 | GILMORE CREK
CANYON VILAG
BIG DELTA
AUFEIS
CENTRAL | | 64 59N
67 09N
64 08N
69 09N
65 33N | 147 25W
141 45W
145 44W
148 35W
144 49W | 26415 | 2280
2295
2316
2316
2371 | SHEEP MTN
SNOWSHOE LAK
SHEEP MTN
SHEEP MTN
TYONE LAKE | SAHR
A
CAA
SAHR
A | 61 48N
62 02N
61 48N
61 48N
62 31N | 147 41H
148 40H
147 41H
147 41H
146 42H | 26439
26439
26439 | | 1000
1008
1038 | HAYES RIVER
BIRD CAPE
PBRT MOLLER
COPPER CTR | A
ARF
AFS
A | 61 59N
51 39N
56 00N | 152 05H
178 40E
160 31H
145 19H | 46705
25625 | 2405
2407
2410 | SUMMIT
SUMMIT
SNOWSHOE LAK | CAA
A
CAA | 63 20N
63 20N
62 02N | 149 08H
149 08H
146 40H | 26414
26414
26414 | | 1050
1053
1053
1075 | COAL CREEK PORT MOLLER COLD FT CAMP INDIAN MTN PORT MOLLER | A
AFS
SAMR
AFS | 65 16N
56 00N
67 03N
66 03N | 143 16H
160 31H
149 34H
153 45H | 25625
26535 | 2410
2410
2410
2420 | SUMMIT
SUMMIT
SUMMIT
SLANA | FAA
HBRS
HSB
A | 63 20N
63 20N
63 20N
62 43N | 149 08W
149 08W
149 08W
143 55W | 26414
26414
26414 | | 1105
1180
1190
1190 | PROSPECT CRK
WILD LAKE 2
WILD LAKE 2
WILK LAKE 2 | SAHR
COOP
COOP
COOP | 66 48N
67 33N
67 33N
67 33N | 150 38W
151 33W
151 33W
151 33W | 25625 | 2450
2450
2500
2500
2600 | LAKE LOUISE
MURPHY LAKE
GOOD PASTER
STAMPEDE
BOUNDARY | | 52 16N
68 38N
64 20N
63 44N
64 04N | 146 35H
148
34H
144 05H
150 22H
141 07H | 25416 | | 1200
1200
1210
1271
1272 | CHENA HOT SP
TANACROSS
FOREST IS
OLD MAN
OIG DELTA | COGP
A
CG
SAMR
AAF | 65 03N
63 24N
54 48N
67 27N
64 00N | 146 034
143 194
133 324
150 354
145 444 | 26440
26406 | 2665
2697
2980
3230
3300 | GALBRAITHE
PRXSON
GUNSIGHT
SUMMIT LAKE
LUCKY SHOT | A | 68 29N
63 03N
61 54N
63 08N
61 47N | 148 29W
145 27W
147 18W
145 32W
148 25W | | | 1273
1274
1274
1275
1275 | HEALY
BIG DELTA
BIG DELTA
BIG DELTA | SAHR
AF
CAA
CAA
FAA | 63 52N
64 00N
64 00N
64 00N
64 00N | 148 57W
145 44W
145 44W
145 44W
145 44W | 26415
26415
26415
26415 | 3335
3500
3600 | | A
CG | 68 11M
64 10M
61 47M
51 35M
70 15M | 149 25W
141 08H
149 18W
177 00W
148 57W | | | 1277
1290
1298
1300
1320 | DRIFTWOOD BY
WISEMAN
DRIFTWOOD BY
NO GRUB
OLD EDGERTON | A
AFS
A | 53 59N
67 26N
53 58N
64 50N
61 48N | 166 51W
150 13W
166 51W
145 58W
144 59W | 25515
26511
25515 | | KETCHIKAN
LIVENGBOD
BCEAN CAPE
BCEAN RANGER
SEDCO 706 | SAHR
CG
SAHR | 55 35N
65 35N
69 33N
55 32N
59 52N | 131 30W
148 29W
139 42W
166 57W
143 18W | | | | | | | | | | | | | | | | ELEV. | NAME | TYPE | LAT. | LONG. | MBAN
NUMBER | ELEV. | NAME | TYPE | LAT. | LONG. | HBAN
NUMBER | |-------|---------------------------|------------|------------------|--------------------|----------------|-------|------|------|----------|-------|----------------| | | SPRUCE CAPE
WEST KAVIK | CG
SAHR | 57 50N
70 03N | 152 19H
147 42H | : | , | • | : | <u>.</u> | | | | | | | | | : | | | | | | | | | | | | | ļ | 1 | | 1 | | ł | | 1 | | 1 | | | # BY LATITUDE | LAT. | NAME | TYPE | LONG. | MBAN
NUMBER | LAT. | NAME | TYPE | LONG. | MBAN
NUMBER | |------------------|------------------------------|--------------|--------------------|--------------------|------------------|----------------------------|--------------|--------------------|----------------| | 52 55N
52 53N | HOLTZ BAY
CAPE HRANGEL | AAF | 173 10E | 45704 | 68 DBN | ARCTIC VILAG | COOP | 145 32W | 26636 | | 52 50N | ALEXAI PT | NF
AFS | 172 31E
173 19E | 45713
45701 | 68 06N
87 45N | CAPE THOMPSO | SPL | 165 46H | 20030 | | 52 50M
52 50M | ATTU
ATTU | CB
NS | 173 11E
173 11E | 45712
45709 | 67 44N
67 41N | COLLEEN | COOP
SAMR | 142 28H
149 44H | | | 52 50N | ATTU | s | 173 11E | 45712 | 67 33N | HILD LAKE 2 | COOP | 151 33H | | | 52 48N
52 43N | ATTU
SHEMYA | HS
AAF | 173 10E
174 06E | 45709 | 67 33N | MILK LAKE 2 | COOP | 151 33W | ŀ | | 52 43N | SHEMYA | AFB | 174 DEE | 45708
45708 | 67 30N
67 30N | CHANDALAR
LAKE CHANDAL | A | 148 30W | | | 52 43N | SHEMYA | NS | 174 DBE | 45714 | 67 3DN | LAKE CHANDAL | CGGP | 148 30H | | | 52 43N
52 43N | SHEMYA
SHEMYA | SAHR
HBAS | 174 DEE
174 DEE | 45715
45715 | 67 27N
67 26N | GLD MAN
WISEMAN | SAHR | 150 35H | 26511 | | 52 43N | SHEMYA | HSO | 174 OSE | 45715 | 67 D9N | CANYON VILAG | COSP | 141 45H | 20311 | | 52 22N
51 59N | BULDIR IS
KISKA ISLAND | AAF | 175 58E
177 34E | 45705
45703 | 67 03N
67 00N | COLD FT CAMP
VENETIE | SAMR
COOP | 149 34H
146 34H | | | 51 59N | KISKA ISLAND | | 177 33E | 45710 | 66 56N | DAHL CREEK | A | 156 52H | | | 51 58N
51 55N | KISKA ISLAND
SEMISBPOCHNO | | 177 32E
179 35E | 45710
45707 | 66 55N
66 55N | BETTLES
BETTLES | CAA
FAA | 151 31W | 26533
26533 | | 51 39M | BIRD CAPE | AAF | 178 40E | 45705 | 66 55N | BETTLES | ₩BAS | 151 31W | 26533 | | 51 24N | AMCHITKA IS | AAF | 179 16E | 45702 | 88 55N | BETTLES | ₩5Ø | 151 31W | 26533 | | 51 24N
51 24N | AMCHITKA IS | AFB
NS | 179 18E
179 16E | 45702
45711 | 66 54N | BETTLES
KOBUK | CAA | 151 43H
156 52H | 26517 | | 51 23N | AMCHITKA IS | AAF | 178 15E | 45702 | 66 54N | SHUNGNAK | CAA | 157 D2W | 26513 | | 51 23N
51 23N | AMCHITKA IS
AMCHITKA IS | AFB
SAWR | 179 15E
179 15E | 45702 | 66 54N
66 52N | SHUNGNAK
KOTZEBUE | SA
SA | 157 07H
162 38H | 26513
26616 | | 71 21N | POINT BARROW | AFS | 156 394 | 27505 | 66 52N | KOTZEBUE | HBAS | 162 384 | 26616 | | 71 20N
71 20N | POINT BARROW
POINT BARROW | | 156 39H | 27506
27504 | 66 52N
66 50N | K9TZEBUE
NGBRVIK | W50
C00P | 162 38H
161 DDH | 26616 | | 71 20N
71 18N | PGINT BARROW
BARROW | | 156 24H
156 47H | 27501
27502 | 66 48N | PROSPECT CRK | SAWR | 150 38W | | | 71 18N | BARROM | WB0 | 156 47µ | 27502 | 66 38N | CHALKYITSIK | COOP | 143 434 | 20410 | | 71 18N | BARROM | HB0 | 156 46H | 27502 | 66 35N
66 35N | FORT YUKON
FORT YUKON | A
CAA | 145 18H
145 18H | 26413
26413 | | 71 18N
71 18N | BARROM
POINT BARROM | HS8 | 156 47H | 27502
27506 | 66 35N
66 35N | FORT YUKON | FAA
SAHR | 145 18H
145 18H | 26413
26413 | | 70 37N | HAINHRIGHT | A | 160 D4H | 27503 | 66 34N | ALATNA | A | 152 44H | 20713 | | 70 37N
70 23N | HAINHRIGHT
UGNU | SA
SAHR | 160 04W
148 50W | 27503 | 66 34N | FORT YUKON | A | 145 15H | | | 70 20N | HEST KUPARUK | SAUR | 149 18H | | 66 34N
66 33N | SELAWIK
FORT YUKON | A
AC | 160 01W
145 12W | 26413 | | 70 19N
70 15N | PRUDHOE BAY | SAHR | 148 33W | | 66 14N | SHISHAREF
FIVE MILE CP | SA
SAHR | 166 07H
150 00H | 26625 | | 70 15N | PRUDHBE BAY | SAHR | 148 20H | | 66 D4N | DEERING | A | 162 45W | | | 70 12N | DEADHORSE | FSS | 148 284 | | 66 Q4N | HUGHES | A | 154 14H | 26522 | | 70 12N
70 12N | DEADHORSE
DEADHORSE | FSS
SAHR | 148 27H | | 66 03N
66 01N | INDIAN MTN
STEVENS VILA | AFS
A | 153 45W
148 05W | 26535
26449 | | 70 08N | BARTER IS | AAF | 143 35H | 27 4 01 | 66 00N | INDIAN MTN | AF5 | 153 42µ | 26535 | | 70 08N
70 08N | BARTER IS
BARTER IS | AFB
MBAS | 143 36H
143 36H | 27401
27401 | 65 56N | CANDLE | Ą | 181 55H | 26619 | | 70 08N | BARTER IS | H50 | 143 38H | 27401 | 65 48N
65 45N | CIRCLE
HOS RIVER | A | 144 04H
155 50H | 26446 | | 70 04N
70 03N | KAD RIVER
WEST KAVIK | SAHR | 147 43H
147 42H | | 65 40N
65 37N | TAYLOR
WALES | A | 164 47⊭
168 03⊭ | 26618 | | 70 02N | PINGO | SAWR | 147 43H | | 65 37N | WALES | AAF | 168 03H | 26509 | | 69 45N | POINT LAY | SA | 163 D3W | 26624 | 65 37N | HALES | CAA | 168 Q3W | 26518 | | 69 43N
69 41N | FRANKLIN BLK
KAVIK | SAUR | 148 41H
146 56H | | 65 37N
65 37N | WALES
WALES | SA
SAHR | 166 03W | 26618
26618 | | 69 41N | KAVIK RIVER | SAHR | 146 554 | | 65 37N | HALES | HBAS | 168 03H | 26618 | | 69 34N | NGRA FEDERAL
SUSIE 1 | SAHR
SAHR | 148 45µ
148 53µ | | 65 35N | CENTRAL
CENTRAL | A | 144 48H
144 47H | 26418
25418 | | 69 22N | SAGHON | SAHR | 148 424 | 9 | 65 35N | IMURUK LAKE | AAF | 163 50⊭ | 26613 | | 68 22N
68 22N | | AFS
CAA | 152 08H
152 08H | 26508 | 65 35N
65 35N | LIVENGOOD | A
SAHR | 148 29H
148 29H | 26428 | | 88 22N | UMIAT | NS | 152 OBX | 26505 | 65 34N | TIN CITY | A | 167 55W | | | 89 22N
69 22N | UMIAT
UMIAT | SAHR
SAHR | 152 DBH
152 O3H | 26508
26508 | 65 34N | TIN CITY
CENTRAL | AFS
COOP | 167 55H | 26534 | | 69 22N | UMIAT | MBA5 | 152 08W | 28508 | 65 32N | LIVENGOOD | COOP | 148 31W | | | 69 10N | HAPPY VALLEY | | 146 50W | | 65 32N | NOXAPAGE | AAF | 164 12H | 26606 | | 69 D9N
68 53N | AUFEIS
CAPE LISBURN | SAWR
AFS | 149 35H
166 08H | 26631 | 65 3DN
65 29N | RAMPART
CIRCLE HØT S | COOP | 150 08H
144 38H | 26419 | | 68 52N | CAPE LISBURN | AFS | 186 08W | 26631 | 65 29N | CIRCLE HOT 5 | SAHR | 144 36H | 26419 | | 68 38N | GALBRAITHE | SAHR | 149 34W
149 29W | | 65 28N
65 27N | MEST FORK
AMERICAN RVR | COGP
AAF | 148 40H
165 46H | 26611 | | 56 21N | POINT HOPE | AAF | 155 47W | 25501 | 65 18N | | AAF | 168 55H | 26607 | | 68 20N
68 11N | POINT HOPE
ATIGUN | A
SAWR | 166 48H
149 25H | 26623 | 65 16N
65 16N | TELLER | A | 143 16H
166 21H | 26626 | | 68 10N
68 10N | ANAKTUVUK
ANAKTUVUK | A
C80P | 151 46H
151 46H | | 65 15N
65 15N | PORT CLARENC
PT SPENCER | CG
AAF | 166 52H
166 21H | 26615 | LAT. | NAME ! | TYPE | LONG. | MBAN
NUMBER | LAT. | NAME | TYPE | LONG. | MBAN
NUMBER | |--|---|----------------------------------|--|---|--|---|-----------------------------------|---|---| | 65 12N
65 12N | HAYCOCK
TANANA
TANANA
TANANA
TANANA | AFS
CAA
FAA | 161 09H
152 12H
152 06H
152 06H
152 06H | 26504
26529
26529
26529 | 64 10N
64 08N
64 07N
64 04N
64 04N | BIG DELTA
JACK HADE | A
A
A
A | 141 08H
145 44H
141 35H
141 07H
141 56H | 26415
26416 | | 65 10N
65 10N
65 10N
65 09N
65 05N |
TANANA
TANANA
TANANA
IGLOO
PILGRIM SPRG | SA
WBAS
A | 152 06W
152 06W
152 06W
152 06W
165 04W
164 58W | 28529
26529
26529 | 64 02N
64 02N
64 00N
64 00N
64 00N | EGAVIK
GRUBSTAKE
BIG DELTA
BIG DELTA
BIG DELTA | A
A
AAF
AF
CAA | 160 554
148 124
145 444
145 444
145 444 | 26406
26415
26415 | | 65 03N
65 00N
65 00N
64 59N
64 59N | CHEMA HOT SP
MANLEY H SPG
MANLEY HOT S
GILMORE CREK
HOT SPRINGS | | 146 03W
150 39W
150 39W
147 25W
150 40W | 26505
2652 4 | 64 00N
63 54N
63 53N
63 53N
63 53N | MINCHUMINA
HEALY
MINCHUMINA
UNALAKLEET
UNALAKLEET
MINCHUMINA | FAA
AAF
SAWR
CAA
FAA | 145 44W
160 47W
149 01W
152 17W
152 17W | 26415
26608
26512
26512 | | 64 59N
64 59N
64 57N
64 57N
64 56N | MANLEY H SPG
MANLEY HOT S
KOYUK
KOYUK
KING ISLAND | AAF
A
A
A | 150 38W
150 40W
161 08W
161 06W
168 01W | 26505
26524 | 63 53N
63 53N
63 53N
63 53N
63 53N | MINCHUMINA
UNALAKLEET
UNALAKLEET
UNALAKLEET | HBAS
CAA
FAA
HBAS | 152 17W
160 48W
160 48W
160 48W
160 48W | 26512
26627
26627
26627
26627 | | 64 54N
64 54N
64 53N
64 52N
64 52N | KBYUK
COLLEGE
KBUGAROK
KBKRINES | AAF
AAF
A
A | 154 40W
154 40W
163 41W
147 50W
161 06W | 26503
26614
26602 | 63 53N
63 52N
63 51N
63 51N
63 51N | UNALAKLEET
HEALY
GAMBELL
GAMBELL
GAMBELL | USB
SAUR
SA
SAUR
UBAS | 16D 48H
148 57H
171 36H
171 36H
171 38H | 26627
26703
26703 | | 64 51N
64 51N
64 50N
64 50N
64 50N | FAIRBANKS
LADD
FAIRBANKS
FAIRBANKS
FAIRBANKS | FAA
AAB
SPL
HBAS
HBO | 147 47W
147 35W
147 43W
147 43W
147 43W | 26403
26411
26411
26411 | 63 51N
63 46N
63 44N
63 44N
63 43N | HEALY
GAMBELL
MCKINLEY PRK
STAMPEDE
MCKINLEY PRK | A
SAHR
COOP
SAHR
A | 148 58W
171 45W
148 55W
150 22W
148 58W | 26447
26429
26429 | | 64 50N
64 50N
64 49N
64 49N
84 47N | FAIRBANKS
NG GRUB
FAIRBANKS
FAIRBANKS
EAGLE | HBB
HBBS
HSB
A | 147 36W
145 58W
147 52W
147 52W
141 12W | 26411
26411
26411
26422 | 63 42N
63 41N
63 39N
63 39N
63 32N | SAVOONGA
SAVOONGA
MCKINELY PRK
MCKINLEY PRK
RAPIDS | A
A
A
A | 170 28W
170 26W
148 48W
148 46W
145 51W | 26429
26429 | | 54 46N
54 46N
64 44N
84 44N
64 44N | EAGLE
EAGLE
GALENA
RUBY
RUBY | A
WBC
AFS
A
CAA | 141 12H
141 12H
156 56H
155 26H
155 28H | 26422
26422
26501 | 63 30N
63 24N
63 24N
63 24N
63 22N | ST MICHAEL
TANACROSS
TANACROSS
TANACROSS
BROAD PASS | SAWR
A
AAF
CAA
A | 162 00H
143 19H
143 19H
143 19H
149 02H | 26440
26405
26440 | | 64 43N
64 43N
64 43N
64 43N
64 43N | GALENA
GALENA
GALENA
MOSES POINT
NULATO | AFS
CAA
WBAS
AAF
A | 156 54W
156 54W
156 54W
162 05W
158 04W | 26501
26509
26509
26603 | 63 20N
63 20N
63 20N
63 20N
63 19N | SUMMIT
SUMMIT
SUMMIT
SUMMIT
NORTHEAST CA | CAA
FAA
HBAS
HSB
AFS | 149 08H
149 08H
149 08H
149 08H
168 58H | | | 64 42N
64 42N
64 42N
64 41N
64 41N | MOSES POINT
MOSES POINT
MOSES POINT
EIELSON
WHITE MOUNT! | AC
CAA
FAA
AFB | 162 03H
162 03H
162 03H
147 05H
163 24H | 26620
26620
26620
26407
26407 | 63 19N
63 10N
63 10N
63 08N
63 03N | MORTHEAST CA
BPHIR
TETLIN
SUMMIT LAKE
PRXSON | AFS
A
A
A | 168 56H
156 33H
142 32H
145 32H
145 27H | | | 64 40N
64 39N
64 39N
64 35N
64 33N | ELIM
EIELSON
EIELSON
SOLOMON
GOLOVIN | A
AAF
AFB
A | 162 06H
147 04H
147 04H
164 24H
163 01H | 26407
26407
26629
26628 | 63 01N
63 00N
62 58N
62 58N
62 58N | NIKBLAI
TACBTNA
MCGRATH
MCGRATH
MCGRATH | COOP
A
A
CAA
HBAS | 154 224
156 044
155 374
155 374
155 374 | 26510
26510 | | 64 33N
64 33N
64 33N
64 33N
64 31N | MENANA
MENANA
MENANA
MENANA
MOME | A
AAF
CAA
FAA
AAF | 149 05H
149 05H
149 05H
149 05H
165 26H | 26404
26435
26436 | 62 58N
62 57N
62 57N
62 57N
62 57N | NBRTHWAY
NBRTHWAY
NBRTHWAY | HSB
AF
CAA
FAA
HBAS | 155 37k
141 56k
141 56k
141 56k | 26412
26412
26412 | | 64 30N
64 30N
64 30N
64 29N
64 29N | NOME | SPL
WBAS
WS0
S | 165 24W
165 26W
165 26W
165 24W
165 21W | 26617
26617
26617 | 62 54N
62 53N
62 46N
62 43N
62 37N | TATALINA
EMMONAK
SLANA | AFB
SAMR
A | 155 598
155 578
164 308
143 558
150 028 | 1 26536
1 | | 64 29N
64 20N
64 20N
64 20N
64 19N | BLAIR LK RN
GOOD PASTER
KALTAG | | 165 24h
147 39h
144 05h
158 45h
149 09h | 54050
 | 62 32N
62 32N
62 32N
62 32N | FAREHELL
FAREHELL
FAREHELL | CAA
FAA
HBAS
HSB
WSB | 153 541
153 541
153 541
153 541
153 53 | 26519
4 26519
4 26519 | | 64 18N
64 18N
64 17N
64 17N
64 17N | CLEAR
KALTAG
CLEAR
CLEAR | SAHR
AAF
SAHR
SAHR | 158 431 | 4 26502 | 62 31M
62 30M
62 30M
62 27M
62 27M | AKULURAK
AKULURAK
FLAT | A
AAF
A
SA | 146 42
164 25
164 25
158 00
158 00 | H 26610
H 26520 | | | | | | | | | | | | | LAT. | NAME | TYPE | LONG. | HBAN
NUMBER | LAT. | NAME | TYPE | LONG. | NBAN
NUMBER | |--|--|-------------------------------------|---|---|--|--|------------------------------------|---|----------------------------------| | 62 18N
62 18N
62 18N
62 18N
62 18N | LAKE LOUISE
TALKEETHA
TALKEETHA
TALKEETHA
TALKEETHA | A
CAA
FAA
HBAS
HS@ | 146 35W
150 06W
150 06W
150 06W
150 06W | 26528
26528
26528
26528 | 61 10N
61 10N
61 10N
61 09N
61 08N | ANCHORAGE
ANCHORAGE
ANCHORAGE
FIRE ISLAND
BIRCH ROAD | HBAS
HBAS
HSB
AFS
CBBP | 150 01H
148 58H
150 01H
150 14H
149 46H | 26451
26451
26451
26507 | | 62 13N
62 10N
62 10N
62 10N
62 09N | CLEAR STA A
HØLY CRØSS
STUYAHØK
SUNSHINE LAK
GULKANA | AFS
A
A
COOP
CAA | 149 05H
159 45H
161 50H
150 10H
145 27H | 26406
26521
28425 | 61 08N
61 08N
61 07N
61 07N
61 07N | VALDEZ
VALDEZ
ROCK RIDGE
VALDEZ
VALDEZ | A
COGP
A
S | 146 21W
146 15W
149 45W
146 16W
146 16W | 26442
26442
26442
26442 | | 62 09N
62 09N
62 09N
62 07N
62 07N | GULKANA
GULKANA
GULKANA
MT VILLAGE
MT VILLAGE | FAA
HBAS
HSB
SA
SA | 145 27H
145 27H
145 27H
163 45H
163 43H | 26426
26425
26425
26621
28621 | 61 06N
61 02N
61 00N
60 52N
60 51N | SPARREYOHN
TYONEK
NYAC
AKIAK
PORTAGE | AFS
A
SAWR
COOP
A | 155 344
151 114
159 594
161 234
148 594 | 26534
26525
26437 | | 62 07N
62 06N
62 04N
62 04N
62 04N | MTN VILLAGE
PUNTILLA
ANDREAFSKY
ANDREAFSKY
ST MARYS | AAF
A
SAHR
COOP | 163 45µ
152 45µ
163 18µ
163 18µ
163 11µ | 26635
26526 | 60 48N
60 48N
60 47N
60 47N
60 47N | BETHEL
DOLLY VARDEN
BETHEL
BETHEL
BETHEL | HBD
CG
HBAS
HBAS
HBAS | 161 45H
151 38H
161 48H
161 43H
161 48H | 26615
26615
26615
26615 | | 52 02N
61 59N
61 58N
61 58N
61 58N | SNOWSHOE LAK
HAYES RIVER
COPPER CTR
SKWENTHA
SKWENTHA | A
A
A
CAA | 146 40W
152 05W
145 18W
151 12W
151 12W | 28514
26514 | 60 47N
60 46N
60 46N
60 35N
60 34N | PIGOT
NORTH DUTCH
WHITTER
DRIFT RIVER
KENAI | A
CAA
A
SAWR
A | 148 20H
147 48H
148 41W
152 09H
151 15H | 26436
26523 | | 61 57N
51 54N
61 52N
61 52N
61 51N | SKHENTNA
GUNSIGHT
CROOKED CREK
CROOKED CREK
MARSHALL | | 151 10H
147 18H
158 15H
158 15H
161 43H | 26514
26518 | 60 34N
60 34N
60 32N
60 32N
60 31N | KENAI
KENAI
CORDOVA
TOKSOOK
CORDOVA | CAA
FAA
S
SAHR
S | 151 15W
151 15W
145 42W
165 07W
146 36W | 26523
26523
26410 | | 61 48N
61 48N
61 48N
61 48N
61 47N | GLD EDGERTON
SHEEP MTN
SHEEP MTN
SHEEP MTN
CAPE ROMANZO | A
CAA
SAWR | 144 59H
147 41H
147 41H
147 41H
166 02H | 26439
26439
26439
26533 | 60 30N
60 30N
60 30N
60 29N
60 29N | CORDOVA
CORDOVA
CORDOVA
CORDOVA | AF
FAA
WBAS
AAF
A | 145 30H
145 30H
145 30H
145 30H
146 36H | 26410
26410
26410
26402 | | 61 47N
61 47N
61 47N
61 46N
61 46N | CAPE ROMANZO
INDEPENDENCE
LUCKY SHOT
STONY RIVER
STONY RIVER | | 165 52W
149 18W
149 25W
156 38W
156 38W | 26633
26627 | 60 29N
60 28N
60 23N
60 23N | NUNIVAK
NUNIVAK
SULDUTNA
ST MATTHEW | ASC
SAUR
A
ASC
SA | 172 42W
151 02W
166 12W
166 12W
166 12W | 26622
26622
26622 | | 61 42N
61 36N
61 36N
61 36N
61 36N | SLEETMUTE
GHOGAMUTE
PALMER
PALMER
PALMER
PALMER | 6 6 6 6 | 157 11W
161 54W
149 06W
149 07W
148 05W | 25331
25331
25331 | 50 21N
60
21N
60 19N
60 19N
60 17N | ST MATTHEW
UPPER RUSSIA
KASILOF
KASILOF
LAKE CLARK | AAF
SAMR
A
A | 172 42W
150 05W
151 17W
151 16W
154 17W | 26701 | | 61 36N
61 35N
61 35N
61 35N
61 35N | PALMER
ANIAK
ANIAK
ANIAK
ANIAK | FAA
CAA
CAAP
FAA
SA | 149 05µ
159 32µ
159 32µ
159 32µ
159 32µ | 25331
26516
26518
26518
26516 | 60 14N
60 14N
60 13N
60 12N
60 12N | CAPE HINGHIN
TANALIAN PT | CG
CG
A
AAF
A | 146 39#
146 39#
154 22#
166 06#
154 18# | 26417
26417
26531
26605 | | 61 33N
61 32N
61 32N
61 32N
61 30N | TONSINA
BIG LAKE
CHITINA
MATANUSKA
HOOPER | SAUR
SAUR
A
A
SAUR | 145 134
149 504
144 274
148 144
166 064 | 26 44 8 | 60 08N
60 08N
60 07N
60 07N
60 05N | SEHARD
SEHARD | SA
SAWR
A
SA | 149 27H
149 25H
149 27H
149 27H
142 30H | 26438
26438
26438
26445 | | 61 27N
51 26N
61 24N
61 24N
61 15N | KALSKAG
MCCARTHY
EKLUTNA LAKE
EKULTNA LAKE
ANCHBRAGE | A
SAUR
COGP
COOP
COOP | 160 48µ
142 55µ
149 09µ
143 09µ
148 51µ | | 60 05N
60 05N
59 59N
59 59N
59 53N | YAKATAGA
ICY BAY | CAA
FAA
SAWR
A | 142 30H
142 30H
141 48H
154 50H | 26445
26445 | | 61 15N
61 15N
61 15M
61 15N
61 14N | | AAF
AFB
AFB
COOP
COOP | 149 48H
149 48H
149 48H
149 40H
149 52H | 26401
26401
26452 | 59 52N
59 48N
59 45N
59 45N
59 45N | CAPE ST ELIA
ILIAMNA
ILIAMNA | SAWR
CG
CAA
FAA
WBAS | 154 55H | 25401
25506
25506
25506 | | 61 13N
61 13N
61 13N
61 13N
61 13N | ANCHURAGE
ANCHURAGE
ANCHURAGE | CAA
COOP
FAA
LAWR
S | 149 52W
149 50W | 26409
26409
26409 | | ILIAMNA
HOMER
HOMER | SAWR
A
A
CAA
FAA | 151 30H | 25506
25507
25507
25507 | | 61 13N
61 13N
61 13N
61 13N
61 11N | ANCHBRAGE
ANCHBRAGE
ANCHBRAGE PS | SAMR
MBAS
MBO
COOP
LAMR | | 26409
26409 | 59 38N
59 33N
59 32N | HOMER
OCEAN CAPE
YAKUTAT | CAA | 151 30H
139 42H
139 44H | 25507
25507
25339
25302 | | | | | | | | | | | | | LAT. | NAME | TYPE | LONG. | HBAN
NUMBER | LAT. | NAME | TYPE | LONG - | HBAN
NUMBER | |--|---|----------------------------------|---|---|--|---|--------------------------------|---|---| | 59 31N
59 31N
59 28N
59 28N
59 27N | YAKUTAT
YAKUTAT
MIDDLETON IS
SKAGWAY
MIDDLETON IS | HBAS
HSU
CAA
AFS | 139 40H
139 40H
146 19H
135 18H
146 19H | 25339
25338
25402
25403
25403 | 57 09N
57 09N
57 08N
57 07N
57 07N | ST PAUL IS
ST PAUL IS
ST PAULS IS
ST PAUL IS
ST PAUL IS | HBAS
HSB
AAF
NS
S | 170 13H
170 13H
170 16H
170 16H
170 16H | 25713
25713
25705
26712
25713 | | 59 27N
59 27N
59 26N
59 25N
59 24N | SKAGWAY
SKAGWAY
SELDOVIA
AUGUSTINE IS
KLUKWAN | R .
RAF
SAUR
A
R | 135 19W
135 19W
151 42W
153 25W
135 54W | 25335
25303 | 57 07N
57 07N
57 07N
57 04N
57 04N | ST PAUL IS
ST PAUL IS
ST PAUL IS
SITKA
SITKA | SA
SPL
WBG
CAA
FAA | 170 15H
170 16H
170 16H
135 21H
135 21H | 25713
25713
25713
25733
25333 | | 59 22N
59 14N
59 14N
59 13N
59 03N | BRUIN BAY
HAINES
HAINES
HAINES
DILLINGHAM | CAA
A
CAA
FSS | 153 594
135 274
135 264
135 264
158 314 | 25323
25232
25323
25512 | 57 03N
57 03N
57 03N
56 58N
56 57N | SITKA
SITKA
SITKA
KAKE
ALITAK | A
NS
SPL
A
A | 135 20W
135 21W
135 20W
133 57W
154 10W | 25333
25307
25334
25512 | | 59 D3N
59 D2N
59 D1N
59 D1N
59 D1N | DILLINGHAM
KOGGIUNG
KANAKANAK
KANAKANAK
PLATINUM | 564R
6
6
6
6
6 | 158 27H
156 20H
158 31H
158 31H
161 47H | 25513
25613 | 56 57N
56 57N
56 57N
56 57N
56 57N | FORT MORROW
PORT HEIDEN
PORT HEIDEN
PORT HEIDEN
PORT HEIDEN | AAF
A
AAF
CAA
SA | 158 37W
158 37W
158 38W
158 37W
158 37W | 25504
25508
25504
25508
25508 | | 59 01N
58 59N
58 58N
58 42N
58 41N | PLATINUM
KULIK LAKE
ELDRED ROCK
NAKNEK
KING SALMON | AAF
SAWR
CG
A
WBAS | 161 47µ
155 07µ
135 13µ
157 02µ
156 39µ | 25504
25318
25503 | 56 55N
56 55N
56 51N
56 51N
56 40N | ALITAK
ALITAK
BIGRKA IS
BIGRKA IS
PETERSBURG | NF
NS
CAA
CG
A | 154 15H
154 15H
135 32H
135 33H
132 57H | 25512
25502
25329 | | 58 41N
58 41N
58 41N
58 40N
58 40N | KING SALMON
NAKNEK
NAKNEK
CAPE NEWENHA
NAKNEK | MSB
AAF
AFB
AFS
AAF | 156 39W
156 39W
156 39W
162 10W
156 45W | 25503
25503
25503
25623 | 56 49N
56 33N
56 28N
56 28N
56 23N | PETERSBURG
SITKINAK
LEVEL ISLAND
WRANGELL'
LITTLE PORT | CAA
CG
A
A
A | 132 57H
154 08H
133 06H
132 23H
134 38H | 25328
25338
25327 | | 58 40N
58 39N
58 33N
58 33N
58 33N | NAKNEK
CAPE NEWENHA
CANYON IS
CANYON IS
SENTINEL IS | CAA
AFS
A
CAA
CG | 155 45H
162 04H
133 40H
133 40H
134 55H | 25623 | 56 15N
56 03N
56 00N
56 00N
56 00N | PORT ALEXAND
LINCOLN ROCK
CAPE DECISIO
COFFMAN COVE
PORT MOLLER | A
CG
CG
A
AFS | 134 39H
132 46H
134 08H
132 50H
160 31H | 25348
25326
25315
25625 | | 58 33N
58 27N
58 25N
58 25N
58 25N | TAKU LODGE
GLACIER
EXCURSION IN
GUSTAVUS
GUSTAVUS | A
COOP
A
A
CAA | 133 41W
135 53H
135 26W
135 42W
135 42W | 25322
25322 | 55 58N
55 55N
55 54N
55 54N
55 54N | CAPE POLE
CHIRIKOF IS
CHIRIKOF IS
HYDER | A
NS
NF
SAWR
A | 133 48H
155 35H
155 34H
156 34H
130 01H | 25505
25511
25511 | | 58 25N
58 25N
58 25N
58 22N
58 22N | GUSTAVUS
GUSTAVUS
PT RETREAT
JUNEAU
JUNEAU | FAA
SAHR
CG
WBAS
WS0 | 135 42H
135 44H
134 57H
134 35H
134 35H | 25322
25322
25330
25309
25309 | 55 35N
55 32N
55 29N
55 27N
55 24N | KETCHIKAN
BCEAN RANGER
CRAIG
GUARD ISLAND
AMAK ISLAND | CG
SAMR
A
CG
AF | 131 30H
166 57H
133 D9H
131 53H
163 06H | 25317
25320
25609 | | 58 19N
58 18N
58 18N
58 15N
58 12N | ANNEX CREEK
JUNEAU
JUNEAU
FUNTER BAY
CAPE SPENCER | A
WBO
WBO
A
CG | 134 06W
134 25W
134 24W
134 54W
136 38W | 25311
25324
25324
25316 | 55 23N
55 21N
55 21N
55 21N
55 20N | BEAVER FALLS
KETCHIKAN
KETCHIKAN
KETCHIKAN
KETCHIKAN | A
FSS
SA
WBO
FSS | 131 28H
131 42H
131 39H
131 39H
131 40H | 25313
25325
25325
25325
25325 | | 58 12N
58 10N
58 10N
58 09N
58 07N | ELFIN COVE
PLEASANT IS
SISTER IS
PORT ALTHORP
HOOMAH | A A A | 136 40H
135 30H
135 15H
136 22H
135 27H | 25340
25341 | 55 20N
55 20N
55 20N
55 20N
55 20N | KETCHIKAN
KETCHIKAN
SAND PBINT
SAND PBINT
SAND PBINT | SA
SAWR
CAA
NF
S | 131 39H
131 34H
160 30H
160 30H
160 30H | 25325
25325
25617
25617
25617 | | 57 50N
57 48N
57 47N
57 46N
57 46N | SPRUCE CAPE
KBDIAK
TENAKEE
KBDIAK
KBDIAK | CG
SA
A
CAA
NF | 152 18W
152 24W
135 12W
152 19W
152 22W | 25509
25336
25509
26508 | 55 20N
55 15N
55 13N
55 12N
55 12N | SAND POINT
SQUAW HARBOR
WOSNESSENSKI
COLD BAY
COLD BAY | | 160 30H
160 33H
161 21H
162 43H
162 43H | 25617
25624
25624 | | 57 45N
57 45N
57 45N
57 44N
57 41N | KBDIAK
KBDIAK
KBDIAK
KBDIAK
KIMSHAN | NAF
NF
H50
NAF
A | 152 30W
152 31W
152 30W
152 30W
136 06W | 25501
25508
25501
25501 | 55 12N
55 12N
55 12N
55 12N
55 11N | COLD BAY
HYDABURG
THORNBROUGH
THORNBROUGH
GRAVINA | HSB
A
AAF
AFB
A | 162 43W
132 49W
162 43W
162 43W
131 49W | 25624
25603
25603 | | 57 37N
57 36N
57 34N
57 31N
57 30N | PILOT POINT
RADIOVILLE
KANATAK
ANGOON
ANGOON | A A A A | 157 34H
136 09H
156 02H
134 35H
134 35H | 25514
25332
25310
25310 | 55 06N
55 02N
55 02N
55 02N
55 02N | MARY ISLAND
ANNETTE
ANNETTE
ANNETTE
ANNETTE IS | CG
A
HBAS
HSB
AAF | 131 11H
131 34H
131 34H
131 34H
131 35H | 25308
25308
25308
25301 | | 57 27N
57 26N
57 22N
57 16N
57 10N | FAIRWAY IS
TRINITY-UGAS
WIDE BAY
FIVE FINGER
PAINTERS CRK | SAHR
CG | 134 52H
157 44H
156 25H
133 37H
157 26H | 25319 | 54 48N
54 48N
54 35N
54 25N
54 25N | FOREST IS
TREE POINT
CAPE SARICHE
CATON ISLAND
CATON ISLAND | NF | 133 32H
130 56H
164 56H
162 28H
162 28H | 25337
25622
25615
25612 | | | | | | | | | | | | | LAT. | NAME | TYPE | LONG. | HBRN
NUMBER | LRT. | ı | NAME | TYPE | LONG | HBAN
NUMBER | |--|--|-------------------------------|---
---|---------|---|------|------|------|----------------| | 53 59N
53 59N
53 58N
53 54N
53 54N | DRIFTHOOD BY
DRIFTHOOD BY
UNALGA IS
DUTCH HARBOR
DUTCH HARBOR | AFS
NF
AFS | 166 51H
166 51H
165 10H
166 32H
166 32H | 25515
25515
25608
25620
25611 | <u></u> | | | | | | | 53 53N
53 53N
53 53N
53 53N
53 53N | DUTCH HARBOR
DUTCH HARBOR
DUTCH HARBOR
DUTCH HARBOR
DUTCH HARBOR | NF
NS
SA | 166 32W
168 32W
166 32W
166 32W
166 32W | 25614
25616
25611
25614
25614 | | | | | | | | 53 32N
53 31N
53 23N
53 23N
53 23N | UMNAK ISLAND
REINDEER PAS
CAPE
CAPE
UMNAK | | 167 47H
187 55H
167 54H
187 54H
167 54H | 25610
25606
25602
25602
25621 | | | | | | | | 52 57N
52 57N
52 55N
52 55N
52 50N | nikolski
Nikolski
Nikolski
Nikolski
Chudinadak | A
AAF
AFS
AAF | 168 52W
168 51W
168 58W
168 47W
169 50W | 25605
25601 | | | | | | | | 52 23N
52 14N
52 13N
52 12N
52 10N | SEGUAM
ATKA
ATKA ISLAND
ATKA
ATKA | AAF
AAF
A | 172 25H
174 13H
174 12H
174 20H
174 12H | 25703
25710
25708
25715
25715 | | | | | | | | 52 10N
51 57N
51 53N
51 53N
51 53N | ADAK | SAHR
NS
AAF
NS
NS | 174 12H
176 36H
176 39H
176 39H
176 38H | 25715
25704
25707
25704
25704 | | | | | | | | 51 53N
51 53N
51 52N
51 48N
51 45N | DAVIS
DAVIS
ADAK
KANAGA BAY
TANAGA IS | AAF
AFB
NS
NS | 176 39H
176 39H
176 39H
177 15H
178 02H | 25701
26701
25704
25711
26714 | | | | | | | | 51 43N
51 40N
51 35N
51 33N | KANAGA BAY
ASI TANAGA
ADAK
BGL IUGA | NS
NS
CG
AAF | 177 15H
178 00H
177 00H
178 48H | 25711
25709
25702 | i. | ;
; | ## QUARTERLY REPORT Research Unit 497 Reporting Period 1 April 1977 30 June 1977 ### ALASKAN DATA PROCESSING FACILITY Edgar F. Law 30 June 1977 ## SUMMARY ## Travel | Juneau | 6-7 June | |---------------|------------| | Lake Quinault | 12-17 June | | Bluff | 27-30 June | | Number of Decision | | |---|-----| | Number of Principal Investigator - Coding Forms | 8 | | Number of File Types - Coding Forms | 9 | | Period of record - 1975 - 1977 | | | Total Forms Received to Date | 260 | | Total Forms Processed to Date | 229 | | Total Forms Received this Period | 74 | | Total Forms Processed this Period | 92 | | | | | Total Data Received to Date | | | | 244 | | Total Data Controlled to Date | 240 | | Total Data Received this Period | 105 | | Cotal Data Controlled this Period | 102 | ## 1. Ship or Laboratory Activities #### a. Travel Schedule The field activities are limited to meetings with investigators or OCSEAP management personnel. Many meetings were held in Anchorage as investigators were traveling to field operations. The balance of the meetings in Anchorage included local investigators. The travel itineraries are listed below. ### TRAVEL RUs - 497/370 ### Dates | 1. | 6-7 June 1977 | Juneau | |----|-----------------|-------------------------------| | 2. | 12-17 June 1977 | Lake Quinault, Washington | | 3. | 27-30 June 1977 | Bluff, Alaska, Drury (RU 237) | ### 2. Scientific Party Staff for the keyentry facility and OCSEAP support are listed below. | Michael L. Crane | EDS | Physical Scientists | |--------------------|--------|---------------------| | Joanne Grant | U of A | Data Transcriber | | Wanda McClure | U of A | Data Transcriber | | Richard Paulsen | U of A | Data Transcriber | | Virginia Holsapple | U of A | Secretary | | | Not applica | ble | | | | | | |------|---------------------------|----------------------|------------|--------------|-----------|---------|---------------| | 4. | Sample Loc
Not applica | alities/ Ship
ble | o or Aircr | aft Trackli | nes | | | | | | ted or Analyz | :eđ | | | | | | | Not applica | ple | | | | | | | | | | MILES | FONES | | | | | | June 30 | Sept | 30 | Dec 31 | Feb | 28 | Mar 31 | | Data | Entry Back | log Data Entr | У | 1977 Data | Keyentry | Arctic | Investigators | | | - · | 50% | | | 25% | | | | Data | Checking - | no software | assistance | 2 | | | | | | Checking | 30% | | | | | | | Hard | ware | <u>Insta</u> | 11 telecor | munication | s equipme | ent | | | | | | | 15% | | | | | Data | Checking | | | Data Check | ing - Sof | tware a | ssisted | | | | | | | 55% | | | | Mana | gement File: | 8 | | | | | | | | Design a | and Maintain | Office Fil | les | | | | 3. Methods 10% Problems Encountered/Recommended Changes The increased effort in certifying data as it is received will require powerful software and the volume of material will require greater capacity equipment. Because the data managers in the OCSEA P Program require more direct support in data handling, expanded telecommunications is needed to facilitate this support. Access to power software through remote job entry equipment would be necessary and sufficient to accomplish the appropriate tasks of checking, inventorying and delivering summary reports. Detailed requirements were discussed at a data management meeting in Lake Quinault, Washington. Another problem is the software used to check the OCSEAP digital data. This research unit will require delivery of software or access to expanded software. NODC is currently developing the necessary check programs. Depending on the completion time, implementation of software checking will require NODC assistance. #### Estimate of Funds Expended RU 497 Salaries 3/4 of total = 24k Indirect 3/4 of total = 8k Travel = 7k RU 370 Submitted under separate University report. | | • | | | | |--|---|-----|--|---| · · | | · | • | • | | | | |--|-----|--------|--| | i i | <u>. </u> | . ' | | | | | | ·
: | * · | | | | | | | | | | en e | | | | | | | | | | | | | | | | | - | and the second s |